
Refinement and Extension of a Method for Defining Valid

Measures

Luis Reynoso
(University of Comahue, Neuquén, Argentina

lreynoso@uncoma.edu.ar)

Marcela Genero and Mario Piattini
(Alarcos Research Group, University of Castilla-La Mancha, Ciudad Real, Spain

{Marcela.Genero, Mario.Piattini}@uclm.es)

Abstract: Although literature contains a huge amount of measures with which to measure

quality characteristics of software artefacts throughout the development life-cycle, the majority

go no further than the step of definition. The key to obtaining valid measures which may be

useful in practice is the definition of measures by following a rigorous method. In a previous

work we have defined a method with which to obtain valid measures. In this paper we present

the extensions and refinements of this method, which has been redefined as a consequence of

seven years of application to various software artefacts, such as OCL expressions, UML

diagrams, ER diagrams, Relational database schemas, Datawarehouse conceptual models, etc.

In order to illustrate the redefined method an example of the definition of a measure for the

import-coupling of OCL expressions is presented.

Keywords: software measures, measure definition, theoretical validation, empirical validation,

psychological explanation

Categories: D.2.8

1 Introduction

One of the current concerns of software factories is that of evaluating and improving

the quality of their software products throughout the development life-cycle. To do

this they need valid software measures which will allow them to evaluate the quality

characteristics of software products in an objective and quantitative manner. Over the

past fifteen years a wealth of literature dealing with measures capturing the quality of

many software artefacts has appeared. However, most of the measures are poorly

defined, and have consequently been of little use or cannot be used for the purpose for

which they were intended. Many of these problems arise from following an imprecise

measures definition method. The lack of a consolidated method with which to

measure definition could be considered as characteristic of a discipline like software

engineering, which is a human-intensive young discipline in contrast to other

disciplines [Briand et al. 1996], whose methods and techniques need to be fully

assessed.

Some issues that contribute towards obtaining valid measures are:

• Measures must help to attain a measurement goal. Measurement goals should be

clearly connected to an industrial goal, responding to the software organization’s

needs.

• The underlying hypotheses associated with the measures once they have been

defined should be explicit.

• The context or the environment in which the measures can be applied should be

declared.

• Measures should be repeatable, i.e. their definition should be as clear possible so

that if the measurement of an attribute is repeated by a different person the same

result will always be produced.

• Measures should be theoretically valid, i.e. it should be explicit which the

attribute that a measure aims to quantify is.

• Measures must be valid in practice, i.e. they must be empirically valid.

Taking into account such issues we have defined in [Calero et al. 2001a] a method for

measure definition. In the last ten years, this method has been used by both our

research group and other research groups to define measures for different software

artefacts, such as UML diagrams [Genero et al. 2007; Cruz-Lemus et al. 2005], ER

diagrams [Genero et al. 2008], Relational database schemas [Calero et al. 2001b],

datawarehouse conceptual models [Serrano et al. 2004], etc. During the application of

the original method to different contexts we realized that as it was originally defined

was difficult to follow and sometimes ambiguous. The level of detail of the tasks to

be done in each step was not enough. For example, the measure definition step

requires more details to differentiate high level activities from those of a lower level

to be easily understood and used.

Therefore, our experience of using the method in different contexts motivated us to

improve it through its refinement and extension. The main goal of this paper is to

thoroughly describe how this method has been extended and refined.

The paper is organised as follows: The original version of the method for measure

definition, proposed in [Calero et al. 2001a], is presented in Section 2. Section 3

outlines the principal issues that have been refined and extended in the current version

of the method. Sections 4 and 5 detail the definition of the method, emphasizing the

activities that have been refined or extended. In order to illustrate the entire method,

an example of the definition of a measure for the import-coupling of OCL expressions

is presented in Section 6. Concluding remarks and future work are presented in the

Section 7.

2 Summary of the Original Method for Measure Definition

An overall picture of the original method [Calero et al. 2001a] is shown in Figure 1.

This method identifies four steps:

• Metrics definition. This method step stresses the importance of correctly defining

measures. It highlights the importance of considering the characteristics of the

software products, the use of standards to identify quality attributes, along with

the experience of modelers, designers, developers and product users. This step

also proposes the use of the GQM approach [Basili and Weiss 1984; Basili and

Rombach 1998; Solingen and Berghout 1999] to obtain measures in a

methodological manner.

• Theoretical validation, is related to ascertaining if a measure really measures the

attribute it purports to measure. Two main tendencies are identified: frameworks

based on axiomatic approaches and those based on the measurement theory. This

step is further explained in section 5.

• Empirical validation, carried out to gather empirical evidence of the measures in

practice. Two major strategies are described in [Calero et al. 2001a]:

experimentation and case studies. These strategies are explained and also

compared. More attention is paid to experimentation and (the need to run

replicas) than case studies. The more relevant phases of running an experiment

are also briefly described, along with some of the threats related to its validity.

• Psychological Explanation: The purpose of this step in the original method is to

explain the influence of the values of the measures from a psychological point of

view. It also highlights the use of cognitive psychology as a reference theory in

studying information modelling and the use of the knowledge of human

information processing to establish a threshold. However, this step was not

explained in detail

Figure 1. Original method for measures definition [Calero et al. 2001]

3 Extended and Refined Method for Measures Definition

The original method was refined and extended due to the fact that we needed a fine-

grained method which would provide us with a sufficient level of details which are

lacking in the original method, and which would help us to avoid ambiguities in its

application and to tackle the measure definition accordingly. Moreover, the

application of the original method in different contexts led us to realize not only that

many parts should be refined, but also that new steps should be added. The method

was therefore divided into several activities which should be performed in order to

obtain reliable and consistent measures. The new method was modelled through the

use of UML activity diagrams.

The following modifications have been done to the original method:

• Refinements represent improvements to the method with regard to the activities

that should be carried out to attain a particular goal, with a rigorous specification

PSYCHOLOGICAL EXPLANATION

THEORETICAL VALIDATION

EMPIRICAL VALIDATION

METRICS DEFINITION

EXPERT

OPINION
STANDARD

9126

GQM

METHOD

PROPERTY
BASED

FRAMEWORKS

MEASUREMENT
THEORY BASED

FRAMEWOKS

EXPERIMENTS

CASE

STUDIES STUDENTS EXPERTS

of: (1) the order of execution of the activities, (2) the main data (object flow and

major decisions) that should be defined and shared between activities, etc. Some

of these refinements were originally conceptualized and designed but were not

detailed and explained in relations to other activities.

• Extensions of the method were introduced when we needed to deal with new

activities in the measure definition step.

Figure 2 shows the new method’s high-level activities. One of the most important

decisions when we redefined the method was to differentiate two initial activities,

which were the Identification and the Creation of measures. The Identification

activity (Figure 2, Activity M1), has the purpose of planning the measurement goals

and questions, identifying abstractions and stating general hypothesis by following the

most commonly cited methods in literature for measure definition, whereas the latter

activity, based on the outcomes of the former activity, defines the measures through a

rigorous process.

The Identification activity subsumed part of the first step of the original method (that

of the definition of measures), but only that part which was related to the definition of

goal and questions followed a GQM approach. Moreover, the Identification activity

was refined in order to represent the remaining activities (the identification of

abstractions, the stating of a general hypothesis, etc) which were not included in the

original method. This activity not only considers a GQM approach, as did the original

method, but also makes improvements to it considering the Measurement Model Life

Cycle (MMLC) [Cantone and Donzelli 1999] and the GQM/MEDEA [Briand et al.

2002]. The Identification activity was refined because it is a crucial activity and all

the following activities will be based upon its results. The Identification activity in

Figure 2 shows a rake to the right of the activity, indicating that the activity is

described by a more finely detailed activity diagram. This activity is explained in

detail in Section 4.

The Creation activity (Figure 2, Activity M2) defines the measures based on clear

measurement goals, questions, abstractions and general hypotheses specified in the

previous activity. The definition is firstly described in natural language and also

includes a formal definition. Moreover, measures are theoretically and empirically

validated, and a plausible psychological explanation of the effort of subjects when

dealing with the software artefacts being measured is provided. This activity has,

therefore, subsumed part of the definition of the measure (that related to the measure

creation within the GQM approach), the psychological explanation and the theoretical

and empirical validation of the original method. Since this activity is probably the

longest and the most complex, we believe that it should be further broken down into

four activities which are explained in section 5.

The method was also extended with three new activities:

• Acceptation (Figure 2, Activity M3): The aim of this activity is the systematic

experimentation of the measure. This is applied to a context which is suitable for

the reproduction of the characteristics of the application environment, with real

projects and real users, to verify its performance in comparison with the initial

goals and stated requirements. After this activity is performed, measures can be

accepted or rejected. A decision node therefore follows the Acceptation activity.

The branching is based on whether measures are accepted or rejected. Even if the

measure is rejected it should not be discarded but should undergo the method

from the creation activity.

• Application (Figure 2, Activity M4): The accepted measure is used in real

projects in industrial environments.

• Accreditation (Figure 2, Activity M5): The goal of this activity is the

maintenance of the measure to allow it to be adapted to application in changing

environments. As the original method explains, the accreditation activity

represents a dynamic step that proceeds simultaneously with the application

activity. A fork and a join bar in the diagram shown in Figure 2 therefore

respectively denote the beginning and the end of a parallel activity. As a result of

this step the measure can be withdrawn or reused for a new measure definition

process.

 We shall now provide a detailed description of the core activities of Identification

and Creation (sections 4 and 5 respectively), stressing those aspects which were

refined and extended. Whenever an activity is explained, its identification number

will be show on its right, which coincides with the number shown in the UML activity

diagrams.

Figure 2. Refined and extended method for measures definition

4 Identification

As was previously described the most important activity is that of Identification

(Figure 2, Activity M1) since it influences all other activities. The UML activity

diagram for the Identification activity is shown in Figure 3. It is advisable to be able

to achieve the definition of clear measurement goals to avoid producing a measure

definition that does not actually achieve our desired aim, i.e. we should follow a goal-

oriented definition of measures. As is described in [Pfleeger et al. 1997], a commonly

used model which can guide us in deriving and applying a goal-oriented definition is

M3. Acceptation

M1. Identification

Goals

Questions Abstractions

Empirical Hypotheses

M2. Creation

Created Measures

M4. Application

M5. Accreditation

[rejected measure]

[accepted measure]

[accepted measure] [reused measure]

the GQM paradigm. This paradigm (already explained in [Calero et al. 2001]) has

been widely applied as a means to deduce measures by using a top-down perspective

and to analyze and interpret them by using a bottom-up perspective [Solingen and

Berghout 2001]. Goals are stated in a conceptual level and are, in turn, refined in an

operational, tractable manner into a set of quantified questions [Mendonça and Basili

2000] and are defined as part of this activity. However several authors [Briand et al.

2002; Card 1993], have argued that GQM has some important limitations [Card 1993;

Briand et al. 2002; Hetzel 1993; Shepperd 1995] and is not in itself sufficient to

define effective measures. For instance, Card recommends that the use of GQM must

be supplemented with another activity to select specific practical measures, and he

also suggests that one effective supplemental activity is that of modelling. Developing

a model, i.e. defining the objects being measured, makes it possible to select measures

for effect rather than desire [Card 1993], and helps us to describe the relationships

between measurable things. Briand et al. similarly provide another mechanism with

which to generate models [Briand et al. 2002]. In both approaches, the modelling of

the measured artefact is included as a complementary activity for the GQM paradigm.

Our proposed method, after its validation in defining several measures for various

software artefacts, found similarities with all the aforementioned remarks from

measurement literature. Thus, in order to define measurement goals the following

activities should be performed:

• Select the entity of study (Figure 3, Activity I1): According to the ISO 9126

[ISO IEC 2001] an entity is an object (for instance, a product, process, project or

resource) that is to be characterized by measuring its attributes. The selected

entity is undoubtedly the product of the organization’s stakeholders’ eliciting

requirements.

• Determine the quality focus (Figure 3, Activity I2): Generally the quality focus

corresponds to the quality attributes (abstract properties of an entity) upon which

the measurement activities are focused. In order to conceptualize and

differentiate when determining such attributes, quality models, such as the ISO

9126 [ISO IEC 2001], Kim [Kim 1999], McCall [McCall et al. 1977], Boehm

[Boehm et al. 1978], suggest ways in which to describe different quality

characteristics of software products.

• State the GQM goal(s) at a conceptual level (Figure 3, Activity I3): The two

previous activities are used to state the GQM Goal(s), which is (are) defined by

using the following template [Basili and Weiss 1984]: Analyze the 'object of

study' for 'purpose' with regard to 'quality focus' from the point of view of 'point

of view'. In other words, a GQM goal specifies what objects are measured for

what purposes from which viewpoints with regard to which focuses [Saeki 2003].

Once the goal(s) has/have been defined it/they should be refined into a set of

questions. Nevertheless, before addressing the definition of questions, which in fact

allows GQM goals to be quantified, it is necessary to consider the structural

properties [Darcy and Slaughter 2005] of the software artefact to be studied:

• Determine the structural properties to be studied (Figure 3, Activity I4): It is

necessary to define the properties (or internal attributes) that we intend to

measure because we usually interpret software data at that attribute level

[Kitchenham et al. 1995]. That is, should we study the coupling, cohesion, size,

or length of the software artefacts?

• Identify abstractions for measuring the structural properties (Figure 3,

Activity I5): In helping to clearly identify the structural properties we should take

into account the definition of abstractions for measuring the structural properties

as recommended by Briand et al. [Briand et al. 2002] and Card [Card 1993]. For

instance, in the case of coupling being the structural property to be studied, the

abstraction should identify the different kinds of connections that constitute

coupling, the locus of impact of coupling, the granularity of coupling, etc.

[Briand et al. 1996].

• Refine the goal(s) into questions at an operation level (Figure 3, Activity I6):

Once the structural properties have been selected and abstractions for measuring

them are defined, GQM questions can be established. Questions should fit the

GQM goals otherwise they should be redefined or discarded. This situation is

modelled through a decision by using the diamond notation shown in Figure 3.

• State general hypotheses (Figure 3, Activity I7): Finally, general hypotheses

should be stated, relating structural properties and the quality focus. The

definition of a precise, testable research hypothesis is required before any

empirical study can be performed. An Empirical hypothesis is a statement which

is believed to be true about the relationship between one or more attributes of the

object of study and the quality focus. In other words, empirical hypotheses relate

the (independent) attributes of some entities to other (dependent) attributes of the

same or different software product or activities [Briand et al. 2002].

Figure 3. Identification Activity

Most of the main components of the identification activity involve interaction with

the stakeholders in an organization to elicit a shared view about their organization’s

needs [Berander and Jönsson 2006]. Setting goals and stating general hypotheses are

not simple activities because they are products of expert knowledge. Their

Empirical Hypotheses

I6. Refine the Goal(s) into

questions at the operational level

I1. Select the entity of study

Software artifact

I2. Determine the quality focus

I3. State the Goal(s) at

the conceptual level

[Questions fit the goal(s)]

I4. Determine the

structural properties

I5. Identify abstractions

abstractions

abstractions

I7. State General Hypotheses

[Questions do

not fit the goal(s)]

identification is a high level activity within the method in which goal driven

requirement engineering can be applied [Kavakli 2004].

5 Creation

Creation (Figure 2, Activity M2) relies on the following four activities:

• Measure Definition (Figure 4, Activity C1): In order to clearly define a measure,

it is important to tackle two important issues: a clear specification of what is

captured by the measure and its purpose, and a formal specification of the

measure (i.e. how it is defined). With regard to the former issue, measures are

defined by taking into account the goal(s) and questions provided by the

identification activity. With regard to the latter issue, in measurement literature

various different approaches have been applied in order to define measures:

natural language, mathematical approaches, and formal languages. The measures

should be defined in a consistent and coherent manner to avoid

misunderstandings and the misinterpretation of meaning.

• Theoretical Validation (Figure 4, Activity C2): Once a measure has been

defined it is necessary to verify whether it fulfils the properties that are associated

with the attribute it is intended to measure [Mendonça and Basili 2000]. This task

is called theoretical validation, internal validation or formal validation. In the

context of an empirical study, the theoretical validation of measures establishes

their construct validity [Wholin et al. 2000], i.e. it proves that they are valid

measures for the constructs that are used as variables in the study. Theoretical

validation is also useful to determine the scale type of the measure, and helps us

to discover when and how to apply measures. For instance, the scale of the type

is useful in identifying the statistical techniques which should be applied in

empirical studies.

• Psychological Explanation (Figure 4, Activity C3): Ideally, we should be able to

explain how the subjects deal with the software artefacts that are the focus of our

measurement activities. As Cant et al. [Cant et al. 1992] remark, measuring

structural properties should affect attributes of human comprehension. As a

reference discipline in this step, cognitive psychology can be used to obtain a

plausible explanation of the effort of the subjects dealing with the software

artefact being measured. A clear understanding of the cognitive complexity
1
 of

the subjects dealing with the software artefact will help us to understand how

difficult it is, for instance, to maintain that software artefact, since anything that

is difficult to comprehend will affect its maintainability. The psychological

explanation is also useful in that it provides a clear interpretation of the results of

empirical studies. This activity can be carried out at the same time as the

theoretical validation and it is directly strengthened when qualitative methods are

applied in empirical studies [Seaman 1999].

• Empirical Validation (Figure 4, Activity C4): This task is also called empirical

validation or external validation. This activity investigates whether the measure is

1
 Cognitive complexity is defined as the mental burden of a person dealing with a

software artifact

actually effective in practice, i.e. the study assesses whether the measures are

related to certain external attributes. Thus, the main purpose of this activity is to

run quantitative empirical studies. The activity takes into account the empirical

hypotheses provided by the identification activity.

These activities will be described in detail in sections 5.1, 5.2, 5.3, 5.4. The

activity of creating measures is evolutionary and iterative and as a result of the

feedback, the method could refine, reject or define new measures. We identify two

situations in which a review of the creation activity should be performed. The first is

after finishing the Theoretical Validation activity since: (1) the measure may not be

theoretically valid or (2) the measure may be theoretically valid but does not capture

an expected attribute (the attribute that the measure aims to quantify). The second

situation arises after the empirical validation is performed. Different situations may

arise in this case: a measure might not be empirically valid, various measures may

capture the same dimension of a concept, derived measures need to be defined as a

more precise indicator of independent variables, etc. The two aforementioned

situations were modelled through the two bottom diamond decisions in the UML

activity diagram shown in Figure 4.

Figure 4. Creation Activity

5.1 Measure Definition

This section explains the Measure Definition (Figure 4, Activity C1).When

measures are defined the most important goal is that they should (at a quantitative

level) provide the information to answer the stated GQM questions. However, the

activity of defining measures is not simple. Measures must initially be defined by

using natural language and they should then be formally defined. Moreover, both

Created Measure [theoretically validated]

Plausible Explanation

C1. Measure Definition

Created Measure [defined]

Abstractions

[accepted]

Goal(s)

Questions

C2. Theoretical Validation C3. Psychological Explanation

type of scale

[modify]

C4. Empirical Validation Empirical Hypotheses

[not valid in practice]

Created Measure [empirically validated]

activities have their own preconditions, which constrain the order in which they

should be performed:

• Select a metamodel of the software artefact (Figure 5, Activity D1): The

definition of a measure must be sufficiently clear and detailed for any concept of

the software artefact (the object of study) mentioned in the natural language

definition to be quantifiable, i.e. able to be measured [Briand et al. 1996]. In

order to fulfil this, a metamodel of the software artefact being measured should

be selected as a previous activity of any measure definition. As is defined in

[Jacquet and Abran 1997], a metamodel constitutes the set of characteristics

selected to represent a software or software piece and the set of their

relationships, providing an overall description of the software artefact to which

the measurement method will be applied. By using a metamodel we will be able

to ensure that any concept mentioned in the measure definition using natural

language should also be an element of the selected metamodel.

• Define the measure in natural language (Figure 5, Activity D2): The activity of

defining a measure includes its proper definition, its measure goal, explains how

the measure value is obtained and includes a name and its corresponding

acronym. Figure 5 assumes that many measures can be defined, so the activity D2

occurs iteratively for each measure. The activity has a rake in one corner, so its

description as an activity is shown in Figure 5 and is explained in subsection

5.1.1.

• Select a formal language for the formal definition (Figure 5, Activity D3):

Before any measures are formally defined we should select a formal language

with which to perform the activity. The selection of the formal language may be

carried out in parallel with activities D1 and D2.

Figure 5. Measure Definition Activity

Are the defined measures complete

enough to answer theGQM/questions_

D1. Select a Metamodel of

the Software Artifact

Questions

Metamodel

D2. Definition in Natural

Language

D3. Select a Formal Language

for the Formal Definition

Formal Language

D4. Formal Definition of a

Measure

Created Measure [defined]
Have all the measures been

formally defined?

• Carry out a formal definition of a measure (Figure 5, Activity D4): The

purpose of this activity is a precise definition of each measure upon the

metamodel. The formal definition of the measures is closely related to its

definition in natural language, since the formal specification should be coherent

with the natural language description which explains the way in which the

measure values should be obtained. Although this activity is not further detailed

in an activity, section 5.1.2 explains the underlying reasons for introducing this

activity as part of the method.

We will be able to formally define a measure once (1) the first measure being

defined using natural language is obtained (Figure 5, Activity D2), and (2) both, a

metamodel and a formal language have been selected. These preconditions are

modelled in Figure 5 through the last join. The whole activity terminates when

the last measure is formally defined, this being the condition evaluated in the last

diamond.

5.1.1 Definition in 2atural Language

The Definition in Natural Language (Figure 5, Activity D2) defines the measures

using natural language and contains the following activities:

• Define what is captured by the measure (Figure 6, Activity N1): The definition

of the measure should include a clear description in natural language of what is

captured by the measure.

• Verify the definition explains how the measure value is obtained (Figure 6,

Activity N2): Each concept and relationship mentioned in the definition must be

quantifiable. The measure definition should also give a precise description of

how the value of a measure is obtained, e.g. if the measure is defined as a rate, a

specification of its formula will be provided.

Figure 6. Definition in 'atural Language Activity

• Define the goal pursued by the measure (Figure 6, Activity N3): The measure’s

intent should be consistent with the GQM question to which the measure

N1. Define what is captured

by the measure

N2. Verify that the definition captures

how the measure value is obtained

N3. Define the intent pursued

by the measure

Questions

Metamodel

N4. Name the measure and

select a suitable acronym
Do measures provide

the information to

answer GQM's

questions?

provides information. The measure’s intent should also be described by

considering the cognitive complexity of the modellers dealing with the aspects

and concepts captured by the measure. If the measure’s intent does not provide

information to answer the questions, i.e. if it does not fit our desired aims, we

should review its definition or eventually discard it. This decision is represented

in the bottom diamond of Figure 6 and verifies that each measure’s intent is

aligned with the GQM-questions.

• 2ame the measure and select a suitable acronym (Figure 6, Activity N4): The

last activity of a measure definition is to name the measure and select a suitable

acronym.

Many measures can be defined in order to answer different GQM-questions. It is also

possible for a set of measures to be used to answer a GQM-question. This set should

be sufficiently complete to answer that specific GQM-question. The method therefore

allows for the creation of different measures to answer a GQM-question, and verifies

that each GQM-question can be answered with a set of measures. This situation is

modelled in the diamond shown in Figure 6. By applying the GQM paradigm we

ensure that the obtained measures are useful, simple and direct. However the

paradigm is not intended to define measures at a level of detail which is suitable to

ensure that they are trustworthy, in particular, whether or not they are repeatable (i.e.,

if the measurement of an attribute was repeated by a different person the same result

would be produced each time [Kitchenham et al. 1995]). In order to ensure

repeatability, software measures need to be fully defined and specified, not simply

named. This is one of the purposes of a formal definition of measures which is

explained below.

5.1.2 Formal Definition of a Measure

The purpose of the Formal Definition (Figure 5, Activity D4) is to formally define the

measures. Many difficulties arise when the measure is defined in an unclear or

imprecise way:

• Experimental findings can be misunderstood due to the fact that it may be not

clear what the measure really captured are [Baroni 2002].

• Measure extraction tools can arrive at different results. Kitchenham et al. remark

[Kitchenham et al. 2006] that most data collection problems arise from poor

definitions of software measures. Data validation, data storage and data analysis

problems are consequently involved.

• The replication of experiments is hampered [Baroni 2002].

These are also common problems when we evaluate or consider the methods (or

frameworks) used in defining measures. Most of the existent measures differ in the

degree of formality used in their definition. Two extreme approaches were used,

informal and rigorous definitions. However none of these approaches have been

widely accepted. On the one hand, measures using an informal definition, such as

measures defined in natural languages, may be ambiguously defined, and it is

universally considered that the use of this practice could cause misinterpretations and

misunderstanding. At the other extreme, in a rigorous approach some authors have

used a combination of set theory and simple algebra to express their measures

[Chidamber and Kemerer 1994; Henderson-Sellers 1996]. This approach has not been

popular since the majority of members of the OO community may not have the

required background to understand the underpinning of the complex mathematical

formalism used. An example of how the use of natural language in a measure

definition introduces ambiguity is considered in [Baroni 2002] which uses as example

the “Number of Times a Class is Reused” metric proposed in [Lorenz and Kidd

1994]. This measure is defined as the number of references to a class. We agree with

Baroni that is not clear “what references are and how the metric should be computed,

and many questions arise as: Should internal and external references be counted?

Should references be considered in different modules, packages or subsystem? Does

the inheritance relationship count as a reference?”.

One important contribution, which solves those problems related to the formality

degree used to define measures, is the use of a formal language (e.g. OCL) upon a

metamodel of the software artifacts to be measured. For instance, any measure

defined for a UML artefact (e.g. UML statechart diagram) can use this approach, and

we can provide a formal definition of the measures by using OCL upon the

corresponding UML metamodel (e.g. UML statechart diagram metamodel [Reynoso

et al., 2008]; OCL metamodel [Reynoso, 2007]).

5.2 Theoretical Validation

As was previously described, Theoretical Validation (Figure 4, Activity C2) is

carried out to assess whether a measure actually measures what it claims to measure.

In other words, it shows that a measure is really measuring the attribute it is

purporting to measure [Briand et al. 1995]. There are two main tendencies in

measures validation which represent the most widely applied frameworks (modelled

in Figure 7):

• Use of property-based frameworks (Figure 7, Activity T1): Some of this kind

of frameworks are those proposed in [Weyuker 1988], [Briand et al. 1996] and

[Morasca and Briand 1997].

• Use of frameworks based on measurement theory (Figure 7, Activity T2):

Poels and Dedene [Poels and Dedene 2000]; Zuse [Zuse 1997]; Whitmire

[Whitmire 1997] proposed frameworks based on measurement theory.

The use of property-based frameworks does not contradict the measurement theory

[Briand et al. 2002]. Similarly the measurement theory does not contradict property-

based frameworks. The activity of theoretical validation using different frameworks

can thus be performed simultaneously. The activity T2, which represents the

application of the measurement theory, also helps us to determine the scale type of a

measure. Both activities, T1 and T2, show a rake on their right-hand side, meaning that

they are further broken down. However, for the sake of brevity, a description is

omitted in this article. We believe that both represent well-know processes in

measurement literature. Property-based approaches propose a measure property set

that is necessary but not sufficient [Briand et al. 1996; Poels and Dedene 2000]. They

can be used as a filter to reject proposed measures [Kitchenham 1997], but they are

not sufficient to prove the validity of the measure.

T1. Use of Property-based

Frameworks

Type of Scale

Created Measure [Theoretically validated]

T2. Use of Frameworks based

on the Measurement theory

Abstractions

Figure 7. Theoretical Validation Activity

5.3 Psychological Explanation

This section discusses Psychological Explanation (Figure 4, Activity C3). The

structural properties of software artefacts influence the cognitive complexity of the

software engineers dealing with those artefacts [Briand et al. 1999d; Briand et al.

1999e; Briand et al. 2001], e.g. high structural complexity makes a software artefact

more difficult to comprehend. As was previously mentioned, cognitive complexity is

defined as the mental burden of a person dealing with a software artefact. We believe

that this mental burden will also make an impact on the software quality attribute that

is being studied as a GQM-goal (e.g. the high cognitive complexity of a person

dealing with an artefact will cause the artefact to exhibit undesirable external

qualities, such as the artefact being more difficult to maintain).

Cognitive complexity is therefore at the core of defining measures. The

understanding of cognitive complexity has two advantages:

1. It is useful for defining the rationale behind each measure definition (Figure 6,

Activity N3) and in fact, as Klemola [Klemola 2000] remarks, many measures are

supported by the fact that they are clearly related to cognitive limitations.

2. Cognitive complexity provides us with the theoretical knowledge to explain the

findings of empirical studies, i.e. if we are able to describe and to understand how

software engineers comprehend the software artefacts that are being measured we

will be better prepared to interpret and to analyze the empirical studies performed

with subjects dealing with those artefacts.

A plausible explanation of the measures from a psychological point of view, such

as the understanding of the cognitive demands that software places on software

engineers [Glasberg et al. 2000] is necessary otherwise, as is argued in [Sebrechts and

Black 1982], we only surface features of the software measured. By understanding

cognitive psychology theories we can justify the influence of structural properties on

external quality attributes (such as maintainability) through the study of cognitive

complexity. Moreover, Darcy et al. suggest [Darcy and Slaughter 2005] the

consideration of multiple theoretical perspectives, including human cognition, to

provide a solid foundation upon which to derive an integrative model relating internal

and external attributes of software quality.

A detailed cognitive model is a necessary basis for developing software product

measures [Darcy and Slaughter 2005]. One way in which to operationalize cognitive

complexity is to equate it with the ease of comprehending the software artefact that is

measured, as Glasberg et al. notes [Glasberg et al 2000]. Cognitive models and mental

models are two important theoretical bases for program comprehension. Darcy et al.

argue [Darcy and Slaughter 2005] that some of the programming comprehension

models are sufficiently generalizable for them to also be used to understand and

explain maintenance cognition.

We have identified the following activities in order to obtain a plausible explanation

of the measure:

• Select the cognitive theory to use in a plausible explanation (Figure 8,

Activity PE1): The selection of a cognitive psychology theory should be carefully

justified, and the selection will be dependent on the software artefact (Activity I1,

Figure 3) to be measured and on the GQM-goal (Activity I4, Figure 3) pursued in

the measurement process.

• Relate the cognitive theory to the software artefact and measures (Figure 8,

Activity PE2): Once the cognitive theory has been selected and each of its

components have been described, it is useful to use the cognitive theory to

explain how the subjects deal with the measured artefacts and also to establish a

relationship between the elements of the theory and the concepts captured in each

measure.

• Use Qualitative Methods to Understand Cognitive Complexity (Figure 8,

Activity PE3): Seaman argues [Seaman 1999] that in order to delve into the

complexity of the human role in software engineering rather than abstract it,

qualitative methods should be used. It could be argued that human behaviour is

one of the few phenomena that are complex enough to require qualitative

methods to study it. Bearing these arguments in mind, we have included an

activity (PE3) in which qualitative methods should be applied in order to

completely understand the cognitive complexity of software engineers dealing

with a measured software artefact. A thorough study of qualitative methods for

data collection and analysis which may be incorporated into empirical studies of

software engineering is presented in [Seaman 1999]. The most common

qualitative methods employed are observations, in-depth interviews and focus

groups [Taylor and Bogdan 1984].

Figure 8. Psychological Explanation Activity

Is the selected cognitive theory

sufficient to provide a plausible

explanation of the cognitive complexity?_

PE1. Select a Cognitive Theory to use in

a plausible explanation

PE3. Use quantitative methods to

understand cognitive complexity

Plausible Explanation
The qualitative methods are

sufficient to understand how

software engineers deals with

software artifacts?

PE2. Relate the cognitive theory to the

software artifact and measures

[yes]

[yes]

[no]

[no]

Since cognitive complexity constitutes one of the most important aspects that

underpin the influence of structural properties on external quality attributes, this

activity is considered as crucial within the method.

5.4 Empirical Validation

In order to thoroughly prove that a measure is useful an empirical validation (Figure

4, Activity C4) must be carried out. It is not reliable to use common wisdom, intuition,

speculation, or proof of concepts as sources of credible knowledge [Basili et al.

1999]. It is necessary to place the measures under empirical validation. Empirical

validation is an on-going activity [Briand et al. 1995] performed to demonstrate the

usefulness of a measure. In other words, it addresses the following question: is the

measure useful in the sense that it is related to other variables in expected ways?

[Briand et al. 1995].

Empirical validation can also be used to demonstrate with real evidence that the

measures we have proposed serve the purpose they were defined for. This phase is

necessary before any attempt is made to use measures as objective and early

indicators of quality. Empirical validation is therefore crucial for the success of any

software measurement project [Schneidewind 1992; Kitchenham et al. 1995; Basili et

al. 1999]. However, in general, insufficient empirical evidence exists to support the

usefulness of a vast number of proposed measures [Briand et al. 1999d]. Briand et al.

therefore argue [Briand et al. 1999a] that empirical studies in software engineering

need to be better performed, analyzed, and reported.

Empirical validation is used to obtain objective information concerning the

usefulness of the proposed measures, since a measure may be valid from a theoretical

point of view, but will not have any practical relevance to a specific problem.

Therefore, empirical studies are necessary to confirm and understand the implications

of the measurement of our products. This is achieved by means of hypotheses in the

real world, above and beyond pure theory, which must be verified through the use of

empirical data. Note that in our method general empirical hypotheses were defined as

part of the I7 activity of the identification step (Figure 3). These hypotheses should be

empirically validated through a set of refined empirical hypothesis through different

studies.

We have identified the following high level activities, which can be used to carry out

any empirical validation:

• Select a Strategy to Carry Out the Validation (Figure 9, Activity E1): There

are three major strategies or types [Robson 1993; Wholin et al. 2000] of

empirical investigations:

a. experiment, i.e. a means of testing, using the principles and procedures

of experimental design, if the hypothesis concerning the expected

benefit of a tool or method can be confirmed;

b. case study, i.e. a trial use of a tool or method in a full scale project;

c. survey, i.e. the collection and analysis of data from a wide variety of

projects.

• Conduct the Strategy through a Family of Studies (Figure 9, Activity E2):

Having selected the strategy, the validation should be run by using a family of

studies, i.e. a family of experiments, a family of case studies, a family of surveys,

etc. A family of studies is extremely useful and necessary to draw more credible

conclusions [Perry et al. 2000], and contribute to obtaining more solid findings

and expected results.

To perform any empirical strategy such as an experiment, survey or case study,

several steps have to be taken and must take place in a certain order [Wholin et

al. 2000; Juristo and Moreno 2001]. Thus a process for how to perform the

experiments is needed. Processes are important as they can be used as checklists

and guidelines of what to do and how to do it. Only careful planning can

guarantee successful empirical studies.

Figure 9. Empirical Validation Activity

A wealth of literature on empirical strategies and their processes has been

published over the past decade, which is omitted here for the sake of brevity.

However, we recommend conducting these strategies appropriately in order to

integrate study results into a common body of knowledge [Jedlitschka and Pfahl

2005].

6 Example: Definition of Measures for OCL Expressions

In this section we briefly explain how the new method was used to define measures

for assessing the influence of import-coupling on the maintainability of OCL

expressions [Reynoso et al. 2005b; Reynoso 2007].

6.1 Identification (M1)

In this section we will present the activities carried out in the Identification activity

(Figure 2, Activity M1) for the definition of measures for OCL expressions.

• Select the entity of study (Figure 3, Activity I1).The entity of study is an OCL

expression. These expressions are the primary elements used by modellers as

textual add-on to UML models. Although an expression is attached to a particular

contextual type (e.g. a class in a UML diagram), its meaning involves objects

(mentioned within its definition) which are usually instances from different

E1. Select a Strategy to

carry out the validation

Empirical Hypotheses

Created Measure [empirically validated]

E2. Conduct the strategy

through a family of studies

classes. The different classes mentioned in an OCL expression constitute the

scope of the OCL expression. So, although our focus is an OCL expression, we

can not study this artefact in an isolated manner. Its context and its scope are

intrinsically involved.

Example: The upper part of Figure 10 shows a UML diagram in which an OCL

expression named ‘flight_capacity’, has been defined in the context of the Flight

class, meaning that the quantity of passengers on a flight must be lower than or

equal to the capacity of the plane’s type on that flight. The contextual type of the

expression is Flight whereas its scope involves the Passenger, Plane and

Type_of_plane classes.

• Determine the quality focus (Figure 3, Activity I2). The OCL expression’s

maintainability has been chosen as the prime quality attribute of interest. Our

study of the OCL expression’s maintainability will help modellers to improve the

quality of their models, and this is a major goal in software development using

MDA [Kuzniarz 2007] since models are used to drive the entire software

development process.

To our knowledge, not all the maintainability sub-characteristics proposed in the

ISO/IEC 9126 [ISO IEC 2001] standard are suitable for OCL expressions. We

have considered two sub-characteristics: comprehensibility and modifiability.

• State the goal (Figure 3, Activity I3). The GQM-goal is: Analyze OCL

expressions with the purpose of evaluating maintainability from the viewpoint of

the OO software modellers in OO software organizations. The object of study

and the quality focus were described in the last two paragraphs. The purpose is

evaluation, i.e. 'judge the value of'.

Figure 10. OCL expression example

• Determine the structural property to be studied (Figure 3, Activity I4). We

focus on the degree to which the elements in a design are connected, i.e. on

coupling structural property. Coupling is generally recognized as being among

the most likely quantifiable indicators for software maintainability. In fact, if one

intends to build quality OO models, coupling will very likely be an important

structural property to consider [Briand et al. 1999e]. However, coupling is a

concept that has many dimensions. We will focus on the degree to which the

Passenger

passenger_name: String

passenger_passport: String

id_type: String
capacity: Integer

Type_of_Plane

id_plane: String

year: Integer

Plane Flight

id_flight: String

id_departure: String

1..*

*

1

1 planetype passenger

flight
* plane

context Flight inv flight_capacity:
self.plane.planetype.capacity >= self.passenger->size()

OCL expression has knowledge of, uses, or depends on other design elements

[Briand et al. 1999b], i.e. on import-coupling, due to:

a. The inner nature of OCL expressions: These artefacts are textual add-ons to
UML models. Within an expression we can refer to UML artefacts but not

the other way around.

b. Important empirical findings: We are also interested in the import-coupling,
because it has shown to be a strong, stable indicator of fault proneness of

classes [Briand et al. 1999e], and fault-proneness results in low

maintainability [Briand et al. 1999b]. Similar results concerning import-

coupling were obtained as an indicator of development effort [Briand et al.

2001], where export-coupling measures show a much weaker impact than

import-coupling.

Example: The OCL expression in Figure 10 is defined in terms of different UML

artefacts: rolenames (plane, planetype, passenger), a UML attribute (capacity).

We could say that the expression is tightly coupled to its scope in the diagram.

Most of the expressions within a UML/OCL model import-couples different

UML artefacts in its definition.

• Identifying Abstractions for Coupling (Figure 3, Activity I5). We have

identified several criteria based on [Briand et al. 1999b] to describe abstractions

for coupling, such as:

a. Type of Connections: Connections are inherent to any coupling measure.

Two entities are usually involved in a connection. A client (or source) entity

specifies a connection to a destination entity. The coupling connections we

are interested in are connections between an OCL expression and any OO

feature of a UML diagram. Therefore, in our case the source entity will

always be an OCL expression, while the destination entity varies radically

(rolenames, attributes, method names, etc).

b. Locus of impact: The coupling usually defines a client-supplier relationship

between the design elements. This criterion defines whether we focus on

defining measures for the client or the server entity (in the connection). If the

focus is the client, the locus of impact is import-coupling, otherwise the

focus is the server and the locus of impact is export-coupling. As we briefly

mentioned before, the intrinsic definition of OCL expressions as a textual

add-on to a UML diagram (it allows the modeller to specify explicit

references to UML features) constitutes a suitable mechanism through which

to focus on the import-coupling. The focus is thus the client entity.

c. Granularity: This criterion involves:

i. The domain of measure is always an OCL expression. Nevertheless, the
expression refers to the semantic properties of its contextual type.

Although an OCL expression seems to be a small domain, the scope of

objects referred to through an expression (the portion of a UML diagram

imported by an OCL expression can vary significantly) may be very

large.

Example: Note that the expression attached to the Flight class refers to

three classes in the class diagram (its scope).

ii. The way in which we count connections is as follows: we always count
the number of different items at the other end of the connections.

Example: Suppose that within the OCL expression a rolename is used

twice within its definition. The two different occurrences of that artefact

will only be counted as one.

• Refine the goal into questions (Figure 3, Activity I6). The Briand et al. model

[Briand et al. 1999d] was used as a basis for our hypothesis that OCL expression

maintainability is influenced by its structural properties which, in turn, depends

on the elements of which OCL expressions are composed (navigations, collection

operations, variables, etc.). The most important question therefore arises:

• Does import-coupling influence OCL expression maintainability?

We have also added two other questions:

• Does size influence OCL expression maintainability?

• Does length (of navigation) influence OCL expression maintainability?

The last two questions arise with two different purposes. The length of

navigations is closely related to the depth of coupling whereas the size property is

considered in order to avoid the situation of size aspects biasing the findings

related to coupling during experimentation [El Eman et al. 2001].

• State general hypotheses (Figure 3, Activity I7). We hypothesize that high

import-coupling of OCL expression affects the maintainability of OCL

expressions. We suppose that the greater the import-coupling is the lower the

OCL expression maintainability will be.

6.2 Creation

Creation (Figure 2, Activity M2) was carried out to measure OCL expressions. This

section gives details of the NNR measure.

6.2.1 Measure Definition (C1)

The Measure Definition (Figure 4, Activity C1) involves the following activities:

• Select a metamodel of the software artefacts (Figure 5, Activity D1). We have

selected the OCL metamodel which defines the core concepts of OCL 2.0 and

their relationships in the form of a MOF-compliant metamodel. Thus, all legal

OCL expressions can be systematically derived and instantiated from the

metamodel.

• Definition in natural language (Figure 5, Activity D2). Each measure was

defined using a consistent format composed of:

a. Its ACRONYM and NAME: this component shows the result of activity

N4 (Fig. 6).

b. Its Proper DEFINITION: this component involves the result of applying

N1 (define what is captured by the measure) and N2 (verify that the

definition explains how the measure value is obtained) activities of Fig.

6.

c. Its INTENT: this component describes the goal of the measure, and

corresponds to the application of activity N3 (Fig. 6).

d. An EXAMPLE: we have included a sample to illustrate its calculation.

The definition of the measures is presented according to the attributes

they are related to.

We exemplify a complete definition through the NNR measure:

e. ACRONYM and NAME: NNR stand for Number of Navigated

Relationships.

f. DEFINITION: This measure counts the total number of relationships

that are navigated in an expression (application of N1 activity).

g. If a relationship is navigated twice, for example by using different

properties of a class or interface, this relationship is counted only once

(application of N2). Whenever an association class is navigated we will

consider the association to which the association class is attached.

h. INTENT: As Warmer and Kleppe [Warmer and Kleppe 2003] remark:

An "argument against complex navigation expressions is that writing,

reading and understanding invariants becomes very difficult". The

meaning of each relationship involves the understanding of how the

objects are coupled to each other. The larger the set of relationships to

be navigated, the greater is the context to be understood [Reynoso et al.

2005b].

EXAMPLE: The value of NNR for the expression shown in Figure 10 is 3

because we have used three relationships in two different navigations. A

simple navigation, self.passenger, navigates the relationship from Flight to

Passenger by using the passenger rolename whereas a combined navigation,

self.plane.planetype, is navigated from Flight to Type_of_Plane through to

Plane by using the plane and planetype rolenames.

• Select a formal language for the formal definition (Figure 5, Activity D3): We

select OCL as the formal language for the formal definition of measures for OCL

expressions.

• Formal definition of a measure (Figure 5, Activity D4): In our approach when

we compute the value of a specific measure we represent an OCL expression as

an instantiation of OCL metaclasses. The instantiation has the shape of a tree, an

abstract syntax tree (ast). The dynamic hierarchical structure (the ast) is traversed

by using a VISITOR pattern [Gamma et al. 1995]. We simultaneously visit every

element in the tree, and evaluate whether each element of the tree is meaningful

for the measure we wish to compute. For more details of the procedure of

obtaining the values through the Visitor Pattern we refer the reader to [Reynoso

et al. 2006].

Within the OCL metamodel the NavigationCallExp metaclass (Figure 11) is used

to represent navigations and constitutes a reference to an AssociationEnd (or an

AssociationClass) defined in a UML model. This object reference is used when

either a rolename or an association class is used in an OCL expression

navigation. An OCL expression ast will have as many Navigationcallexp objects

as the navigations contained in its definition. Therefore, following the example of

the NNR measure, when we traverse the ast of an OCL expression, instances of

NavigationCallExp will be meaningful to obtain the value of NNR.

 ModelPropertyCallExp

NavigationCallExp

AssociationClassCallExp

AssociationEndCallExp

AssociationEnd

AssociationClass

referredAssociationEnd

referredAssociationClass

1

1

o..n

o..n

(From UML Core)

(From UML Core)

Figure 11: OCL Metaclasses related to 'avigations

The formal specification of NNR, is specified as follows: Whenever a visitor

accesses a NavigationCallExp object, it loads in a set (called navigatedClasses)

either the name of the classes used in the navigation (if the modeller used a

navigation class) or the name of the class of the AssociationEndCall type (i.e. the

name of the class to which the rolename refers). However, as the same name of a

rolename can be used in different classes, we decided to represent those elements

composed of the pair of two strings in the set: the name of the class and the name

of the relationship.

context Visitor::visitNavigationCallExp(o: NavigationCallExp, metricName:

MetricAcronym)

post:

metricName = MetricAcronym::NNR

implies navigatedClasses = navigatedClasses@pre->union(

(if self.oclIsTypeOf(AssociationEndCallExp)

then

source.oclAsType(AssociationEndCallExp).referredAssociationEnd.type.name

else

source.oclAsType(AssociationClassCallExp).referredAssociationClass.name

endif)->append

(if self.oclIsTypeOf(AssociationEndCallExp)

then

source.oclAsType(AssociationEndCallExp).referredAssociationEnd.name

else source.oclAsType(AssociationClassCallExp).referredAssociationClass.name

endif))

The size of this set is used to obtain the NNR value. More details of the formal

definition of OCL measures upon the OCL metamodel can be obtained in [Reynoso et

al. 2006].

6.2.2 Theoretical Validation

In order to develop the Theoretical Validation (Figure 4, Activity C2) we have applied

property-based frameworks (Figure 7, Activity T1) and a framework based on the

measurement theory (Figure 7, Activity T2). In this paragraph we exemplify the

application of the former framework. The Briand et al. adaptation framework for

interaction-based measures for coupling [Briand et al. 1999c] was used for the

theoretical validation of NNR measure.

1. 2onnegativity: This is directly proven, as it is impossible to obtain a negative

value. An expression e without navigation in its definition has NNR(e) = 0.

2. Monotonicity: This is directly verified. Adding import interactions, in this case

interactions of navigations, to an OCL expression cannot decrease its import-

coupling. If we add a new navigation to an expression, two possible situations

may arise: (1) the navigation referred to in the added navigation is a rolename (or

association class) already used by an interaction. Thus the NNR applied to the

new expression obtained, is equal to NNR(e). (2) If the added navigation is new,

then the NNR applied to the new expression is greater than NNR (e).

3. Merging of modules: Within our context this property can be expressed in the

following way: "the sum of the import-coupling of two modules is no less than

the coupling of the module which is composed of the data used in the two

modules". The value of the NNR for an expression which consists of the union of

two original expressions, is equal to the NNR of each merged expression when

the sets of navigations referred to in each original expression are disjointed,

otherwise it is less than the NNR of each merged expression.

NNR is therefore validated as an interaction-based measure for coupling.

The theoretical validation following the measurement theory based framework

proposed in [Poels and Dedene 2002] was developed in [Reynoso 2007].

6.2.3 Psychological Explanation

We shall now briefly present the theory used in a plausible psychological explanation

(Figure 4, Activity C3) of the measures for OCL expressions.

• Selected theory for OCL cognitive complexity (Figure 8, Activity PE1): As our

hypothesis is that import-coupling, as a structural property, influences the

cognitive complexity of modellers during OCL expression comprehension in the

maintainability of OCL expressions, we have based our reasoning on the

comprehension of OCL expressions using two main theories: cognitive models

and mental models. The former concept describes a subject’s mental

representation of the software artefact to be understood, whereas a cognitive

model describes the cognitive processes and temporary information structures in

the subject’s head that are used to form the mental model [Storey, 2005]. In this

paragraph, for the sake of brevity, we shall describe the application of the

cognitive model:

In order to explain how OCL expressions are comprehended and how the

navigation is a valuable help in guidance of comprehension we have applied the

Cant et al. [Cant et al., 1992] Cognitive Complexity Model (CCM). The basis of

the CCM is the definition of two cognitive techniques applied in program

comprehension, chunking and tracing, which are concurrently and synergistically

applied in problem solving.

a. The chunking technique represents the capacity of short term memory

involving the recognition of groups of declarations and extracting

information from them which is remembered as a single mental

abstraction: a chunk [Cant et al. 1992].

b. The tracing technique involves scanning, either forward or backward, in

order to identify relevant chunks [El Eman 2001], resolving some

dependencies.

Example: In some aspects, NNR determines the effort of a modeller carrying out

the tracing of the UML diagram. Each time navigation is used in an OCL

expression, the modeller should trace a relationship in the associated UML

diagram. We believe that OCL navigations are a key facilitator in the tracing of

the cognitive technique.

We refer the reader to [Reynoso 2007] for a complete explanation of the selection

of this theory.

• Relate the cognitive theory to the software artefact and measures (Figure 8,

Activity PE2): During the comprehension of the OCL expression a modeller must

find the rolenames, classes and attributes mentioned in the expression (i.e., trace)

and then chunk these entities before returning to the original chunk. The

relatively large amount of tracing required causes a disruption in the reading of

the superchunks, making them more complex [Cant et al. 1992]. While reading

an upper-level chunk, a dependency requires the modeller to suspend the reading

of the original OCL expression because of the need to undertake tracing so as to

have a complete understanding of the chunk currently being analyzed. The

cognitive complexity model can therefore be described qualitatively in terms of a

landscape model.

Example: Figure 12 depicts the landscape associated with the OCL expression

shown in Figure 10. Graphically, the top-level chunk (which involves the

comprehension of the OCL expression) is interrupted by four lower-level chunks.

The first interruption is common to every OCL expression and locates the context

of the expression (the UML Classifier –a class, interface, etc.- written after the

context keyword) within the UML diagram. The second interruption, depicted as

the 'vertical drop' x1P, visually represents the work required in tracing the

relevant features in the UML diagram. In this case, it implies following a

navigation from the Flight class to another class in which its opposite-end

rolename is defined as ‘plane’. Having found this class, the modeller must chunk

not only the class but also the cardinality associated with the rolename. The

modeller should then follow a new navigation from Plane to Type_of_plane by

using the 'planetype' rolename and, after chunking the meaning of the latter class,

s/he must then chunk one of its attributes, that is, 'capacity'. The fourth and last

interruption during the comprehension of the flight_capacity’ OCL expression is

during the navigation from Flight to the Passenger class (drop x3P), so as to

obtain the size of the set of passengers.

Landscape of flight_capacity invariant:

x0 x1 x3

x2

f

F P

TP

P
Flight Plane

Type of Plane

Passenger

g

Figure 12. Landscape of an OCL expression

• Use qualitative methods to understand cognitive complexity (Figure 8,

Activity PE3): We decided to apply a qualitative method, a verbal protocol

analysis, in which subjects were given three class diagrams and were asked to

think aloud to verbalize their thought. The underlying principle of verbal protocol

analysis is that any verbalization produced by a subject whilst solving a problem

–known as concurrent think aloud- will directly represent the contents of the

subject’s working memory. So, as OCL expressions consist of suitable short

assertions that are not always easy to understand, especially when a lot of objects

are coupled within the expression, this qualitative method is used to study the

cognitive complexity of modellers dealing with OCL expressions. The

experiment is described in [Reynoso et al. 2007]. The aim of the experiment was

to validate a categorical model of the main categories of the mental models of the

subjects dealing with OCL expressions. We found that the main categories are:

a. Problem objects: The objects (main concepts) of the problem domain to

which the OCL expressions are attached.

b. Relationships between problem objects: association, composition and

inheritance relationships between objects.

c. Reified objects: These are not problem domain objects per se, but are

represented to complete the representation of relationships between

problem objects, e.g. OCL collections .

These categories are based on a work by Burkhardt [Burkhardt et al. 2002]. NNR

is an example of measuring the relationship between problem objects. We also

found that the breadth of familiarity with the UML diagram gained by the

subjects before starting to comprehend the OCL expression comprehension

activities was different. The range varies in a continuous form which extends

from those subjects who made absolutely no attempt to comprehend the diagram

to those who attempted to systematically comprehend the class diagram before

starting to read the OCL expression. The subjects who did not attempt to

comprehend the diagram before the comprehension of OCL expressions,

followed an as-needed strategy of UML relationships; they focused only on those

relationships when they appeared within the OCL expressions. OCL navigation

was therefore of valuable assistance in guiding the comprehension of OCL

expressions.

6.2.4 Empirical Validation

With regard to the empirical validation (Figure 4, Activity C4), in [Reynoso et al.

2005a] we described an experiment and two replicas, with the goal of ascertaining

whether any relationship exists between the import-coupling (defined in OCL

expressions through navigations and collection operations) and the comprehensibility

and modifiability of OCL expressions. In this empirical study the subjects were given

six class diagrams with one OCL expression each and asked to comprehend the

expression and modify it to satisfy new requirements. The subjects were also asked to

subjectively evaluate the complexity of comprehensibility and modifiability tasks.

After performing a statistical analysis we concluded that: (1) the NNR, NNC, WNN,

DN, WNCO and NEI measures have a strong correlation with the comprehensibility

efficiency (correct answers / comprehensibility time) for almost all of the six models;

(2) the NNR, WNN, DN and NCO have a strong correlation with the modifiability

efficiency for almost all of the six models. Many factors appear to influence the

efficiency of comprehensibility tasks, such as classes, relationships, the navigations,

the collection operations and the iterator variables, but only the number of

relationships, collection operations and the depth of navigations influence the

efficiency of modifiability tasks. The findings also reveal that the NNR, NNC, WNN,

DN, WNCO and NEI measures are correlated with the subjective complexity of the

subjects. We refer the reader to [Reynoso 2007] for a complete description of the

empirical validation of OCL measures.

7 Conclusions

The main contribution of this paper is the refinement and extension of a method for

measure definition originally proposed in [Calero et al. 2001a], providing more details

in the descriptions of the tasks, illustrated bye means of UML activity diagrams We

hope the new method really helps as a guide for a better definition of software

measures, ensuring reliability in obtaining well-defined and valid measures.

Refinement and extension were a result of the use, over the last ten years, of the

method to define measures for OCL expressions [Reynoso 2007], UML diagrams

[Genero et al. 2007; Cruz-Lemus et al. 2005], ER diagrams [Genero et al. 2008],

Relational database schemas [Calero et al. 2001b], datawarehouse conceptual models

[Serrano et al. 2004], etc.

The refinements of the method were introduced in the following steps:

1. Creation (Ci activities, i=1..4): Although the main steps of the creation activity

were already defined in the original method, we refined important node decisions

and object flows between subactivities.

2. Empirical Validation (Ei, Fj and EFk activities, i=1,2, j=1..6, k=1..5): We

thoroughly specified and detailed the more relevant activities by carrying out

families of experiments and isolated experiments in [Reynoso 2007].

The extensions of the method were focused on:

1. Identification (Ii activities, i= 1..7): Within the refinement of this activity we

specified not only the order in which goals and questions are specified but also a

decision action to verify the questioning of the goals. New activities were added,

such as the identification of abstractions with which to measure structural

properties, the statement of general hypotheses, etc.

2. Acceptation, Accreditation and Application (Mi activities, i=1..3).

3. Definition in Natural Language (Ni activities, i=1..4): We used a template to

define the measures which is composed of the acronym, the definition itself, the

goal pursued by the measure and one example.

4. Formal Definition of Measures (Di activities, i=1, 3, 4): We identified the most

important activities that should be performed in a formal definition of measures.

5. Psychological Explanation (PEi activities, i=1..3): Three relevant activities were

detected in a psychological explanation of how subjects deal with the software

artefact being measured.

6. Theoretical Validation using Property-based Frameworks (Pi activities, i=1..5):

Within the method we differentiate between the application of generic properties

and context-dependent properties in [Reynoso 2007].

Table 1 summarizes all the activities. The method had been strengthened not only in

the order of its activities but also by identifying object flows between activities and

important decisions that should be evaluated during the activities.

The method also takes other important aspects into account:

1. The phenomenon that are studied in software engineering, which is in fact a

human-intensive discipline, requires a focus on the human issues that are present

in any measurement activity. The method value as important issues:

a. The organizational needs: In order to elicit measurement goal from the

organization’s stakeholders the method follows a GQM-based approach.

This helps to institutionalize the measures within the organization.

b. The psychological aspects of those potential subjects who will make use

of the defined measures: It is crucial to understand the cognitive

complexity of a person when dealing with the software artefact which is

the target of our measurement definition activity.

Human cognition has obviously become more relevant, if we consider that in the

last year software engineering empiricists have begun to address the human role

in software development in a serious manner [Seaman 1999]. The understanding

of cognitive complexity will assist in the definition of the measures goal and in

the explanation of the empirical findings when applying an empirical strategy

(experiment, survey, etc).

2. The consideration of a model for the software artefact is appropriate when

defining both its structural properties and its abstractions (in order to define

measures for effect rather than desire [Card 1993]) and the use of a metamodel in

order to produce a formal definition of the measure. A formal definition of the

measure is of major importance when attempting to obtain replicable measures.

3. The importance of testing that a measure captures the attribute that it aims to

quantify (theoretical validation) as well as to prove it is valid in practice

(empirical validation).

I1 Select the entity of study

I2 Determine the quality focus

I3 State the quality focus

I4 State the goal at the conceptual level

I5 Determine the structural properties

I6 Refine the goal(s) at the operational level

M1 Identification

(section 4)

I7 State general hypotheses

D1 Select a metamodel of the software artefacts

N1 Define what is captured by the measure

N2 Verify that the definition captures how the
measure value is obtained

N3 Define the intent pursed by the measure

D2 Definition
in Natural

Language

(section
5.1.1) N4 Name the measure and select a suitable

acronym

D3 Select a formal language for the formal definition

M2 Creation

(section 5)

C1 Measure

Definition
(section 5.1)

D4 Formal definition of a measure (section 5.1.2)

T1 Use of property-based frameworks (see refinements of this

activity in [Reynoso 2007])

C2

Theoretical
Validation

(section 5.2)
T2 Use of frameworks based on the measurement theory (see
refinements of this activity in [Reynoso 2007])

PE1 Select a cognitive theory to use in a plausible explanation

PE2 Relate the cognitive theory to the software artefact and

measures

C3

Psychological
Explanation

(section 5.3) PE3 Use quantitative methods to understand cognitive

complexity

E1 Select a strategy to carry out the validation C4 Empirical

Validation
(section 5.4)

E2 Conduct the strategy through a family of experiments (see
refinements of this activity in [Reynoso 2007])

Table 1. Summary of Refinements and Extensions

Our future work will consist of:

1. The use of the new proposed measures for defining measures related to different

software artefacts, for validating it in practice. We also encourage other

researchers to use it for gather more evidence about it usefulness.

2. The refinement the acceptation, application and accreditation activities. These

activities are likely to be refined in new UML activity diagrams with regard to

the introduction of the proposed measures in real projects developed in software

development organizations.

Acknowledgements

This research is part of the following projects: IDONEO (PAC08-0160-6141) and

EVVE (HITO-2008-49) financed by “Consejería de Ciencia y Tecnología de la Junta

de Comunidades de Castilla-La Mancha” and "Técnicas Avanzadas y Análisis para el

Desarrollo Multiparadigma" (04/E073) financed by “Secretaría de Investigación de la

Universidad Nacional del Comahue, Neuquén (Argentina)”.

References

[Baroni 2002] Baroni, A. L.: “Formal Definition of Object-Oriented Design Metrics”. Master

of Science in Computer Science Thesis, Vrije Universiteit Brussel, Belgium, 2002.

[Basili and Rombach 1998] Basili, V. R, Rombach, H. D.: “The TAME Project: Towards

Improvement-Oriented Software Environments”. IEEE Transactions on Software Engineering,

14(6), 1998. 758- 773.

[Basili et al. 1999] Basili, V. R., Shull, F., Lanubile, F.: “Building Knowledge through Families

of Experiments”. IEEE Transactions on Software Engineering, 25(4), 1999. 456-473.

[Basili and Weiss 1984] Basili, V. R., Weiss, D. M.: “A Methodology for Collecting Valid

Software Engineering Data”. IEEE Transactions on Software Engineering, 10(6), 1984. 728-

738.

[Berander and Jönsson 2006] Berander, P., Jönsson, P.: “A Goal Question Metric based

Approach for Efficient Measurement Framework Definition”. ISESE '06: Proceedings of the

2006 ACM/IEEE international symposium on Empirical software engineering. ACM. New

York, NY, USA, 2006. 316-325.

[Boehm et al. 1978] Boehm, B. W., Brown, J. R., Kaspar, J. R. “Characteristic of Software

Quality”. TRW Series of Software Technology, Amsterdam, North Holland, 1978.

[Briand et al. 1999a] Briand, L. C., Arisholm, E., Counsell, S., Houdek, F., Thevenod-Fosse,

P.: “Empirical Studies of Object-Oriented Artifacts, Methods, and Processes: State of the Art

and Future Directions”. Empirical Software Engineering, 4(4), 1999. 387-404.

[Briand et al. 1999b] Briand, L. C., Daly, J. W., Wüst, J.: “A Unified Framework for Coupling

Measurement in Object-Oriented Systems”. IEEE Transactions on Software Engineering,

25(1), 1999, 91-121.

[Briand et al. 1995] Briand, L. C., El Emam, K., Morasca, S.: “Theoretical and Empirical

Validation of Software Product Measures”. Technical Report ISERN-95-03, ISERN:

International Software Engineering Research Network, 1995.

 [Briand et al. 1996] Briand, L. C., Morasca, S., Basili, V. R.: “Property-Based Software

Engineering Measurement. IEEE Transactions on Software Engineering, 22(1), 1996. 68-86.

[Briand et al. 1999c] Briand, L. C., Morasca, S., Basili, V. R.: “Defining and Validating

Measures for Object-Based High-Level Design”. IEEE Transactions on Software Engineering,

25(5), 1999. 722-743.

[Briand et al. 2002] Briand, L. C., Morasca, S., Basili, V. R. : “An Operational Process for

Goal-Driven Definition of Measures”. IEEE Transactions on Software Engineering, 28(12),

2002. 1106- 1125.

[Briand et al. 1999d] Briand, L. C., Wüst, J., Ikonomovski, S., Lounis, H.: “A Comprehensive

Investigation of Quality Factors in Object-Oriented Designs”. In IEEE ICSE '99: International

Conference on Software Engineering, 1999.

[Briand et al. 1999e] Briand, L. C., Wüst, J., Ikonomovski, V., Lounis, H.: “Investigating

Quality Factors in Object-Oriented Designs: an Industrial Case Study”. In ICSE '99:

Proceedings of the 21st International Conference on Software Engineering, Los Alamitos, CA,

USA. IEEE Computer Society Press, 1999. 345-354.

[Briand et al. 2001] Briand, L. C., Wüst, J., Lounis, H.: “Replicated Case Studies for

Investigating Quality Factors in Object-Oriented Designs. Empirical Software Engineering,

6(1), 2001, 11-58.

[Burkhardt et al. 2002] Burkhardt, J., Detienne, F., Wiedenbeck, S.: “Object-oriented Program

Comprehension: Effect of Expertise, Task and Phase”. In Empirical Software Engeneering

7(2), Hingham, MA, USA, Kluwer Academic Publishers, 2002. 115-156.

[Calero et al. 2001a] Calero, C., Piattini, M., Genero, M.: “Method for Obtaining Correct

Metrics”. In ICEIS '01: Proceedings of the 3rd International Conference on Enterprise and

Information Systems, volume 2, 2001. 779-784.

[Calero et al. 2001b] Calero, C., Piattini, M., Genero, M.: “Empirical validation of referential

integrity metrics”. Information and Software Technology. Special Issue on Controlled

Experiments in Software Technology. 43 (15), 2001. 949-957.

 [Cant et al. 1992] Cant, S. N., Jeffery, D. R., Henderson-Seller, B.: “A Conceptual Model of

Cognitive Complexity of Elements of the Programming Process”. Information and Software

Technology, 37(7), 1992. 351-362.

[Cantone and Donzelli. 1999] Cantone G., Donzelli, P.: “Goal Oriented Software Measurement

Models”. In ESCOM-ENCRESS '98: European Software Control and Metrics Conference,

Herstmonceux Castle, East Sussex, UK, 1999.

[Card 1993] Card, D. N.: “What Makes for Effective Measurement?” IEEE Software, 10(6),

1993. 94-95.

[Chidamber and Kemerer 1994] Chidamber, S. R., Kemerer, C. F.: “A Metrics Suite for Object

Oriented Design”. IEEE Transactions on Software Engineering, 20(6), 1994. 476-493.

[Cruz-Lemus et al. 2005] Cruz-Lemus, J.A., Genero, M., Manso, M. E., Piattini, M.:

“Evaluating the Effect of Composite States on the Understandability of UML Statechart

Diagrams”. ACM/IEEE 8th International Conference on Model Driven Engineering Languages

and Systems (MODELS/UML 2005). LNCS 3713, 2005. 113-125.

[Darcy and Slaughter 2005] Darcy, D. P., Slaughter, S. A: “The Structural Complexity of

Software: An Experimental Test”. IEEE Transactions on Software Engineering, 31(11),

Member-Chris F. Kemerer and Member-James E. Tomayko, 2005. 982-995.

[El Eman et al. 2001] El Emam, K., Benlarbi, S., Goel, N., Rai, S. N.: “The Confounding Effect

of Class Size on the Validity of Object-Oriented Metrics”. IEEE Transactions on Software

Engineering, 27(7), 2001, 630-650.

[El Eman 2001] El Emam, K. “Object-Oriented Metrics: A Review of Theory and Practice”.

Technical Report NRC 44190, National Research Council Canada. Institute for Information

Technology, 2001.

[Fenton and Pfleeger 1998] Fenton, N. E., Pfleeger, S.: “Software Metrics: A Rigorous and

Practical Approach”, PWS Publishing Co., Boston, MA, USA, 1998.

[Glasberg et al 2000] Glasberg, D., El Emam, K., Melo, W., Madhavji, N.: “Validating Object-

Oriented Design Metrics on a Commercial Java Application”. Technical Report NRC/ERB-

1080, National Research Council of Canada, 2000.

[Gamma et al. 1995] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: “Design Patterns:

Elements of Reusable Object-Oriented Software”. Addison Wesley Longman, Publishing Co.,

Inc., Boston, MA, 1995.

[Genero et al. 2007] Genero, M., Manso, M. E., Piattini, M., Visaggio, A., Canfora, G:

“Building Measure-Based Prediction Models For UML Class Diagram Maintainability”.

Empirical Software Engineering, 2007. 12(5), 2007. 517-549.

[Genero et al. 2008] Genero, M., Poels, G., Piattini, M.: “Defining and Validating Metrics for

Assessing the Understandability of Entity-Relationship Diagrams”. Data and Knowledge

Engineering. 64(3), 2008. 534-557.

[Hetzel 1993] Hetzel, B.: “Making Software Measurement Work – Building an Effective

Measurement Program”, John Wiley & Sons, NewYork, NY, 1993.

[Henderson-Sellers 1996] Henderson-Sellers, B.: “Object-Oriented Metrics: Measures of

Complexity”. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[ISO IEC 2001] ISO. IEC 9126-1 “Information Technology - Software Product Quality - Part

1: Quality Model”.

[Jacquet and Abran 1997] Jacquet, J. P., Abran, A.: “From Software Metrics to Software

Measurement Methods”. In ISESS '97: Proceedings of the 3rd International Software

Engineering Standards Symposium (ISESS '97), Washington, DC, USA, IEEE Computer

Society, 1997. 128-135.

[Juristo and Moreno 2001] Juristo, N., Moreno, A.: “Basics of Software Engineering

Experimentation”. Kluwer Academic Publishers, 2001.

[Jedlitschka and Pfahl 2005] Jedlitschka, A., Pfahl, D.: “Reporting Guidelines for Controlled

Experiments in Software Engineering”. In ISESE '05: International Symposium on Empirical

Software Engineering (ISESE 2005), November 2005, Noosa Heads, Australia, 2005. 95-104.

[Kavakli 2004] Kavakli, E.: “Modeling organizational goals: analysis of current methods”,

SAC '04: Proceedings of the 2004 ACM symposium on Applied computing. ACM, New York,

NY, USA, 2004. 1339-1343.

[Kitchenham et al. 2006] Kitchenham, B., Al-Khilidar, H., Ali Babar, M., Berry, M., Cox, K.,

Keung, J., Kurniawati, F., Staples, M., Zhang, H., Zhu, L.: “Evaluating Guidelines for

Empirical Software Engineering Studies”. In ISESE '06: Proceedings of the 2006 ACM/IEEE

International Symposium on International Symposium on Empirical Software Engineering,

New York, NY, USA. ACM Press, 2006. 38-47.

[Kim 1999] Kim, H.: “Representing and Reasoning about Quality using Enterprise Models”.

PhD Thesis, Dept. Mechanical and Industrial Engineering, University of Toronto, Canada.

1999.

[Klemola 2000] Klemola, T.: “A Cognitive Model for Complexity Metrics”. In QAOOSE '00:

Workshop on Quantitative Approaches in Object-Oriented Software Engineering (ECOOP '00).

Cannes, France. Springer-Verlag, 2000.

[Kitchenham et al. 1995] Kitchenham, B., Pfleger, S. L., Fenton, N.: “Towards a Framework

for Software Measurement Validation”. IEEE Transactions on Software Engineering, 21(12),

1995. 929-944.

[Klemola and Rilling 2002] Klemola, T., Rilling, J.: “Modeling Comprehension Processes in

Software Development”. In ICCI '02: Proceedings of the 1st IEEE International Conference on

Cognitive Informatics, Washington, DC, USA. IEEE Computer Society. 2002. 329-339.

[Kitchenham 1997] Kitchenham, B., Stell, J.: “The Danger of Using Axioms in Software

Metrics”. In IEEE Proceedings on Software Engineering, Volume 144, 1997. 279-285.

[Kuzniarz 2007] Kuzniarz, L., Sourouille, J. L., Staron, M.: “1st Workshop on Quality in

Modeling”, Co-located with the ACM/IEEE 9th International Conference on Model Driven

Engineering Languages and Systems, Models 2006, LNCS 4364, 2007. 76-79.

[Lorenz and Kidd 1994] Lorenz, M., Kidd, J.: “Object-Oriented Software Metrics: A Practical

Guide”. Prentice-Hall, Inc, Upper Saddle River, NJ, USA. 1994.

[McCall et al. 1977] McCall, J. A., Richards, P. K., Walters, G. F. “Factors in Software

Quality, Volume III: Preliminary Handbook on Software Quality for an Acquisition Manager”.

Technical Report RADC-TR-77-396, Vol. III., Hanscom AFB, MA 01731. 1977.

[Mendonça and Basili 2000] Mendonça, M. G., Basili, V. R.: “Validation of an Approach for

Improving Existing Measurement Frameworks”. IEEE Transactions on Software Engineering,

28(6), 2000. 484-509.

[Morasca and Briand 1997] Morasca, S., Briand, L. C.: “Towards a Theoretical Framework for

Measuring Software Attributes”. In METRICS '97: Proceedings of the 4th International

Symposium on Software Metrics, Washington, DC, USA, IEEE Computer Society, 1997. 119-

126.

[Perry et al. 2000] Perry, D. E., Porter, A. A., Votta, L. G.: “Empirical Studies of Software

Engineering: a Roadmap”. In ICSE '00: Proceedings of the Conference on The Future of

Software Engineering, New York, NY, USA, ACM Press, 2000. 345-355,

[Pfleeger et al. 1997] Pfleeger, S. L., Jeffery, R., Curtis, B., Kitchenham, B.: “Status Report on

Software Measurement”. IEEE Software, 14(2), 1997. 33-43.

[Poels and Dedene 2000] Poels, G., Dedene, G.: “Distance-based Software Measurement:

Necessary and Sufficient Properties for Software Measures. Information and Software

Technology, 42(1), 2000. 35-46.

[Reynoso et al. 2008] Reynoso, L., Cruz-Lemus, J. A., Genero, M., Piattini, M.: “Formal

definition of measures for UML statechart diagrams using OCL”.SAC '08: Proceedings of the

2008 ACM Symposium on Applied Computing. 2008. 846-847

[Reynoso et al. 2005a] Reynoso, L., Genero, M., Piattini, M.: “Assessing the impact of

coupling on the understandability and modifiability of OCL expressions within UML/OCL

combined models”. 11th IEEE International Software Metrics Symposium, 2005. 14.

[Reynoso et al. 2005b] Reynoso, L., Genero, M., Piattini, M.: “Measuring OCL Expressions:

An Approach Based on Cognitive Techniques”, 2005. M. Genero, M. Piattini and C. Calero

(Eds.) Chapter 5 in Metrics for Software Conceptual Models. Imperial College Press, UK.

2005. 161-206.

[Reynoso et al. 2006] Reynoso, L., Genero, M., Piattini, M.: “OCL2: Using OCL in the Formal

Definition of OCL Expression Measures”, 1st Workshop on Quality in Modeling QIM co-

located with the ACM/IEEE 9th International Conference on Model Driven Engineering

Languages and Systems (MODELs 2006). 1st. October, Genova, Italy. 2006. 95-115.

[Reynoso 2007] Reynoso, L.: “Measurement-based Approach for Assessing the Influence of

Import-Coupling on the Maintainability of OCL Expressions”. Ph.D. Thesis, Universidad de

Castilla La Mancha, Spain. 2007.

[Reynoso et al. 2007] Reynoso, L., Genero, M., Piattini, M.: “Using Verbal Protocols for

Assessing the Influence of Import-Coupling on the OCL Expression Comprehensibility”. Sixth

IEEE International Conference on Cognitive Informatics. IEEE ICCI 2007 6-9 August 2007

Lake Tahoe, CA, USA. 2007. 440-449.

[Robson 1993] Robson, C.: “Real World Research: A Resource for Social Scientists and

Practioners-Researchers”. Blackwell, Oxford. 1993.

[Saeki 2003] Saeki, M.: “Embedding Metrics into Information System Development Methods:

An Application of Method Engineering Technique”. Lecture Notes in Computer Science 2681,

2003. 374-389.

[Schneidewind 1992] Schneidewind, N. F.: “Methodology for Validating Software Metrics”.

IEEE Transactions on Software Engineering, 18(5), 1992. 410-422.

[Seaman 1999] Seaman, C. B.: “Qualitative Methods in Empirical Studies of Software

Engineering”. IEEE Transactions on Software Engineering, 25(4), 1999. 557-572.

[Sebrechts and Black 1982] Sebrechts, M., Black, J.: “Software Psychology: A Rich New

Domain for Applied Psychology”. Applied Psycholinguistics, 3, 1982. 223-232.

[Serrano et al. 2004] Serrano, M. A., Calero, C., Trujillo, J., Luján-Mora, S., Piattini, M.:

“Empirical Validation of Metrics for Conceptual Models of Data Warehouses”. En 16th

International Conference on Advanced Information Systems Engineering (CAiSE 2004), Riga

(Letonia). LNCS 3084, 2004. 506-520.

[Shepperd 1995] Shepperd, M.: “Foundations of Software Measurement”, Prentice Hall, Hemel

Hempstead, England. 1995.

[Solingen and Berghout 1999] Solingen, R. V., Berghout, E.: “The Goal/Question/Metric

Method: A Practical Guide for Quality Improvement of Software Development”. McGraw-Hill.

1999.

[Solingen and Berghout 2001] Solingen, R. V., Berghout, E.: “Integrating Goal-Oriented

Measurement in Industrial Software Engineering: Industrial Experiences with and Additions to

the Goal/Question/Metric Method (GQM)”. In METRICS '01: Proceedings of the 7th

International Symposium on Software Metrics, Washington, DC, USA, IEEE Computer

Society, 2001. 246-259.

[Storey 2005] Storey, M. A.: “Theories, Methods and Tools in Program Comprehension: Past,

Present and Future”. In IWPC '05: Proceedings of the 13th International Workshop on Program

Comprehension, Washington, DC, USA, IEEE Computer Society. 2005. 181-191.

[Taylor and Bogdan 1984] Taylor, S. J., Bogdan, R.: “Introduction to Qualitative Research

Methods”. New York: John Wiley and Sons. 1984.

[Warmer and Kleppe, 2003] Warmer, J., Kleppe, A.: “The Object Constraint Language. Second

Edition. Getting Your Models Ready for MDA”, Addison-Wesley, Massachusetts. 2003.

[Weyuker 1988] Weyuker, E. J.: “Evaluating Software Complexity Measures”. IEEE

Transactions on Software Engineering, 14(9), 1988. 1357-1365.

[Whitmire 1997] Whitmire, S. A.: “Object Oriented Design Measurement”. John Wiley and

Sons, Inc., New York, NY, USA. 1997.

[Wholin et al. 2000] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., Wesslén,

M.: “Experimentation in Software Engineering: an Introduction”. Kluwer Academic Publishers.

2000.

[Zuse 1997] Zuse, H.: “A Framework of Software Measurement”. Walter de Gruyter & Co.

Hawthorne, NJ, USA. 1997.

