
 

Mapping Our Future Together fs.usda.gov/about-agency/gtac | 1 

Last Updated: October 2022 
Software: R version 4.2.1 (or higher) and RStudio 

EXERCISE 4 
Introduction to Modeling & Prediction in R 
Introduction 
In this exercise, we will put together some of the pieces that you have learned in the previous exercises 
and you will learn how to run a geostatistical model to create a model prediction raster. You will fit a 
simple Random Forest regression model predicting total stand biomass using raster predictor layers. You 
will use this model to create a predicted stand biomass raster layer which may be used to map biomass.   

Objectives 
 Extract raster values to spatial points to assemble a modeling dataset 
 Fit a simple Random Forests regression model 
 Use the classification model to predict stand biomass wall-to-wall for a subset of the study area 

Required Software & Data 
 R version 4.2.1 (or higher) - Go to the RStudio CRAN mirror and follow the instructions to 

download and install R. 
 RStudio – Download from Rstudio.  
 Course data folder 

Prerequisites 
 Introduction to Geospatial Scripting   
 Introduction to Random Forests 
 Completion of Exercise 3 of this course – Raster Processing & Analysis in R 

  

http://cran.rstudio.com/
https://www.rstudio.com/products/rstudio/download/
https://usdagcc.sharepoint.com/sites/fs-gtac-tus/Lists/Course/Item/displayifs.aspx?ID=238
https://fsapps.nwcg.gov/gtac/CourseDownloads/Training/Remote_Sensing/RandomForests/Storyline/story_html5.html


 

Mapping Our Future Together fs.usda.gov/about-agency/gtac | 2 

Table of Contents 
Part 1: Set up your script, load packages and datasets ................................................................... 3 

Part 2: Assemble a modeling data set ............................................................................................. 4 

Part 3: Explore relationships among variables prior to modeling ................................................... 5 

Part 4: Fit stand biomass regression models ................................................................................... 7 

Part 5: Apply the model to create spatial prediction layer .............................................................. 8 

Part 6: Appendix – Additional Resources ......................................................................................... 9 

 

  



 

Mapping Our Future Together fs.usda.gov/about-agency/gtac | 3 

Part 1: Set up your script, load packages and datasets 
A. Set up a new R script for this exercise 

1. From the file menu, open a new R script, save it in your scripts folder using the name 
04_SpatialModelingAndPrediction.R 

B. Install and load the required packages:  
1. Use the library function to load the terra package by adding and running the code below 
#Load packages 
library(terra) 

2. Install and load the randomForest package for modeling 
i. Add and run the code below 

install.packages('randomForest') 
library(randomForest) 

C. Set the workspace 
1. For convenience, we identify the workspace so that we easily read from the course data 

folder.  
i. Add the code below to your script 

#identify the workspace, the course data folder 
workspace <- 
"D:/2022/05_GeospatialScriptingInR/Data/DataForGeospatialScriptinginR/" 

D. Load all the datasets for this exercise 
1. Load the forest plot point dataset 
#Read in shapefile – Recall that arguments are: workspace, path to 
shapefile + extension 
NK_points <- terra::vect(paste0(workspace, 
"vector/NorthKaibabForestInvPlots.shp")) 
2. Load a prepared raster stack that has been saved as a .tif file. This stack includes the raster 

predictor layers that you have explored and created in the previous exercises. They have been 
preprocessed and stacked for convenience. 

i. Add and run the code below.  
# Load a stack of predictor layer rasters 
predictorStack <- rast(paste0(workspace, 
"/raster/predictionRasterStack.tif")) 
3. Examine the contents and print the names of the layers in the raster stack 

i. Add and run the code below. 
# Examine the stack 
predictorStack 
# Get the names of the layers 
names(predictorStack) 
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4. One inconvenient thing about the .tif data format is that it doesn’t save the layer names. We’ll 
supply the layer names for you here.  
#re-assign names to the predictor stack 
names(predictorStack) <- 
c("Slope","CanopyHeight","CanopyDensity","NDVI_trend2001_2016") 

Note that the predictor layer raster stack has been put together and saved as a .tif file. To assemble the 
predictor layers in this way for modeling purposes, they must all have the same extent and resolution. 
This data preparation is easily accomplished using functions available in the terra package. To learn 
more about how to prepare raster layers to stack for modeling, see the project(), resample(), extend(), 
crop() and mask() functions. 

Part 2: Assemble a modeling data set 
Prior to model fitting, we need to spatially relate the values in the stack of raster predictor layers 
to the reference plot data. To do this, we will ‘extract’ the values to the plot point locations to 
assemble a modeling data frame that we can then use in our model fitting, evaluation, etc.  

A. Use the extract function to get the values from the stack  
1. Call the extract function in the terra package to get values from the predictorStack object at 

the point locations.  
i. Use help(extract) to open the documentation to get the order of arguments, etc.  
ii. Add and run the code below to create a new object called pointVals. What kind of object 

do you think this is?  
# Extract values from the rasters to the point locations and make a 
data frame 
pointVals <- extract(predictorStack, NK_points) 
# Print the object type to answer the question above 
is(pointVals) 
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B. Create a new data frame combining the attribute table from the points and 
the raster values 
1. Use the cbind function to bind the columns of the spatial point data frame to the extracted 

values. Create a new data frame called modelDF and set it equal to this new data frame.  
i. Add and run the code below to get the data frame table from the point dataset (see the 

note below) and bind the columns to the new point value dataset. 
# Bind the extracted values to the NK forest plot data table to make a 
data frame with values and metadata 
modelDF <- cbind(data.frame(NK_points), pointVals) 

2. Use the head() function and the names() function to take a look at the new data frame.  

Examine the code above and note the data.frame() function. This function allows us to build a data 
frame from lists and vectors—and also allows us to access only the data components of a spatial object 
(as opposed to the spatial components). Use the str() function to print out the structure of an object. This 
will give you the names of all the components (attributes) in the object. Try it out by running 
str(NK_points) 

#inspect 
head(modelDF) 
names(modelDF) 

3. When you look at the first 6 rows of the data frame using the head() function, you can see that 
there’s an additional column named “ID” that wasn’t present in our NK_points data frame or 
our predictorStack. This ID column was created when we used the extract() function. Since we 
joined the point values back with the source data frame, we no longer need this additional 
column and we can set it to NULL.  
# remove secondary ID field 
modelDF$ID <- NULL 

Part 3: Explore relationships among variables prior to 
modeling 

In geostatistical modeling, we generally assemble predictor layers based on hypothesized 
relationships between the phenomena that we are modeling (response variable) and the 
selected predictor layers. In this section, we will use simple methods in R to explore the 
relationships between our response variable, stand total biomass, and the selected continuous 
raster predictor layers.  

A. Print the names in the modeling dataset 
1. Use the names() function on the dataset to print the names of the variables. This will let you 

use copy/paste from the console when you reference the variables in your script.  
#inspect variables present 
names(modelDF) 
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Figure 1. Screenshot of the names in the assembled model dataset. 

B. Plot the relationships 
1. Use the plot function to plot several scatter plots relating stand total biomass to the predictor 

layers in our dataset.  
i. Copy, paste and run the code below – Which variables appear to relate to biomass?  

#Look at relationships between variables 
plot(modelDF$STBIOMS, modelDF$Slope) 
plot(modelDF$STBIOMS, modelDF$CanopyDensity) 
plot(modelDF$STBIOMS, modelDF$CanopyHeight) 
plot(modelDF$STBIOMS, modelDF$NDVI_trend2001_2016) 

2. We can also use an additional plotting command to include all of the plots that we just created 
in a single plot. This helps facilitate comparisons between these relationships.  
# plot all 4 plots together for comparison 
par(mfrow=c(2,2)) # set up a plotting window with 2 rows and 2 columns 
plot(modelDF$STBIOMS, modelDF$Slope) 
plot(modelDF$STBIOMS, modelDF$CanopyDensity) 
plot(modelDF$STBIOMS, modelDF$CanopyHeight) 
plot(modelDF$STBIOMS, modelDF$NDVI_trend2001_2016) 
par(mfrow=c(1,1)) # reset plotting window to 1 row x 1 column 

C. Calculate correlations between stand total biomass and predictor variables 
1. Use the cor() function to calculate the correlations between stand total biomass and the 

predictor layers in the raster stack 
i. Copy, paste and run the code below – Which have the largest correlation with biomass?  

#Look at correlations 
cor(modelDF$STBIOMS , modelDF$Slope) 
cor(modelDF$STBIOMS , modelDF$CanopyDensity) 
cor(modelDF$STBIOMS , modelDF$CanopyHeight) 
cor(modelDF$STBIOMS , modelDF$NDVI_trend2001_2016) 
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Figure 2. Scatterplot comparisons of predictor variables (y-axis) and stand total biomass (x-axis) show a visible 
relationship between lidar-measured canopy height and density (correlation of 0.45 and 0.62) and no real relationship 
between slope or the derived trend in NDVI.  

Part 4: Fit stand biomass regression models 
In this section, we will use the Random Forests package to fit a random forest regression 
model. We will look at two models, one using all the predictor variables and another just using 
the lidar-derived variables to predict stand total biomass. This section is not intended to provide 
a complete lesson on geostatistical modeling, rather simply demonstrate how R can be used to 
accomplish a complete modeling and prediction workflow. For more information on modeling 
and classification using Random Forests, check out the self-paced GTAC Random Forests 
tutorial.  

A. Define a model predicting stand total biomass regression model 
1. Create a new model object, model1, and set it equal to the model formula for predicting 

stand total biomass from all the variables in the raster stack. 
#Define a model with all the variables 
model1 <- STBIOMS ~ Slope + CanopyDensity + CanopyHeight + 
NDVI_trend2001_2016 

Please refer to this tutorial provided by the RSpatial Hub for a more in-depth discussion and explanation 
of model formulas in R.  

2. Use the randomForest function to fit the model using the data in the modeling data frame. 
rf1 <- randomForest(model1, data=modelDF) 

https://fsapps.nwcg.gov/gtac/CourseDownloads/Training/Remote_Sensing/RandomForests/Storyline/story_html5.html
https://fsapps.nwcg.gov/gtac/CourseDownloads/Training/Remote_Sensing/RandomForests/Storyline/story_html5.html
https://rspatial.org/terra/pkg/9-predict.html#random-forest
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B. Look at model summary and the variable importance  
1. Print the model to view the summary and results 

i. Add and run the code below.  
rf1 
2. Use the Random Forest variable importance plot function to look at the relative importance 

of the predictor variables in the model prediction stand total biomass 
i. Add and run the code below. 

varImpPlot(rf1) 

C. Fit a simplified model and compare 
1. Use the code below to define, fit and quickly evaluate a simplified model using only the most 

important, predicative variables 
#Define a model with two variables 
model2 <- STBIOMS ~ CanopyDensity + CanopyHeight   
rf2 <- randomForest(model2, data=modelDF) 
rf2 
varImpPlot(rf2)  

D. Compare this to a simple linear model  
1. Add and run the code below to fit a simple linear model with the same variables 
#Compare to a linear model  
lm2 <- lm(model2, data=modelDF) 
summary(lm2) 

Which model do you think is best and why? Model fitting and selection goes well beyond the scope of 
this introductory R course. We can however, summarize a bit of often-cited and trusted wisdom, 
reminding the reader to consider Occam’s razor. This principle tells us that the simpler model is usually 
better. In other words, the more complex a model is, the more assumptions that are made and less likely 
it is to represent reality.  

Part 5: Apply the model to create spatial prediction layer 
A. Create a subset of the predictor layer stack 

1. Use the code below to create a subset of the predictor stack using the crop function 
i. Add and run the code below 

# create subset area bounding box to limit raster processing time 
subsetBox <- ext(390000,400000,4030000,4040000)  
 
# Create a subset  
predictorStackSubset <- crop(predictorStack, subsetBox) 

B. Apply the model to create a continuous prediction raster  
1. Use the predict function to apply the model, prediction stand total biomass using the 

predictor layers in the stack and the model. 
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#Predict the model for the subset area 
predRaster <- predict(predictorStackSubset, rf2) 
plot(predRaster) 

 

Figure 3. Total stand biomass as predicted by the second Random Forests regression model for a subset area on the 
North Kaibab. 

In order to use the predict function, the layers in raster stack must have exactly the same names as the 
variable in the model dataset. If necessary, you can use the names() method to change the names of 
layers in a raster stack the same way you would change the names in a data frame.  

C. Save the output prediction layer 
1. Use the writeRaster() function to save the final prediction layer your course data folder 

i. If necessary, use the help function to pull up the documentation to get a reminder of the 
order of arguments, etc.  

 

Congratulations! You have completed the final exercises and a complete spatial modeling 
workflow. You have explored multiple tools in R and practiced writing scripts to accomplish a 
variety of spatial data manipulation and analysis tasks.  

Part 6: Appendix – Additional Resources 
A. The following list of online resources provide more information on the topics 

covered in this exercise:  
1. Spatial Data Analysis and Modeling with R: Spatial Distribution Models 
2. Quantitative Methods in Spatial Ecology: Random Forest Species Distribution Modeling 
3. Model Selection Approaches 

 
 

https://rspatial.org/terra/sdm/index.html
http://evansmurphy.wixsite.com/evansspatial/random-forest-sdm
http://r-statistics.co/Model-Selection-in-R.html
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