U}S Forest Service

U.S. DEPARTMENT OF AGRICULTURE

——
= |

Geospatial Technology and Applications Center | GTAC

Last Updated: October 2022
Software: R version 4.2.1 (or higher) and RStudio

EXERCISE 4
Introduction to Modeling & Prediction in R

Mapping Our Future Together fs.usda.gov/about-agency/gtac | 1


http://cran.rstudio.com/
https://www.rstudio.com/products/rstudio/download/
https://usdagcc.sharepoint.com/sites/fs-gtac-tus/Lists/Course/Item/displayifs.aspx?ID=238
https://fsapps.nwcg.gov/gtac/CourseDownloads/Training/Remote_Sensing/RandomForests/Storyline/story_html5.html

l_iSDA ﬁf Forest Service

U.S. DEPARTMENT OF AGRICULTURE

—1
= |

Table of Contents

Part 1: Set up your script, load packages and datasets ........cccecvueeeieiiiieeeciiiee e 3
Part 2: Assemble a modeling data SEt ... 4
Part 3: Explore relationships among variables prior to modeling ........ccccoecveviviiieiiiniienecee e, 5
Part 4: Fit stand biomass regression MOdEIS .........ccoicviiiiiiiii i 7
Part 5: Apply the model to create spatial prediction layer........ccceeeecieeeeiiiei e 8
Part 6: Appendix — Additional RESOUICES.......cccccuiiieiiiiiee ettt et e e e e e e brae e e e 9

Mapping Our Future Together fs.usda.gov/about-agency/gtac | 2



Forest Service

U.S. DEPARTMENT OF AGRICULTURE

Part 1: Set up your script, load packages and datasets

A. Set up a new R script for this exercise

1. From the file menu, open a new R script, save it in your scripts folder using the name
04_SpatialModelingAndPrediction.R

B. Install and load the required packages:

1. Use the library function to load the terra package by adding and running the code below

#lLoad packages
library(terra)

2. Install and load the randomForest package for modeling
i. Add and run the code below

install.packages('randomForest')
library(randomForest)

C. Set the workspace

1. For convenience, we identify the workspace so that we easily read from the course data
folder.

i. Add the code below to your script

#identify the workspace, the course data folder
workspace <-

"D:/2022/05_GeospatialScriptingInR/Data/DataForGeospatialScriptinginR/"

D. Load all the datasets for this exercise
1. Load the forest plot point dataset
#Read in shapefile - Recall that arguments are: workspace, path to
shapefile + extension
NK_points <- terra::vect(paste@(workspace,
"vector/NorthKaibabForestInvPlots.shp"))
2. Load a prepared raster stack that has been saved as a .tif file. This stack includes the raster

predictor layers that you have explored and created in the previous exercises. They have been
preprocessed and stacked for convenience.

i. Add and run the code below.

# Load a stack of predictor layer rasters

predictorStack <- rast(paste@(workspace,

"/raster/predictionRasterStack.tif"))

3. Examine the contents and print the names of the layers in the raster stack
i. Add and run the code below.

# Examine the stack

predictorStack

# Get the names of the layers

names (predictorStack)
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4. One inconvenient thing about the .tif data format is that it doesn’t save the layer names. We’'ll
supply the layer names for you here.

#re-assign names to the predictor stack
names(predictorStack) <-

c("Slope","CanopyHeight", "CanopyDensity", "NDVI_trend2001_ 2016")

Note that the predictor layer raster stack has been put together and saved as a .tif file. To assemble the
predictor layers in this way for modeling purposes, they must all have the same extent and resolution.
This data preparation is easily accomplished using functions available in the terra package. To learn
more about how to prepare raster layers to stack for modeling, see the project(), resample(), extend(),
crop() and mask() functions.

Part 2: Assemble a modeling data set

Prior to model fitting, we need to spatially relate the values in the stack of raster predictor layers
to the reference plot data. To do this, we will ‘extract’ the values to the plot point locations to
assemble a modeling data frame that we can then use in our model fitting, evaluation, etc.

A. Use the extract function to get the values from the stack

1. Call the extract function in the terra package to get values from the predictorStack object at
the point locations.
i. Use help(extract) to open the documentation to get the order of arguments, etc.
ii. Add and run the code below to create a new object called pointVals. What kind of object
do you think this is?
# Extract values from the rasters to the point locations and make a
data frame
pointVals <- extract(predictorStack, NK_points)

# Print the object type to answer the question above
is(pointVvals)
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B. Create a new data frame combining the attribute table from the points and

the raster values
1. Use the chind function to bind the columns of the spatial point data frame to the extracted
values. Create a new data frame called modelDF and set it equal to this new data frame.
i. Add and run the code below to get the data frame table from the point dataset (see the
note below) and bind the columns to the new point value dataset.
# Bind the extracted values to the NK forest plot data table to make a

data frame with values and metadata
modelDF <- cbind(data.frame(NK points), pointVals)

2. Use the head() function and the names() function to take a look at the new data frame.

Examine the code above and note the data.frame() function. This function allows us to build a data
frame from lists and vectors—and also allows us to access only the data components of a spatial object
(as opposed to the spatial components). Use the str() function to print out the structure of an object. This
will give you the names of all the components (attributes) in the object. Try it out by running

str(NK_points)

#inspect
head(modelDF)
names (modelDF)

3. When you look at the first 6 rows of the data frame using the head() function, you can see that
there’s an additional column named “ID” that wasn’t present in our NK_points data frame or
our predictorStack. This ID column was created when we used the extract() function. Since we
joined the point values back with the source data frame, we no longer need this additional
column and we can set it to NULL.

# remove secondary ID field
modelDF$ID <- NULL

Part 3: Explore relationships among variables prior to
modeling

In geostatistical modeling, we generally assemble predictor layers based on hypothesized
relationships between the phenomena that we are modeling (response variable) and the
selected predictor layers. In this section, we will use simple methods in R to explore the
relationships between our response variable, stand total biomass, and the selected continuous

raster predictor layers.

A. Print the names in the modeling dataset

1. Use the names() function on the dataset to print the names of the variables. This will let you
use copy/paste from the console when you reference the variables in your script.

#inspect variables present
names (modelDF)
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= names{modelDF)

[1] "PLOT_ID" "GUILD" "DOM_TYPE" "TCUFT"
[5] "sTBIOMS" "Elev_awve" "all_d1st_co" "logelev_av"
[9] "logall_1st” "slope” "CanopyHeight" "CanopyDensity"

[13] "NDVI_trend2001_2016"

Figure 1. Screenshot of the names in the assembled model dataset.

B. Plot the relationships

1. Use the plot function to plot several scatter plots relating stand total biomass to the predictor
layers in our dataset.

i. Copy, paste and run the code below — Which variables appear to relate to biomass?

#Look at relationships between variables
plot(modelDF$STBIOMS, modelDF$Slope)
plot(modelDF$STBIOMS, modelDF$CanopyDensity)
plot(modelDF$STBIOMS, modelDF$CanopyHeight)
plot(modelDF$STBIOMS, modelDF$NDVI_ trend2001 2016)

2. We can also use an additional plotting command to include all of the plots that we just created
in a single plot. This helps facilitate comparisons between these relationships.

# plot all 4 plots together for comparison

par(mfrow=c(2,2)) # set up a plotting window with 2 rows and 2 columns
plot(modelDF$STBIOMS, modelDF$Slope)

plot(modelDF$STBIOMS, modelDF$CanopyDensity)

plot(modelDF$STBIOMS, modelDF$CanopyHeight)

plot(modelDF$STBIOMS, modelDF$NDVI_trend2001 2016)

par(mfrow=c(1,1)) # reset plotting window to 1 row x 1 column

C. Calculate correlations between stand total biomass and predictor variables

1. Use the cor() function to calculate the correlations between stand total biomass and the
predictor layers in the raster stack

i. Copy, paste and run the code below — Which have the largest correlation with biomass?
#Look at correlations
cor(modelDF$STBIOMS , modelDF$Slope)
cor(modelDF$STBIOMS , modelDF$CanopyDensity)
cor(modelDF$STBIOMS , modelDF$CanopyHeight)
cor(modelDF$STBIOMS , modelDF$NDVI_trend2001 2016)
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Figure 2. Scatterplot comparisons of predictor variables (y-axis) and stand total biomass (x-axis) show a visible
relationship between lidar-measured canopy height and density (correlation of 0.45 and 0.62) and no real relationship
between slope or the derived trend in NDVI.

Part 4: Fit stand biomass regression models

In this section, we will use the Random Forests package to fit a random forest regression
model. We will look at two models, one using all the predictor variables and another just using
the lidar-derived variables to predict stand total biomass. This section is not intended to provide
a complete lesson on geostatistical modeling, rather simply demonstrate how R can be used to
accomplish a complete modeling and prediction workflow. For more information on modeling
and classification using Random Forests, check out the self-paced GTAC Random Forests
tutorial.

A. Define a model predicting stand total biomass regression model

1. Create a new model object, modell, and set it equal to the model formula for predicting
stand total biomass from all the variables in the raster stack.

#Define a model with all the variables

modell <- STBIOMS ~ Slope + CanopyDensity + CanopyHeight +

NDVI_ trend2001 2016

Please refer to this tutorial provided by the RSpatial Hub for a more in-depth discussion and explanation
of model formulas in R.

2. Use the randomForest function to fit the model using the data in the modeling data frame.
rfl <- randomForest(modell, data=modelDF)
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B. Look at model summary and the variable importance
1. Print the model to view the summary and results
i. Add and run the code below.
rfl
2. Use the Random Forest variable importance plot function to look at the relative importance
of the predictor variables in the model prediction stand total biomass
i. Add and run the code below.
varImpPlot(rfl)

C. Fit a simplified model and compare

1. Use the code below to define, fit and quickly evaluate a simplified model using only the most
important, predicative variables

#Define a model with two variables

model2 <- STBIOMS ~ CanopyDensity + CanopyHeight
rf2 <- randomForest(model2, data=modelDF)

rf2

varImpPlot(rf2)

D. Compare this to a simple linear model

1. Add and run the code below to fit a simple linear model with the same variables

#Compare to a linear model
Im2 <- 1m(model2, data=modelDF)
summary (1m2)

Which model do you think is best and why? Model fitting and selection goes well beyond the scope of
this introductory R course. We can however, summarize a bit of often-cited and trusted wisdom,
reminding the reader to consider Occam’s razor. This principle tells us that the simpler model is usually
better. In other words, the more complex a model is, the more assumptions that are made and less likely
it is to represent reality.

Part 5: Apply the model to create spatial prediction layer

A. Create a subset of the predictor layer stack

1. Use the code below to create a subset of the predictor stack using the crop function
i. Add and run the code below

# create subset area bounding box to limit raster processing time
subsetBox <- ext(390000,400000,4030000,4040000)

# Create a subset
predictorStackSubset <- crop(predictorStack, subsetBox)

B. Apply the model to create a continuous prediction raster

1. Use the predict function to apply the model, prediction stand total biomass using the
predictor layers in the stack and the model.
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#Predict the model for the subset area
predRaster <- predict(predictorStackSubset, rf2)

plot(predRaster)
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Figure 3. Total stand biomass as predicted by the second Random Forests regression model for a subset area on the
North Kaibab.

In order to use the predict function, the layers in raster stack must have exactly the same names as the
variable in the model dataset. If necessary, you can use the names() method to change the names of
layers in a raster stack the same way you would change the names in a data frame.

C. Save the output prediction layer
1. Use the writeRaster() function to save the final prediction layer your course data folder

i. If necessary, use the help function to pull up the documentation to get a reminder of the
order of arguments, etc.

Part 6: Appendix — Additional Resources

A. The following list of online resources provide more information on the topics
covered in this exercise:
1. Spatial Data Analysis and Modeling with R: Spatial Distribution Models

2. Quantitative Methods in Spatial Ecology: Random Forest Species Distribution Modeling

3. Model Selection Approaches
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