Refinement and Extension of a Method for Defining Valid
Measures

Luis Reynoso
(University of Comahue, Neuquén, Argentina
Ireynoso@uncoma.edu.ar)

Marcela Genero and Mario Piattini
(Alarcos Research Group, University of Castilla-La Mancha, Ciudad Real, Spain
{Marcela.Genero, Mario.Piattini } @uclm.es)

Abstract: Although literature contains a huge amount of measures with which to measure
quality characteristics of software artefacts throughout the development life-cycle, the majority
go no further than the step of definition. The key to obtaining valid measures which may be
useful in practice is the definition of measures by following a rigorous method. In a previous
work we have defined a method with which to obtain valid measures. In this paper we present
the extensions and refinements of this method, which has been redefined as a consequence of
seven years of application to various software artefacts, such as OCL expressions, UML
diagrams, ER diagrams, Relational database schemas, Datawarehouse conceptual models, etc.
In order to illustrate the redefined method an example of the definition of a measure for the
import-coupling of OCL expressions is presented.

Keywords: software measures, measure definition, theoretical validation, empirical validation,
psychological explanation
Categories: D.2.8

1 Introduction

One of the current concerns of software factories is that of evaluating and improving
the quality of their software products throughout the development life-cycle. To do
this they need valid software measures which will allow them to evaluate the quality
characteristics of software products in an objective and quantitative manner. Over the
past fifteen years a wealth of literature dealing with measures capturing the quality of
many software artefacts has appeared. However, most of the measures are poorly
defined, and have consequently been of little use or cannot be used for the purpose for
which they were intended. Many of these problems arise from following an imprecise
measures definition method. The lack of a consolidated method with which to
measure definition could be considered as characteristic of a discipline like software
engineering, which is a human-intensive young discipline in contrast to other
disciplines [Briand et al. 1996], whose methods and techniques need to be fully
assessed.

Some issues that contribute towards obtaining valid measures are:

* Measures must help to attain a measurement goal. Measurement goals should be
clearly connected to an industrial goal, responding to the software organization’s
needs.

* The underlying hypotheses associated with the measures once they have been
defined should be explicit.

* The context or the environment in which the measures can be applied should be
declared.

* Measures should be repeatable, i.e. their definition should be as clear possible so
that if the measurement of an attribute is repeated by a different person the same
result will always be produced.

e Measures should be theoretically valid, i.e. it should be explicit which the
attribute that a measure aims to quantify is.

* Measures must be valid in practice, i.e. they must be empirically valid.
Taking into account such issues we have defined in [Calero et al. 2001a] a method for
measure definition. In the last ten years, this method has been used by both our
research group and other research groups to define measures for different software
artefacts, such as UML diagrams [Genero et al. 2007; Cruz-Lemus et al. 2005], ER
diagrams [Genero et al. 2008], Relational database schemas [Calero et al. 2001b],
datawarehouse conceptual models [Serrano et al. 2004], etc. During the application of
the original method to different contexts we realized that as it was originally defined
was difficult to follow and sometimes ambiguous. The level of detail of the tasks to
be done in each step was not enough. For example, the measure definition step
requires more details to differentiate high level activities from those of a lower level
to be easily understood and used.

Therefore, our experience of using the method in different contexts motivated us to

improve it through its refinement and extension. The main goal of this paper is to

thoroughly describe how this method has been extended and refined.

The paper is organised as follows: The original version of the method for measure

definition, proposed in [Calero et al. 2001a], is presented in Section 2. Section 3

outlines the principal issues that have been refined and extended in the current version

of the method. Sections 4 and 5 detail the definition of the method, emphasizing the
activities that have been refined or extended. In order to illustrate the entire method,
an example of the definition of a measure for the import-coupling of OCL expressions
is presented in Section 6. Concluding remarks and future work are presented in the
Section 7.

2 Summary of the Original Method for Measure Definition

An overall picture of the original method [Calero et al. 2001a] is shown in Figure 1.

This method identifies four steps:

* Metrics definition. This method step stresses the importance of correctly defining
measures. It highlights the importance of considering the characteristics of the
software products, the use of standards to identify quality attributes, along with
the experience of modelers, designers, developers and product users. This step
also proposes the use of the GQM approach [Basili and Weiss 1984; Basili and
Rombach 1998; Solingen and Berghout 1999] to obtain measures in a
methodological manner.

Theoretical validation, is related to ascertaining if a measure really measures the
attribute it purports to measure. Two main tendencies are identified: frameworks
based on axiomatic approaches and those based on the measurement theory. This
step is further explained in section 5.

Empirical validation, carried out to gather empirical evidence of the measures in
practice. Two major strategies are described in [Calero et al. 2001la]:
experimentation and case studies. These strategies are explained and also
compared. More attention is paid to experimentation and (the need to run
replicas) than case studies. The more relevant phases of running an experiment
are also briefly described, along with some of the threats related to its validity.
Psychological Explanation: The purpose of this step in the original method is to
explain the influence of the values of the measures from a psychological point of
view. It also highlights the use of cognitive psychology as a reference theory in
studying information modelling and the use of the knowledge of human
information processing to establish a threshold. However, this step was not
explained in detail

»
»

METRICS DEFINITION <
o
o

EXPERT || STANDARD|| GQM
OPINION 9126 METHOD

o —

THEORETICAL VALIDATION EXPERIMENTS

BASED THEORY BASED | STUDENTS || EXPERTS | STUDIES
FRAMEWORKS FRAMEWOKS

PROPERTY || MEASUREMENT EMPIRICAL VALIDATION || ~xqp

A 4
PSYCHOLOGICAL EXPLANATION

3

Figure 1. Original method for measures definition [Calero et al. 2001]

Extended and Refined Method for Measures Definition

The original method was refined and extended due to the fact that we needed a fine-
grained method which would provide us with a sufficient level of details which are
lacking in the original method, and which would help us to avoid ambiguities in its
application and to tackle the measure definition accordingly. Moreover, the
application of the original method in different contexts led us to realize not only that
many parts should be refined, but also that new steps should be added. The method
was therefore divided into several activities which should be performed in order to
obtain reliable and consistent measures. The new method was modelled through the
use of UML activity diagrams.

The following modifications have been done to the original method:

Refinements represent improvements to the method with regard to the activities
that should be carried out to attain a particular goal, with a rigorous specification

of: (1) the order of execution of the activities, (2) the main data (object flow and
major decisions) that should be defined and shared between activities, etc. Some
of these refinements were originally conceptualized and designed but were not
detailed and explained in relations to other activities.

* Extensions of the method were introduced when we needed to deal with new
activities in the measure definition step.

Figure 2 shows the new method’s high-level activities. One of the most important

decisions when we redefined the method was to differentiate two initial activities,

which were the Identification and the Creation of measures. The Identification
activity (Figure 2, Activity M), has the purpose of planning the measurement goals
and questions, identifying abstractions and stating general hypothesis by following the
most commonly cited methods in literature for measure definition, whereas the latter

activity, based on the outcomes of the former activity, defines the measures through a

rigorous process.

The Identification activity subsumed part of the first step of the original method (that

of the definition of measures), but only that part which was related to the definition of

goal and questions followed a GQM approach. Moreover, the Identification activity
was refined in order to represent the remaining activities (the identification of
abstractions, the stating of a general hypothesis, etc) which were not included in the
original method. This activity not only considers a GQM approach, as did the original
method, but also makes improvements to it considering the Measurement Model Life

Cycle (MMLC) [Cantone and Donzelli 1999] and the GQM/MEDEA [Briand et al.

2002]. The Identification activity was refined because it is a crucial activity and all

the following activities will be based upon its results. The Identification activity in

Figure 2 shows a rake to the right of the activity, indicating that the activity is

described by a more finely detailed activity diagram. This activity is explained in

detail in Section 4.

The Creation activity (Figure 2, Activity M,) defines the measures based on clear

measurement goals, questions, abstractions and general hypotheses specified in the

previous activity. The definition is firstly described in natural language and also
includes a formal definition. Moreover, measures are theoretically and empirically
validated, and a plausible psychological explanation of the effort of subjects when
dealing with the software artefacts being measured is provided. This activity has,
therefore, subsumed part of the definition of the measure (that related to the measure
creation within the GQM approach), the psychological explanation and the theoretical
and empirical validation of the original method. Since this activity is probably the
longest and the most complex, we believe that it should be further broken down into

four activities which are explained in section 5.

The method was also extended with three new activities:

* Acceptation (Figure 2, Activity M3): The aim of this activity is the systematic
experimentation of the measure. This is applied to a context which is suitable for
the reproduction of the characteristics of the application environment, with real
projects and real users, to verify its performance in comparison with the initial
goals and stated requirements. After this activity is performed, measures can be
accepted or rejected. A decision node therefore follows the Acceptation activity.
The branching is based on whether measures are accepted or rejected. Even if the

measure is rejected it should not be discarded but should undergo the method
from the creation activity.

* Application (Figure 2, Activity My): The accepted measure is used in real
projects in industrial environments.

* Accreditation (Figure 2, Activity Ms): The goal of this activity is the
maintenance of the measure to allow it to be adapted to application in changing
environments. As the original method explains, the accreditation activity
represents a dynamic step that proceeds simultaneously with the application
activity. A fork and a join bar in the diagram shown in Figure 2 therefore
respectively denote the beginning and the end of a parallel activity. As a result of
this step the measure can be withdrawn or reused for a new measure definition
process.

We shall now provide a detailed description of the core activities of Identification

and Creation (sections 4 and 5 respectively), stressing those aspects which were

refined and extended. Whenever an activity is explained, its identification number
will be show on its right, which coincides with the number shown in the UML activity
diagrams.

[M1. Identification rh Je——|
v
| Goals]| Questions | [Abstractions]| Empirical Hypotheses|
v
> M2. Creation rh |

| Created Measures |

#l' M3. Acceptation I

[rejected measure]

Y [accepted measure]

—P[M4. Application]ﬂ M5. Accreditation |

[reused measure]

[accepted measure]

®

Figure 2. Refined and extended method for measures definition

4 Identification

As was previously described the most important activity is that of Identification
(Figure 2, Activity M)) since it influences all other activities. The UML activity
diagram for the Identification activity is shown in Figure 3. It is advisable to be able
to achieve the definition of clear measurement goals to avoid producing a measure
definition that does not actually achieve our desired aim, i.e. we should follow a goal-
oriented definition of measures. As is described in [Pfleeger et al. 1997], a commonly
used model which can guide us in deriving and applying a goal-oriented definition is

the GQM paradigm. This paradigm (already explained in [Calero et al. 2001]) has

been widely applied as a means to deduce measures by using a top-down perspective

and to analyze and interpret them by using a bottom-up perspective [Solingen and

Berghout 2001]. Goals are stated in a conceptual level and are, in turn, refined in an

operational, tractable manner into a set of quantified questions [Mendong¢a and Basili

2000] and are defined as part of this activity. However several authors [Briand et al.

2002; Card 1993], have argued that GQM has some important limitations [Card 1993;

Briand et al. 2002; Hetzel 1993; Shepperd 1995] and is not in itself sufficient to

define effective measures. For instance, Card recommends that the use of GQM must

be supplemented with another activity to select specific practical measures, and he
also suggests that one effective supplemental activity is that of modelling. Developing

a model, i.e. defining the objects being measured, makes it possible to select measures

for effect rather than desire [Card 1993], and helps us to describe the relationships

between measurable things. Briand et al. similarly provide another mechanism with
which to generate models [Briand et al. 2002]. In both approaches, the modelling of
the measured artefact is included as a complementary activity for the GQM paradigm.

Our proposed method, after its validation in defining several measures for various

software artefacts, found similarities with all the aforementioned remarks from

measurement literature. Thus, in order to define measurement goals the following
activities should be performed:

* Select the entity of study (Figure 3, Activity I;): According to the ISO 9126
[ISO IEC 2001] an entity is an object (for instance, a product, process, project or
resource) that is to be characterized by measuring its attributes. The selected
entity is undoubtedly the product of the organization’s stakeholders’ eliciting
requirements.

* Determine the quality focus (Figure 3, Activity I,): Generally the quality focus
corresponds to the quality attributes (abstract properties of an entity) upon which
the measurement activities are focused. In order to conceptualize and
differentiate when determining such attributes, quality models, such as the ISO
9126 [ISO IEC 2001], Kim [Kim 1999], McCall [McCall et al. 1977], Boehm
[Boehm et al. 1978], suggest ways in which to describe different quality
characteristics of software products.

+ State the GQM goal(s) at a conceptual level (Figure 3, Activity I3): The two
previous activities are used to state the GQM Goal(s), which is (are) defined by
using the following template [Basili and Weiss 1984]: Analyze the 'object of
study' for 'purpose' with regard to 'quality focus' from the point of view of 'point
of view'. In other words, a GQM goal specifies what objects are measured for
what purposes from which viewpoints with regard to which focuses [Saeki 2003].

Once the goal(s) has/have been defined it/they should be refined into a set of

questions. Nevertheless, before addressing the definition of questions, which in fact

allows GQM goals to be quantified, it is necessary to consider the structural
properties [Darcy and Slaughter 2005] of the software artefact to be studied:

* Determine the structural properties to be studied (Figure 3, Activity I4): It is
necessary to define the properties (or internal attributes) that we intend to
measure because we usually interpret software data at that attribute level
[Kitchenham et al. 1995]. That is, should we study the coupling, cohesion, size,
or length of the software artefacts?

* Identify abstractions for measuring the structural properties (Figure 3,
Activity Is): In helping to clearly identify the structural properties we should take
into account the definition of abstractions for measuring the structural properties
as recommended by Briand et al. [Briand et al. 2002] and Card [Card 1993]. For
instance, in the case of coupling being the structural property to be studied, the
abstraction should identify the different kinds of connections that constitute
coupling, the locus of impact of coupling, the granularity of coupling, etc.
[Briand et al. 1996].

* Refine the goal(s) into questions at an operation level (Figure 3, Activity I):
Once the structural properties have been selected and abstractions for measuring
them are defined, GQM questions can be established. Questions should fit the
GQM goals otherwise they should be redefined or discarded. This situation is
modelled through a decision by using the diamond notation shown in Figure 3.

+ State general hypotheses (Figure 3, Activity I;): Finally, general hypotheses
should be stated, relating structural properties and the quality focus. The
definition of a precise, testable research hypothesis is required before any
empirical study can be performed. An Empirical hypothesis is a statement which
is believed to be true about the relationship between one or more attributes of the
object of study and the quality focus. In other words, empirical hypotheses relate
the (independent) attributes of some entities to other (dependent) attributes of the
same or different software product or activities [Briand et al. 2002].

[11. Select the entity of study]

| Software artifact |

[12. Determine the qualitv focus]

13. State the Goal(s) at 14. Determine the
the conceptual level J structural properties

[15. Identify abstractions]

[Questions do ""|questions at the operational Ievel]—> abstractions

not fit the goal(s)]

o [16. Refine the Goal(s) into

% [Questions fit the goal(s)]
[17. State General Hypotheses]—>|Empirical Hypotheses |

@

Figure 3. Identification Activity
Most of the main components of the identification activity involve interaction with
the stakeholders in an organization to elicit a shared view about their organization’s
needs [Berander and Jonsson 2006]. Setting goals and stating general hypotheses are
not simple activities because they are products of expert knowledge. Their

identification is a high level activity within the method in which goal driven
requirement engineering can be applied [Kavakli 2004].

5 Creation

Creation (Figure 2, Activity M,) relies on the following four activities:

Measure Definition (Figure 4, Activity C;): In order to clearly define a measure,
it is important to tackle two important issues: a clear specification of what is
captured by the measure and its purpose, and a formal specification of the
measure (i.e. how it is defined). With regard to the former issue, measures are
defined by taking into account the goal(s) and questions provided by the
identification activity. With regard to the latter issue, in measurement literature
various different approaches have been applied in order to define measures:
natural language, mathematical approaches, and formal languages. The measures
should be defined in a consistent and coherent manner to avoid
misunderstandings and the misinterpretation of meaning.

Theoretical Validation (Figure 4, Activity C,;): Once a measure has been
defined it is necessary to verify whether it fulfils the properties that are associated
with the attribute it is intended to measure [Mendonga and Basili 2000]. This task
is called theoretical validation, internal validation or formal validation. In the
context of an empirical study, the theoretical validation of measures establishes
their construct validity [Wholin et al. 2000], i.e. it proves that they are valid
measures for the constructs that are used as variables in the study. Theoretical
validation is also useful to determine the scale type of the measure, and helps us
to discover when and how to apply measures. For instance, the scale of the type
is useful in identifying the statistical techniques which should be applied in
empirical studies.

Psychological Explanation (Figure 4, Activity Cs): Ideally, we should be able to
explain how the subjects deal with the software artefacts that are the focus of our
measurement activities. As Cant et al. [Cant et al. 1992] remark, measuring
structural properties should affect attributes of human comprehension. As a
reference discipline in this step, cognitive psychology can be used to obtain a
plausible explanation of the effort of the subjects dealing with the software
artefact being measured. A clear understanding of the cognitive complexity' of
the subjects dealing with the software artefact will help us to understand how
difficult it is, for instance, to maintain that software artefact, since anything that
is difficult to comprehend will affect its maintainability. The psychological
explanation is also useful in that it provides a clear interpretation of the results of
empirical studies. This activity can be carried out at the same time as the
theoretical validation and it is directly strengthened when qualitative methods are
applied in empirical studies [Seaman 1999].

Empirical Validation (Figure 4, Activity C,): This task is also called empirical
validation or external validation. This activity investigates whether the measure is

' Cognitive complexity is defined as the mental burden of a person dealing with a
software artifact

actually effective in practice, i.e. the study assesses whether the measures are

related to certain external attributes. Thus, the main purpose of this activity is to

run quantitative empirical studies. The activity takes into account the empirical
hypotheses provided by the identification activity.

These activities will be described in detail in sections 5.1, 5.2, 5.3, 5.4. The
activity of creating measures is evolutionary and iterative and as a result of the
feedback, the method could refine, reject or define new measures. We identify two
situations in which a review of the creation activity should be performed. The first is
after finishing the Theoretical Validation activity since: (1) the measure may not be
theoretically valid or (2) the measure may be theoretically valid but does not capture
an expected attribute (the attribute that the measure aims to quantify). The second
situation arises after the empirical validation is performed. Different situations may
arise in this case: a measure might not be empirically valid, various measures may
capture the same dimension of a concept, derived measures need to be defined as a
more precise indicator of independent variables, etc. The two aforementioned
situations were modelled through the two bottom diamond decisions in the UML
activity diagram shown in Figure 4.

dl
[C1. Measure Definition rh |
-

[Questions |

Abstractions

[cz. Theoretical Validationrh [C3. Psychological Explanationrh]

[created Measure [defined] |

[type of scale| | Created Measure [theoretically validated] || Plausible Explanation

[modify]

[accepted]

Empirical Hypotheses |—>[C4. Empirical Validation rh]

[not valid in practice]

| Created Measure [empirically validated] |

e

Figure 4. Creation Activity

5.1 Measure Definition

This section explains the Measure Definition (Figure 4, Activity C,).When
measures are defined the most important goal is that they should (at a quantitative
level) provide the information to answer the stated GQM questions. However, the
activity of defining measures is not simple. Measures must initially be defined by
using natural language and they should then be formally defined. Moreover, both

activities have their own preconditions, which constrain the order in which they
should be performed:

Select a metamodel of the software artefact (Figure 5, Activity D;): The
definition of a measure must be sufficiently clear and detailed for any concept of
the software artefact (the object of study) mentioned in the natural language
definition to be quantifiable, i.e. able to be measured [Briand et al. 1996]. In
order to fulfil this, a metamodel of the software artefact being measured should
be selected as a previous activity of any measure definition. As is defined in
[Jacquet and Abran 1997], a metamodel constitutes the set of characteristics
selected to represent a software or software piece and the set of their
relationships, providing an overall description of the software artefact to which
the measurement method will be applied. By using a metamodel we will be able
to ensure that any concept mentioned in the measure definition using natural
language should also be an element of the selected metamodel.

Define the measure in natural language (Figure 5, Activity D,): The activity of
defining a measure includes its proper definition, its measure goal, explains how
the measure value is obtained and includes a name and its corresponding
acronym. Figure 5 assumes that many measures can be defined, so the activity D,
occurs iteratively for each measure. The activity has a rake in one corner, so its
description as an activity is shown in Figure 5 and is explained in subsection
5.1.1.

Select a formal language for the formal definition (Figure 5, Activity D;):
Before any measures are formally defined we should select a formal language
with which to perform the activity. The selection of the formal language may be
carried out in parallel with activities D; and D,.

D1. Select a Metamodel of

[Questions | [Metamodel | [D3.Se|ectaFormaI Languag1
for the E LDefiniti

[D2. Definition in Natural
Language

Formal Language

[D4. Formal Definition of a

Are the defined measures complete
enough to answer theGQM/questions_|

| Created Measure [defined]|
ave all the measures been
formally defined? +

@

Figure 5. Measure Definition Activity

Carry out a formal definition of a measure (Figure 5, Activity D4): The
purpose of this activity is a precise definition of each measure upon the
metamodel. The formal definition of the measures is closely related to its
definition in natural language, since the formal specification should be coherent
with the natural language description which explains the way in which the
measure values should be obtained. Although this activity is not further detailed
in an activity, section 5.1.2 explains the underlying reasons for introducing this
activity as part of the method.

We will be able to formally define a measure once (1) the first measure being
defined using natural language is obtained (Figure 5, Activity D,), and (2) both, a
metamodel and a formal language have been selected. These preconditions are
modelled in Figure 5 through the last join. The whole activity terminates when
the last measure is formally defined, this being the condition evaluated in the last
diamond.

5.1.1 Definition in Natural Language

The Definition in Natural Language (Figure 5, Activity D,) defines the measures

using natural language and contains the following activities:

Define what is captured by the measure (Figure 6, Activity N,): The definition
of the measure should include a clear description in natural language of what is
captured by the measure.

Verify the definition explains how the measure value is obtained (Figure 6,
Activity N,): Each concept and relationship mentioned in the definition must be
quantifiable. The measure definition should also give a precise description of
how the value of a measure is obtained, e.g. if the measure is defined as a rate, a
specification of its formula will be provided.

e

[Nl. Define what is captured]‘_
by the measure

| N2. Verify that the definit‘ion ca[?tures I

N3. Define the intent pursued
by the measure J

Do measures provide
the information to
answer GQM's
questions?

N4. Name the measure and
select a suitable acronym_|

Figure 6. Definition in Natural Language Activity
Define the goal pursued by the measure (Figure 6, Activity N3): The measure’s
intent should be consistent with the GQM question to which the measure

provides information. The measure’s intent should also be described by
considering the cognitive complexity of the modellers dealing with the aspects
and concepts captured by the measure. If the measure’s intent does not provide
information to answer the questions, i.e. if it does not fit our desired aims, we
should review its definition or eventually discard it. This decision is represented
in the bottom diamond of Figure 6 and verifies that each measure’s intent is
aligned with the GQM-questions.

* Name the measure and select a suitable acronym (Figure 6, Activity N,): The
last activity of a measure definition is to name the measure and select a suitable
acronym.

Many measures can be defined in order to answer different GQM-questions. It is also
possible for a set of measures to be used to answer a GQM-question. This set should
be sufficiently complete to answer that specific GQM-question. The method therefore
allows for the creation of different measures to answer a GQM-question, and verifies
that each GQM-question can be answered with a set of measures. This situation is
modelled in the diamond shown in Figure 6. By applying the GQM paradigm we
ensure that the obtained measures are useful, simple and direct. However the
paradigm is not intended to define measures at a level of detail which is suitable to
ensure that they are trustworthy, in particular, whether or not they are repeatable (i.e.,
if the measurement of an attribute was repeated by a different person the same result
would be produced each time [Kitchenham et al. 1995]). In order to ensure
repeatability, software measures need to be fully defined and specified, not simply
named. This is one of the purposes of a formal definition of measures which is
explained below.

5.1.2 Formal Definition of a Measure

The purpose of the Formal Definition (Figure 5, Activity D) is to formally define the
measures. Many difficulties arise when the measure is defined in an unclear or
imprecise way:

* Experimental findings can be misunderstood due to the fact that it may be not
clear what the measure really captured are [Baroni 2002].

* Measure extraction tools can arrive at different results. Kitchenham et al. remark
[Kitchenham et al. 2006] that most data collection problems arise from poor
definitions of software measures. Data validation, data storage and data analysis
problems are consequently involved.

* The replication of experiments is hampered [Baroni 2002].

These are also common problems when we evaluate or consider the methods (or

frameworks) used in defining measures. Most of the existent measures differ in the

degree of formality used in their definition. Two extreme approaches were used,
informal and rigorous definitions. However none of these approaches have been
widely accepted. On the one hand, measures using an informal definition, such as
measures defined in natural languages, may be ambiguously defined, and it is
universally considered that the use of this practice could cause misinterpretations and
misunderstanding. At the other extreme, in a rigorous approach some authors have
used a combination of set theory and simple algebra to express their measures
[Chidamber and Kemerer 1994; Henderson-Sellers 1996]. This approach has not been

popular since the majority of members of the OO community may not have the
required background to understand the underpinning of the complex mathematical
formalism used. An example of how the use of natural language in a measure
definition introduces ambiguity is considered in [Baroni 2002] which uses as example
the “Number of Times a Class is Reused” metric proposed in [Lorenz and Kidd
1994]. This measure is defined as the number of references to a class. We agree with
Baroni that is not clear “what references are and how the metric should be computed,
and many questions arise as: Should internal and external references be counted?
Should references be considered in different modules, packages or subsystem? Does
the inheritance relationship count as a reference?”.

One important contribution, which solves those problems related to the formality
degree used to define measures, is the use of a formal language (e.g. OCL) upon a
metamodel of the software artifacts to be measured. For instance, any measure
defined for a UML artefact (e.g. UML statechart diagram) can use this approach, and
we can provide a formal definition of the measures by using OCL upon the
corresponding UML metamodel (e.g. UML statechart diagram metamodel [Reynoso
et al., 2008]; OCL metamodel [Reynoso, 2007]).

5.2 Theoretical Validation

As was previously described, Theoretical Validation (Figure 4, Activity C,) is
carried out to assess whether a measure actually measures what it claims to measure.
In other words, it shows that a measure is really measuring the attribute it is
purporting to measure [Briand et al. 1995]. There are two main tendencies in
measures validation which represent the most widely applied frameworks (modelled
in Figure 7):

* Use of property-based frameworks (Figure 7, Activity T;): Some of this kind
of frameworks are those proposed in [Weyuker 1988], [Briand et al. 1996] and
[Morasca and Briand 1997].

* Use of frameworks based on measurement theory (Figure 7, Activity T,):
Poels and Dedene [Poels and Dedene 2000]; Zuse [Zuse 1997]; Whitmire
[Whitmire 1997] proposed frameworks based on measurement theory.

The use of property-based frameworks does not contradict the measurement theory
[Briand et al. 2002]. Similarly the measurement theory does not contradict property-
based frameworks. The activity of theoretical validation using different frameworks
can thus be performed simultaneously. The activity T, which represents the
application of the measurement theory, also helps us to determine the scale type of a
measure. Both activities, T, and T,, show a rake on their right-hand side, meaning that
they are further broken down. However, for the sake of brevity, a description is
omitted in this article. We believe that both represent well-know processes in
measurement literature. Property-based approaches propose a measure property set
that is necessary but not sufficient [Briand et al. 1996; Poels and Dedene 2000]. They
can be used as a filter to reject proposed measures [Kitchenham 1997], but they are
not sufficient to prove the validity of the measure.

Abstractions %
A

T1. Use of Property-based'_h T2. Use of Frameworks based]
[Frameworks] on the Measurement theor\/+'

Type of Scale

Created Measure [Theoretically validatedi

K

Figure 7. Theoretical Validation Activity

5.3 Psychological Explanation

This section discusses Psychological Explanation (Figure 4, Activity C;). The
structural properties of software artefacts influence the cognitive complexity of the
software engineers dealing with those artefacts [Briand et al. 1999d; Briand et al.
1999¢; Briand et al. 2001], e.g. high structural complexity makes a software artefact
more difficult to comprehend. As was previously mentioned, cognitive complexity is
defined as the mental burden of a person dealing with a software artefact. We believe
that this mental burden will also make an impact on the software quality attribute that
is being studied as a GQM-goal (e.g. the high cognitive complexity of a person
dealing with an artefact will cause the artefact to exhibit undesirable external
qualities, such as the artefact being more difficult to maintain).

Cognitive complexity is therefore at the core of defining measures. The
understanding of cognitive complexity has two advantages:

1. It is useful for defining the rationale behind each measure definition (Figure 6,
Activity N3) and in fact, as Klemola [Klemola 2000] remarks, many measures are
supported by the fact that they are clearly related to cognitive limitations.

2. Cognitive complexity provides us with the theoretical knowledge to explain the
findings of empirical studies, i.e. if we are able to describe and to understand how
software engineers comprehend the software artefacts that are being measured we
will be better prepared to interpret and to analyze the empirical studies performed
with subjects dealing with those artefacts.

A plausible explanation of the measures from a psychological point of view, such
as the understanding of the cognitive demands that software places on software
engineers [Glasberg et al. 2000] is necessary otherwise, as is argued in [Sebrechts and
Black 1982], we only surface features of the software measured. By understanding
cognitive psychology theories we can justify the influence of structural properties on
external quality attributes (such as maintainability) through the study of cognitive
complexity. Moreover, Darcy et al. suggest [Darcy and Slaughter 2005] the
consideration of multiple theoretical perspectives, including human cognition, to
provide a solid foundation upon which to derive an integrative model relating internal
and external attributes of software quality.

A detailed cognitive model is a necessary basis for developing software product
measures [Darcy and Slaughter 2005]. One way in which to operationalize cognitive
complexity is to equate it with the ease of comprehending the software artefact that is
measured, as Glasberg et al. notes [Glasberg et al 2000]. Cognitive models and mental
models are two important theoretical bases for program comprehension. Darcy et al.
argue [Darcy and Slaughter 2005] that some of the programming comprehension

models are sufficiently generalizable for them to also be used to understand and
explain maintenance cognition.

We have identified the following activities in order to obtain a plausible explanation
of the measure:

Select the cognitive theory to use in a plausible explanation (Figure 8,
Activity PE,): The selection of a cognitive psychology theory should be carefully
justified, and the selection will be dependent on the software artefact (Activity I,
Figure 3) to be measured and on the GQM-goal (Activity I, Figure 3) pursued in
the measurement process.

Relate the cognitive theory to the software artefact and measures (Figure 8,
Activity PE,): Once the cognitive theory has been selected and each of its
components have been described, it is useful to use the cognitive theory to
explain how the subjects deal with the measured artefacts and also to establish a
relationship between the elements of the theory and the concepts captured in each
measure.

Use Qualitative Methods to Understand Cognitive Complexity (Figure 8§,
Activity PE;): Seaman argues [Seaman 1999] that in order to delve into the
complexity of the human role in software engineering rather than abstract it,
qualitative methods should be used. It could be argued that human behaviour is
one of the few phenomena that are complex enough to require qualitative
methods to study it. Bearing these arguments in mind, we have included an
activity (PE;) in which qualitative methods should be applied in order to
completely understand the cognitive complexity of software engineers dealing
with a measured software artefact. A thorough study of qualitative methods for
data collection and analysis which may be incorporated into empirical studies of
software engineering is presented in [Seaman 1999]. The most common
qualitative methods employed are observations, in-depth interviews and focus
groups [Taylor and Bogdan 1984].

PEL. Select a Cognitive Theory to use in
a plausible explanation

[PEZ. Relate the cognitive theory to the j

[yes] PE3. Use quantitative methods to
A & understand cognitive complexity

Is the selécted cognitive theory
sufficient to provide a plausible
ty?_

explanation of the cognitive complexi

software engineers deals with
software artifacts?

Plausible Explanation
The qualitative methods are | p |
sufficient to understand how

®

Figure 8. Psychological Explanation Activity

Since cognitive complexity constitutes one of the most important aspects that
underpin the influence of structural properties on external quality attributes, this
activity is considered as crucial within the method.

5.4 Empirical Validation

In order to thoroughly prove that a measure is useful an empirical validation (Figure

4, Activity C,) must be carried out. It is not reliable to use common wisdom, intuition,

speculation, or proof of concepts as sources of credible knowledge [Basili et al.

1999]. It is necessary to place the measures under empirical validation. Empirical

validation is an on-going activity [Briand et al. 1995] performed to demonstrate the

usefulness of a measure. In other words, it addresses the following question: is the
measure useful in the sense that it is related to other variables in expected ways?

[Briand et al. 1995].

Empirical validation can also be used to demonstrate with real evidence that the
measures we have proposed serve the purpose they were defined for. This phase is
necessary before any attempt is made to use measures as objective and early
indicators of quality. Empirical validation is therefore crucial for the success of any
software measurement project [Schneidewind 1992; Kitchenham et al. 1995; Basili et
al. 1999]. However, in general, insufficient empirical evidence exists to support the
usefulness of a vast number of proposed measures [Briand et al. 1999d]. Briand et al.
therefore argue [Briand et al. 1999a] that empirical studies in software engineering
need to be better performed, analyzed, and reported.

Empirical validation is used to obtain objective information concerning the
usefulness of the proposed measures, since a measure may be valid from a theoretical
point of view, but will not have any practical relevance to a specific problem.
Therefore, empirical studies are necessary to confirm and understand the implications
of the measurement of our products. This is achieved by means of hypotheses in the
real world, above and beyond pure theory, which must be verified through the use of
empirical data. Note that in our method general empirical hypotheses were defined as
part of the I, activity of the identification step (Figure 3). These hypotheses should be
empirically validated through a set of refined empirical hypothesis through different
studies.

We have identified the following high level activities, which can be used to carry out

any empirical validation:

* Select a Strategy to Carry Out the Validation (Figure 9, Activity E,): There
are three major strategies or types [Robson 1993; Wholin et al. 2000] of
empirical investigations:

a. experiment, i.e. a means of testing, using the principles and procedures
of experimental design, if the hypothesis concerning the expected
benefit of a tool or method can be confirmed;

. case study, i.e. a trial use of a tool or method in a full scale project;

c. survey, i.e. the collection and analysis of data from a wide variety of
projects.

* Conduct the Strategy through a Family of Studies (Figure 9, Activity E,):
Having selected the strategy, the validation should be run by using a family of
studies, i.e. a family of experiments, a family of case studies, a family of surveys,

etc. A family of studies is extremely useful and necessary to draw more credible
conclusions [Perry et al. 2000], and contribute to obtaining more solid findings
and expected results.

To perform any empirical strategy such as an experiment, survey or case study,
several steps have to be taken and must take place in a certain order [Wholin et
al. 2000; Juristo and Moreno 2001]. Thus a process for how to perform the
experiments is needed. Processes are important as they can be used as checklists
and guidelines of what to do and how to do it. Only careful planning can
guarantee successful empirical studies.

E1. Select a Strategy to
| I lidati 4—|

|Empirica| Hypotheses |
E2. Conduct the strategy o
through. a family of studies.

A

| Created Measure [empirically validated] |

®

Figure 9. Empirical Validation Activity

A wealth of literature on empirical strategies and their processes has been
published over the past decade, which is omitted here for the sake of brevity.
However, we recommend conducting these strategies appropriately in order to
integrate study results into a common body of knowledge [Jedlitschka and Pfahl
2005].

6 Example: Definition of Measures for OCL Expressions

In this section we briefly explain how the new method was used to define measures
for assessing the influence of import-coupling on the maintainability of OCL
expressions [Reynoso et al. 2005b; Reynoso 2007].

6.1

Identification (M,)

In this section we will present the activities carried out in the Identification activity
(Figure 2, Activity M) for the definition of measures for OCL expressions.

Select the entity of study (Figure 3, Activity I;).The entity of study is an OCL
expression. These expressions are the primary elements used by modellers as
textual add-on to UML models. Although an expression is attached to a particular
contextual type (e.g. a class in a UML diagram), its meaning involves objects
(mentioned within its definition) which are usually instances from different

classes. The different classes mentioned in an OCL expression constitute the
scope of the OCL expression. So, although our focus is an OCL expression, we
can not study this artefact in an isolated manner. Its context and its scope are
intrinsically involved.

Example: The upper part of Figure 10 shows a UML diagram in which an OCL
expression named ‘flight capacity’, has been defined in the context of the Flight
class, meaning that the quantity of passengers on a flight must be lower than or
equal to the capacity of the plane’s type on that flight. The contextual type of the
expression is Flight whereas its scope involves the Passenger, Plane and
Type of plane classes.

Determine the quality focus (Figure 3, Activity I;). The OCL expression’s
maintainability has been chosen as the prime quality attribute of interest. Our
study of the OCL expression’s maintainability will help modellers to improve the
quality of their models, and this is a major goal in software development using
MDA [Kuzniarz 2007] since models are used to drive the entire software
development process.

To our knowledge, not all the maintainability sub-characteristics proposed in the
ISO/IEC 9126 [ISO IEC 2001] standard are suitable for OCL expressions. We
have considered two sub-characteristics: comprehensibility and modifiability.
State the goal (Figure 3, Activity I3). The GQM-goal is: Analyze OCL
expressions with the purpose of evaluating maintainability from the viewpoint of
the OO software modellers in OO software organizations. The object of study
and the quality focus were described in the last two paragraphs. The purpose is
evaluation, i.e. 'judge the value of'.

Passenger Type of Plane

passenger name: String id_type: String

passenger_passport: String capacity: Integer
passenger [1..* 1| planetype

P

Flight . plane Plane

id_flight: String ioht T|id_plane: String

id_departure: String |8 year: Integer

context Flight inv flight capacity:
self.plane.planetype.capacity >= self.passenger->size()

Figure 10. OCL expression example

Determine the structural property to be studied (Figure 3, Activity I;). We
focus on the degree to which the elements in a design are connected, i.e. on
coupling structural property. Coupling is generally recognized as being among
the most likely quantifiable indicators for software maintainability. In fact, if one
intends to build quality OO models, coupling will very likely be an important
structural property to consider [Briand et al. 1999¢]. However, coupling is a
concept that has many dimensions. We will focus on the degree to which the

OCL expression has knowledge of, uses, or depends on other design elements
[Briand et al. 1999b], i.e. on import-coupling, due to:
a. The inner nature of OCL expressions: These artefacts are textual add-ons to

UML models. Within an expression we can refer to UML artefacts but not
the other way around.

Important empirical findings: We are also interested in the import-coupling,
because it has shown to be a strong, stable indicator of fault proneness of
classes [Briand et al. 1999¢], and fault-proneness results in low
maintainability [Briand et al. 1999b]. Similar results concerning import-
coupling were obtained as an indicator of development effort [Briand et al.
2001], where export-coupling measures show a much weaker impact than
import-coupling.

Example: The OCL expression in Figure 10 is defined in terms of different UML
artefacts: rolenames (plane, planetype, passenger), a UML attribute (capacity).
We could say that the expression is tightly coupled to its scope in the diagram.
Most of the expressions within a UML/OCL model import-couples different
UML artefacts in its definition.

Identifying Abstractions for Coupling (Figure 3, Activity Is). We have
identified several criteria based on [Briand et al. 1999b] to describe abstractions
for coupling, such as:

a.

Type of Connections: Connections are inherent to any coupling measure.
Two entities are usually involved in a connection. A client (or source) entity
specifies a connection to a destination entity. The coupling connections we
are interested in are connections between an OCL expression and any OO
feature of a UML diagram. Therefore, in our case the source entity will
always be an OCL expression, while the destination entity varies radically
(rolenames, attributes, method names, etc).
Locus of impact: The coupling usually defines a client-supplier relationship
between the design elements. This criterion defines whether we focus on
defining measures for the client or the server entity (in the connection). If the
focus is the client, the locus of impact is import-coupling, otherwise the
focus is the server and the locus of impact is export-coupling. As we briefly
mentioned before, the intrinsic definition of OCL expressions as a textual
add-on to a UML diagram (it allows the modeller to specify explicit
references to UML features) constitutes a suitable mechanism through which
to focus on the import-coupling. The focus is thus the client entity.

Granularity: This criterion involves:

i. The domain of measure is always an OCL expression. Nevertheless, the
expression refers to the semantic properties of its contextual type.
Although an OCL expression seems to be a small domain, the scope of
objects referred to through an expression (the portion of a UML diagram
imported by an OCL expression can vary significantly) may be very
large.

Example: Note that the expression attached to the Flight class refers to
three classes in the class diagram (its scope).

ii. The way in which we count connections is as follows: we always count
the number of different items at the other end of the connections.

Example: Suppose that within the OCL expression a rolename is used
twice within its definition. The two different occurrences of that artefact
will only be counted as one.

* Refine the goal into questions (Figure 3, Activity Is). The Briand et al. model
[Briand et al. 1999d] was used as a basis for our hypothesis that OCL expression
maintainability is influenced by its structural properties which, in turn, depends
on the elements of which OCL expressions are composed (navigations, collection
operations, variables, etc.). The most important question therefore arises:

* Does import-coupling influence OCL expression maintainability?

We have also added two other questions:

* Does size influence OCL expression maintainability?

* Does length (of navigation) influence OCL expression maintainability?

The last two questions arise with two different purposes. The length of
navigations is closely related to the depth of coupling whereas the size property is
considered in order to avoid the situation of size aspects biasing the findings
related to coupling during experimentation [El Eman et al. 2001].

* State general hypotheses (Figure 3, Activity I;). We hypothesize that high
import-coupling of OCL expression affects the maintainability of OCL
expressions. We suppose that the greater the import-coupling is the lower the
OCL expression maintainability will be.

6.2 Creation

Creation (Figure 2, Activity M,) was carried out to measure OCL expressions. This
section gives details of the NNR measure.

6.2.1 Measure Definition (C,)

The Measure Definition (Figure 4, Activity C;) involves the following activities:

* Select a metamodel of the software artefacts (Figure 5, Activity D;). We have
selected the OCL metamodel which defines the core concepts of OCL 2.0 and
their relationships in the form of a MOF-compliant metamodel. Thus, all legal
OCL expressions can be systematically derived and instantiated from the
metamodel.

* Definition in natural language (Figure 5, Activity D,). Each measure was
defined using a consistent format composed of:

a. Its ACRONYM and NAME: this component shows the result of activity
Ny (Fig. 6).

b. Its Proper DEFINITION: this component involves the result of applying
N, (define what is captured by the measure) and N, (verify that the
definition explains how the measure value is obtained) activities of Fig.
6.

c. Its INTENT: this component describes the goal of the measure, and
corresponds to the application of activity N; (Fig. 6).

d. An EXAMPLE: we have included a sample to illustrate its calculation.
The definition of the measures is presented according to the attributes
they are related to.

We exemplify a complete definition through the NNR measure:

e. ACRONYM and NAME: NNR stand for Number of Navigated
Relationships.

f. DEFINITION: This measure counts the total number of relationships
that are navigated in an expression (application of N; activity).

g. If a relationship is navigated twice, for example by using different
properties of a class or interface, this relationship is counted only once
(application of N,). Whenever an association class is navigated we will
consider the association to which the association class is attached.

h. INTENT: As Warmer and Kleppe [Warmer and Kleppe 2003] remark:
An "argument against complex navigation expressions is that writing,
reading and understanding invariants becomes very difficult". The
meaning of each relationship involves the understanding of how the
objects are coupled to each other. The larger the set of relationships to
be navigated, the greater is the context to be understood [Reynoso et al.
2005b].

EXAMPLE: The value of NNR for the expression shown in Figure 10 is 3

because we have used three relationships in two different navigations. A

simple navigation, self.passenger, navigates the relationship from Flight to

Passenger by using the passenger rolename whereas a combined navigation,

self.plane.planetype, is navigated from Flight to Type of Plane through to

Plane by using the plane and planetype rolenames.

* Select a formal language for the formal definition (Figure 5, Activity D;): We
select OCL as the formal language for the formal definition of measures for OCL
expressions.

* Formal definition of a measure (Figure 5, Activity D4): In our approach when

we compute the value of a specific measure we represent an OCL expression as
an instantiation of OCL metaclasses. The instantiation has the shape of a tree, an
abstract syntax tree (ast). The dynamic hierarchical structure (the ast) is traversed
by using a VISITOR pattern [Gamma et al. 1995]. We simultaneously visit every
element in the tree, and evaluate whether each element of the tree is meaningful
for the measure we wish to compute. For more details of the procedure of
obtaining the values through the Visitor Pattern we refer the reader to [Reynoso
et al. 2006].
Within the OCL metamodel the NavigationCallExp metaclass (Figure 11) is used
to represent navigations and constitutes a reference to an AssociationEnd (or an
AssociationClass) defined in a UML model. This object reference is used when
either a rolename or an association class is used in an OCL expression
navigation. An OCL expression ast will have as many Navigationcallexp objects
as the navigations contained in its definition. Therefore, following the example of
the NNR measure, when we traverse the ast of an OCL expression, instances of
NavigationCallExp will be meaningful to obtain the value of NNR.

| ModelPropertyCallExp |
|NaVigati0nCallEXp |
L' AssociationEnd
| o | referredAssociationEnd | (From UML Core)
AssociationEndCallExp T~ p
AssociationClass

| AssociationClassCallExp I 0..n referred AssociationClass

(From UML Core)

Figure 11: OCL Metaclasses related to Navigations

The formal specification of NNR, is specified as follows: Whenever a visitor
accesses a NavigationCallExp object, it loads in a set (called navigatedClasses)
either the name of the classes used in the navigation (if the modeller used a
navigation class) or the name of the class of the AssociationEndCall type (i.e. the
name of the class to which the rolename refers). However, as the same name of a
rolename can be used in different classes, we decided to represent those elements
composed of the pair of two strings in the set: the name of the class and the name
of the relationship.

context Visitor::visitNavigationCallExp(o: ~ NavigationCallExp, = metricName:
MetricAcronym)
post:
metricName = MetricAcronym::NNR
implies navigatedClasses = navigatedClasses@pre->union(
(if self.oclIsTypeOf(AssociationEndCallExp)
then
source.oclAsType(AssociationEndCallExp).referred AssociationEnd.type.name
else
source.oclAsType(AssociationClassCallExp).referred AssociationClass.name
endif)->append
(if self.oclIsTypeOf(AssociationEndCallExp)
then
source.oclAsType(AssociationEndCallExp).referred AssociationEnd.name
else source.oclAsType(AssociationClassCallExp).referred AssociationClass.name
endif))

The size of this set is used to obtain the NNR value. More details of the formal

definition of OCL measures upon the OCL metamodel can be obtained in [Reynoso et
al. 2006].

6.2.2 Theoretical Validation

In order to develop the Theoretical Validation (Figure 4, Activity C,) we have applied
property-based frameworks (Figure 7, Activity T;) and a framework based on the
measurement theory (Figure 7, Activity T,). In this paragraph we exemplify the
application of the former framework. The Briand et al. adaptation framework for

interaction-based measures for coupling [Briand et al. 1999c] was used for the
theoretical validation of NNR measure.

1.

2.

Nonnegativity: This is directly proven, as it is impossible to obtain a negative
value. An expression e without navigation in its definition has NNR(e) = 0.
Monotonicity: This is directly verified. Adding import interactions, in this case
interactions of navigations, to an OCL expression cannot decrease its import-
coupling. If we add a new navigation to an expression, two possible situations
may arise: (1) the navigation referred to in the added navigation is a rolename (or
association class) already used by an interaction. Thus the NNR applied to the
new expression obtained, is equal to NNR(e). (2) If the added navigation is new,
then the NNR applied to the new expression is greater than NNR (e).

Merging of modules: Within our context this property can be expressed in the
following way: "the sum of the import-coupling of two modules is no less than
the coupling of the module which is composed of the data used in the two
modules". The value of the NNR for an expression which consists of the union of
two original expressions, is equal to the NNR of each merged expression when
the sets of navigations referred to in each original expression are disjointed,
otherwise it is less than the NNR of each merged expression.

NNR is therefore validated as an interaction-based measure for coupling.

The theoretical validation following the measurement theory based framework
proposed in [Poels and Dedene 2002] was developed in [Reynoso 2007].

6.2.3 Psychological Explanation

We shall now briefly present the theory used in a plausible psychological explanation
(Figure 4, Activity C;) of the measures for OCL expressions.

Selected theory for OCL cognitive complexity (Figure 8, Activity PE,): As our
hypothesis is that import-coupling, as a structural property, influences the
cognitive complexity of modellers during OCL expression comprehension in the
maintainability of OCL expressions, we have based our reasoning on the
comprehension of OCL expressions using two main theories: cognitive models
and mental models. The former concept describes a subject’s mental
representation of the software artefact to be understood, whereas a cognitive
model describes the cognitive processes and temporary information structures in
the subject’s head that are used to form the mental model [Storey, 2005]. In this
paragraph, for the sake of brevity, we shall describe the application of the
cognitive model:

In order to explain how OCL expressions are comprehended and how the
navigation is a valuable help in guidance of comprehension we have applied the
Cant et al. [Cant et al., 1992] Cognitive Complexity Model (CCM). The basis of
the CCM is the definition of two cognitive techniques applied in program
comprehension, chunking and tracing, which are concurrently and synergistically
applied in problem solving.

a. The chunking technique represents the capacity of short term memory
involving the recognition of groups of declarations and extracting
information from them which is remembered as a single mental
abstraction: a chunk [Cant et al. 1992].

b. The tracing technique involves scanning, either forward or backward, in
order to identify relevant chunks [El Eman 2001], resolving some
dependencies.

Example: In some aspects, NNR determines the effort of a modeller carrying out
the tracing of the UML diagram. Each time navigation is used in an OCL
expression, the modeller should trace a relationship in the associated UML
diagram. We believe that OCL navigations are a key facilitator in the tracing of
the cognitive technique.

We refer the reader to [Reynoso 2007] for a complete explanation of the selection
of this theory.

Relate the cognitive theory to the software artefact and measures (Figure 8,
Activity PE,): During the comprehension of the OCL expression a modeller must
find the rolenames, classes and attributes mentioned in the expression (i.e., trace)
and then chunk these entities before returning to the original chunk. The
relatively large amount of tracing required causes a disruption in the reading of
the superchunks, making them more complex [Cant et al. 1992]. While reading
an upper-level chunk, a dependency requires the modeller to suspend the reading
of the original OCL expression because of the need to undertake tracing so as to
have a complete understanding of the chunk currently being analyzed. The
cognitive complexity model can therefore be described qualitatively in terms of a
landscape model.

Example: Figure 12 depicts the landscape associated with the OCL expression
shown in Figure 10. Graphically, the top-level chunk (which involves the
comprehension of the OCL expression) is interrupted by four lower-level chunks.
The first interruption is common to every OCL expression and locates the context
of the expression (the UML Classifier —a class, interface, etc.- written after the
context keyword) within the UML diagram. The second interruption, depicted as
the 'vertical drop' x1P, visually represents the work required in tracing the
relevant features in the UML diagram. In this case, it implies following a
navigation from the Flight class to another class in which its opposite-end
rolename is defined as ‘plane’. Having found this class, the modeller must chunk
not only the class but also the cardinality associated with the rolename. The
modeller should then follow a new navigation from Plane to Type of plane by
using the 'planetype' rolename and, after chunking the meaning of the latter class,
s/he must then chunk one of its attributes, that is, 'capacity'. The fourth and last
interruption during the comprehension of the flight capacity” OCL expression is
during the navigation from Flight to the Passenger class (drop x3P), so as to
obtain the size of the set of passengers.

Landscape of flight_capacity invariant:

f
x3

X2 P
Passenger

Flight Plane

TP
Type of Plane

Figure 12. Landscape of an OCL expression

+ Use qualitative methods to understand cognitive complexity (Figure 8,
Activity PE3): We decided to apply a qualitative method, a verbal protocol
analysis, in which subjects were given three class diagrams and were asked to
think aloud to verbalize their thought. The underlying principle of verbal protocol
analysis is that any verbalization produced by a subject whilst solving a problem
—known as concurrent think aloud- will directly represent the contents of the
subject’s working memory. So, as OCL expressions consist of suitable short
assertions that are not always easy to understand, especially when a lot of objects
are coupled within the expression, this qualitative method is used to study the
cognitive complexity of modellers dealing with OCL expressions. The
experiment is described in [Reynoso et al. 2007]. The aim of the experiment was
to validate a categorical model of the main categories of the mental models of the
subjects dealing with OCL expressions. We found that the main categories are:

a. Problem objects: The objects (main concepts) of the problem domain to
which the OCL expressions are attached.

b. Relationships between problem objects: association, composition and
inheritance relationships between objects.

c. Reified objects: These are not problem domain objects per se, but are
represented to complete the representation of relationships between
problem objects, e.g. OCL collections .

These categories are based on a work by Burkhardt [Burkhardt et al. 2002]. NNR
is an example of measuring the relationship between problem objects. We also
found that the breadth of familiarity with the UML diagram gained by the
subjects before starting to comprehend the OCL expression comprehension
activities was different. The range varies in a continuous form which extends
from those subjects who made absolutely no attempt to comprehend the diagram
to those who attempted to systematically comprehend the class diagram before
starting to read the OCL expression. The subjects who did not attempt to
comprehend the diagram before the comprehension of OCL expressions,
followed an as-needed strategy of UML relationships; they focused only on those
relationships when they appeared within the OCL expressions. OCL navigation
was therefore of valuable assistance in guiding the comprehension of OCL
expressions.

6.2.4 Empirical Validation

With regard to the empirical validation (Figure 4, Activity C,), in [Reynoso et al.
2005a] we described an experiment and two replicas, with the goal of ascertaining
whether any relationship exists between the import-coupling (defined in OCL
expressions through navigations and collection operations) and the comprehensibility
and modifiability of OCL expressions. In this empirical study the subjects were given
six class diagrams with one OCL expression each and asked to comprehend the
expression and modify it to satisfy new requirements. The subjects were also asked to
subjectively evaluate the complexity of comprehensibility and modifiability tasks.
After performing a statistical analysis we concluded that: (1) the NNR, NNC, WNN,
DN, WNCO and NEI measures have a strong correlation with the comprehensibility

efficiency (correct answers / comprehensibility time) for almost all of the six models;
(2) the NNR, WNN, DN and NCO have a strong correlation with the modifiability
efficiency for almost all of the six models. Many factors appear to influence the
efficiency of comprehensibility tasks, such as classes, relationships, the navigations,
the collection operations and the iterator variables, but only the number of
relationships, collection operations and the depth of navigations influence the
efficiency of modifiability tasks. The findings also reveal that the NNR, NNC, WNN,
DN, WNCO and NEI measures are correlated with the subjective complexity of the
subjects. We refer the reader to [Reynoso 2007] for a complete description of the
empirical validation of OCL measures.

7 Conclusions

The main contribution of this paper is the refinement and extension of a method for

measure definition originally proposed in [Calero et al. 2001a], providing more details

in the descriptions of the tasks, illustrated bye means of UML activity diagrams We
hope the new method really helps as a guide for a better definition of software
measures, ensuring reliability in obtaining well-defined and valid measures.

Refinement and extension were a result of the use, over the last ten years, of the

method to define measures for OCL expressions [Reynoso 2007], UML diagrams

[Genero et al. 2007; Cruz-Lemus et al. 2005], ER diagrams [Genero et al. 2008],

Relational database schemas [Calero et al. 2001b], datawarehouse conceptual models

[Serrano et al. 2004], etc.

The refinements of the method were introduced in the following steps:

1. Creation (C; activities, i=1..4): Although the main steps of the creation activity
were already defined in the original method, we refined important node decisions
and object flows between subactivities.

2. Empirical Validation (E;, F; and EFy activities, i=1,2, j=1..6, k=1.5): We
thoroughly specified and detailed the more relevant activities by carrying out
families of experiments and isolated experiments in [Reynoso 2007].

The extensions of the method were focused on:

1. Identification (I; activities, i= 1..7): Within the refinement of this activity we
specified not only the order in which goals and questions are specified but also a
decision action to verify the questioning of the goals. New activities were added,
such as the identification of abstractions with which to measure structural
properties, the statement of general hypotheses, etc.

2. Acceptation, Accreditation and Application (M; activities, i=1..3).

3. Definition in Natural Language (N; activities, i=1..4): We used a template to
define the measures which is composed of the acronym, the definition itself, the
goal pursued by the measure and one example.

4. Formal Definition of Measures (D; activities, i=1, 3, 4): We identified the most
important activities that should be performed in a formal definition of measures.

5. Psychological Explanation (PE; activities, i=1..3): Three relevant activities were
detected in a psychological explanation of how subjects deal with the software
artefact being measured.

6. Theoretical Validation using Property-based Frameworks (P; activities, i=1..5):
Within the method we differentiate between the application of generic properties
and context-dependent properties in [Reynoso 2007].

Table 1 summarizes all the activities. The method had been strengthened not only in
the order of its activities but also by identifying object flows between activities and
important decisions that should be evaluated during the activities.

The method also takes other important aspects into account:

1. The phenomenon that are studied in software engineering, which is in fact a
human-intensive discipline, requires a focus on the human issues that are present
in any measurement activity. The method value as important issues:

a. The organizational needs: In order to elicit measurement goal from the
organization’s stakeholders the method follows a GQM-based approach.
This helps to institutionalize the measures within the organization.

b. The psychological aspects of those potential subjects who will make use
of the defined measures: It is crucial to understand the cognitive
complexity of a person when dealing with the software artefact which is
the target of our measurement definition activity.

Human cognition has obviously become more relevant, if we consider that in the
last year software engineering empiricists have begun to address the human role
in software development in a serious manner [Seaman 1999]. The understanding
of cognitive complexity will assist in the definition of the measures goal and in
the explanation of the empirical findings when applying an empirical strategy
(experiment, survey, etc).

2. The consideration of a model for the software artefact is appropriate when
defining both its structural properties and its abstractions (in order to define
measures for effect rather than desire [Card 1993]) and the use of a metamodel in
order to produce a formal definition of the measure. A formal definition of the
measure is of major importance when attempting to obtain replicable measures.

3. The importance of testing that a measure captures the attribute that it aims to
quantify (theoretical validation) as well as to prove it is valid in practice
(empirical validation).

M, Identification I; Select the entity of study

(section 4) I, Determine the quality focus

I; State the quality focus

1, State the goal at the conceptual level

Is Determine the structural properties

Is Refine the goal(s) at the operational level

I; State general hypotheses

M, Creation C, Measure D, Select a metamodel of the software artefacts
(section 5) Definition D, Definition | N, Define what is captured by the measure
(section 5.1) in Natural N, Verify that the definition captures how the
Language measure value is obtained
(section N; Define the intent pursed by the measure
5.1.1) Ns Name the measure and select a suitable
acronym

D; Select a formal language for the formal definition
D, Formal definition of a measure (section 5.1.2)

C
Theoretical
Validation
(section 5.2)

T, Use of property-based frameworks (see refinements of this
activity in [Reynoso 2007])

T, Use of frameworks based on the measurement theory (see
refinements of this activity in [Reynoso 2007])

Cs
Psychological
Explanation
(section 5.3)

PE, Select a cognitive theory to use in a plausible explanation

PE, Relate the cognitive theory to the software artefact and
measures

PE; Use quantitative methods to understand cognitive
complexity

C, Empirical
Validation
(section 5.4)

E, Select a strategy to carry out the validation

E, Conduct the strategy through a family of experiments (see
refinements of this activity in [Reynoso 2007])

Table 1. Summary of Refinements and Extensions

Our future work will consist of:

1. The use of the new proposed measures for defining measures related to different
software artefacts, for validating it in practice. We also encourage other
researchers to use it for gather more evidence about it usefulness.

2. The refinement the acceptation, application and accreditation activities. These
activities are likely to be refined in new UML activity diagrams with regard to
the introduction of the proposed measures in real projects developed in software
development organizations.

Acknowledgements

This research is part of the following projects: IDONEO (PAC08-0160-6141) and
EVVE (HITO-2008-49) financed by “Consejeria de Ciencia y Tecnologia de la Junta
de Comunidades de Castilla-La Mancha” and "Técnicas Avanzadas y Analisis para el
Desarrollo Multiparadigma" (04/E073) financed by “Secretaria de Investigacion de la
Universidad Nacional del Comahue, Neuquén (Argentina)”.

References

[Baroni 2002] Baroni, A. L.: “Formal Definition of Object-Oriented Design Metrics”. Master
of Science in Computer Science Thesis, Vrije Universiteit Brussel, Belgium, 2002.

[Basili and Rombach 1998] Basili, V. R, Rombach, H. D.: “The TAME Project: Towards
Improvement-Oriented Software Environments”. IEEE Transactions on Software Engineering,
14(6), 1998. 758- 773.

[Basili et al. 1999] Basili, V. R., Shull, F., Lanubile, F.: “Building Knowledge through Families
of Experiments”. IEEE Transactions on Software Engineering, 25(4), 1999. 456-473.

[Basili and Weiss 1984] Basili, V. R., Weiss, D. M.: “A Methodology for Collecting Valid
Software Engineering Data”. IEEE Transactions on Software Engineering, 10(6), 1984. 728-
738.

[Berander and Jonsson 2006] Berander, P., Jonsson, P.: “A Goal Question Metric based
Approach for Efficient Measurement Framework Definition”. ISESE '06: Proceedings of the

2006 ACM/IEEE international symposium on Empirical software engineering. ACM. New
York, NY, USA, 2006. 316-325.

[Boehm et al. 1978] Boehm, B. W., Brown, J. R., Kaspar, J. R. “Characteristic of Software
Quality”. TRW Series of Software Technology, Amsterdam, North Holland, 1978.

[Briand et al. 1999a] Briand, L. C., Arisholm, E., Counsell, S., Houdek, F., Thevenod-Fosse,
P.: “Empirical Studies of Object-Oriented Artifacts, Methods, and Processes: State of the Art
and Future Directions”. Empirical Software Engineering, 4(4), 1999. 387-404.

[Briand et al. 1999b] Briand, L. C., Daly, J. W., Wiist, J.: “A Unified Framework for Coupling
Measurement in Object-Oriented Systems”. IEEE Transactions on Software Engineering,
25(1), 1999, 91-121.

[Briand et al. 1995] Briand, L. C., El Emam, K., Morasca, S.: “Theoretical and Empirical
Validation of Software Product Measures”. Technical Report ISERN-95-03, ISERN:
International Software Engineering Research Network, 1995.

[Briand et al. 1996] Briand, L. C., Morasca, S., Basili, V. R.: “Property-Based Software
Engineering Measurement. IEEE Transactions on Software Engineering, 22(1), 1996. 68-86.

[Briand et al. 1999c] Briand, L. C., Morasca, S., Basili, V. R.: “Defining and Validating
Measures for Object-Based High-Level Design”. IEEE Transactions on Software Engineering,
25(5), 1999. 722-743.

[Briand et al. 2002] Briand, L. C., Morasca, S., Basili, V. R. : “An Operational Process for
Goal-Driven Definition of Measures”. IEEE Transactions on Software Engineering, 28(12),
2002. 1106- 1125.

[Briand et al. 1999d] Briand, L. C., Wiist, J., Ikonomovski, S., Lounis, H.: “A Comprehensive
Investigation of Quality Factors in Object-Oriented Designs”. In IEEE ICSE '99: International
Conference on Software Engineering, 1999.

[Briand et al. 1999¢] Briand, L. C., Wiist, J., Ikonomovski, V., Lounis, H.: “Investigating
Quality Factors in Object-Oriented Designs: an Industrial Case Study”. In ICSE '99:
Proceedings of the 21st International Conference on Software Engineering, Los Alamitos, CA,
USA. IEEE Computer Society Press, 1999. 345-354.

[Briand et al. 2001] Briand, L. C., Wist, J., Lounis, H.: “Replicated Case Studies for
Investigating Quality Factors in Object-Oriented Designs. Empirical Software Engineering,
6(1), 2001, 11-58.

[Burkhardt et al. 2002] Burkhardt, J., Detienne, F., Wiedenbeck, S.: “Object-oriented Program
Comprehension: Effect of Expertise, Task and Phase”. In Empirical Software Engeneering
7(2), Hingham, MA, USA, Kluwer Academic Publishers, 2002. 115-156.

[Calero et al. 2001a] Calero, C., Piattini, M., Genero, M.: “Method for Obtaining Correct
Metrics”. In ICEIS '01: Proceedings of the 3rd International Conference on Enterprise and
Information Systems, volume 2, 2001. 779-784.

[Calero et al. 2001b] Calero, C., Piattini, M., Genero, M.: “Empirical validation of referential
integrity metrics”. Information and Software Technology. Special Issue on Controlled
Experiments in Software Technology. 43 (15), 2001. 949-957.

[Cant et al. 1992] Cant, S. N., Jeffery, D. R., Henderson-Seller, B.: “A Conceptual Model of
Cognitive Complexity of Elements of the Programming Process”. Information and Software
Technology, 37(7), 1992. 351-362.

[Cantone and Donzelli. 1999] Cantone G., Donzelli, P.: “Goal Oriented Software Measurement
Models”. In ESCOM-ENCRESS '98: European Software Control and Metrics Conference,
Herstmonceux Castle, East Sussex, UK, 1999.

[Card 1993] Card, D. N.: “What Makes for Effective Measurement?” IEEE Software, 10(6),
1993. 94-95.

[Chidamber and Kemerer 1994] Chidamber, S. R., Kemerer, C. F.: “A Metrics Suite for Object
Oriented Design”. IEEE Transactions on Software Engineering, 20(6), 1994. 476-493.

[Cruz-Lemus et al. 2005] Cruz-Lemus, J.A., Genero, M., Manso, M. E., Piattini, M.:
“Evaluating the Effect of Composite States on the Understandability of UML Statechart
Diagrams”. ACM/IEEE 8th International Conference on Model Driven Engineering Languages
and Systems (MODELS/UML 2005). LNCS 3713, 2005. 113-125.

[Darcy and Slaughter 2005] Darcy, D. P., Slaughter, S. A: “The Structural Complexity of
Software: An Experimental Test”. IEEE Transactions on Software Engineering, 31(11),
Member-Chris F. Kemerer and Member-James E. Tomayko, 2005. 982-995.

[El Eman et al. 2001] E1 Emam, K., Benlarbi, S., Goel, N., Rai, S. N.: “The Confounding Effect
of Class Size on the Validity of Object-Oriented Metrics”. IEEE Transactions on Software
Engineering, 27(7), 2001, 630-650.

[El Eman 2001] El Emam, K. “Object-Oriented Metrics: A Review of Theory and Practice”.
Technical Report NRC 44190, National Research Council Canada. Institute for Information
Technology, 2001.

[Fenton and Pfleeger 1998] Fenton, N. E., Pfleeger, S.: “Software Metrics: A Rigorous and
Practical Approach”, PWS Publishing Co., Boston, MA, USA, 1998.

[Glasberg et al 2000] Glasberg, D., E1 Emam, K., Melo, W., Madhavji, N.: “Validating Object-
Oriented Design Metrics on a Commercial Java Application”. Technical Report NRC/ERB-
1080, National Research Council of Canada, 2000.

[Gamma et al. 1995] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: “Design Patterns:
Elements of Reusable Object-Oriented Software”. Addison Wesley Longman, Publishing Co.,
Inc., Boston, MA, 1995.

[Genero et al. 2007] Genero, M., Manso, M. E., Piattini, M., Visaggio, A., Canfora, G:
“Building Measure-Based Prediction Models For UML Class Diagram Maintainability”.
Empirical Software Engineering, 2007. 12(5), 2007. 517-549.

[Genero et al. 2008] Genero, M., Poels, G., Piattini, M.: “Defining and Validating Metrics for
Assessing the Understandability of Entity-Relationship Diagrams”. Data and Knowledge
Engineering. 64(3), 2008. 534-557.

[Hetzel 1993] Hetzel, B.: “Making Software Measurement Work — Building an Effective
Measurement Program”, John Wiley & Sons, NewYork, NY, 1993.

[Henderson-Sellers 1996] Henderson-Sellers, B.: “Object-Oriented Metrics: Measures of
Complexity”. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[ISO IEC 2001] ISO. IEC 9126-1 “Information Technology - Software Product Quality - Part
1: Quality Model”.

[Jacquet and Abran 1997] Jacquet, J. P., Abran, A.: “From Software Metrics to Software
Measurement Methods”. In ISESS '97: Proceedings of the 3rd International Software
Engineering Standards Symposium (ISESS '97), Washington, DC, USA, IEEE Computer
Society, 1997. 128-135.

[Juristo and Moreno 2001] Juristo, N., Moreno, A.: “Basics of Software Engineering
Experimentation”. Kluwer Academic Publishers, 2001.

[Jedlitschka and Pfahl 2005] Jedlitschka, A., Pfahl, D.: “Reporting Guidelines for Controlled
Experiments in Software Engineering”. In ISESE '05: International Symposium on Empirical
Software Engineering (ISESE 2005), November 2005, Noosa Heads, Australia, 2005. 95-104.

[Kavakli 2004] Kavakli, E.: “Modeling organizational goals: analysis of current methods”,
SAC '04: Proceedings of the 2004 ACM symposium on Applied computing. ACM, New York,
NY, USA, 2004. 1339-1343.

[Kitchenham et al. 2006] Kitchenham, B., Al-Khilidar, H., Ali Babar, M., Berry, M., Cox, K.,
Keung, J., Kurniawati, F., Staples, M., Zhang, H., Zhu, L.: “Evaluating Guidelines for
Empirical Software Engineering Studies”. In ISESE '06: Proceedings of the 2006 ACM/IEEE
International Symposium on International Symposium on Empirical Software Engineering,
New York, NY, USA. ACM Press, 2006. 38-47.

[Kim 1999] Kim, H.: “Representing and Reasoning about Quality using Enterprise Models”.
PhD Thesis, Dept. Mechanical and Industrial Engineering, University of Toronto, Canada.
1999.

[Klemola 2000] Klemola, T.: “A Cognitive Model for Complexity Metrics”. In QAOOSE '00:
Workshop on Quantitative Approaches in Object-Oriented Software Engineering (ECOOP '00).
Cannes, France. Springer-Verlag, 2000.

[Kitchenham et al. 1995] Kitchenham, B., Pfleger, S. L., Fenton, N.: “Towards a Framework
for Software Measurement Validation”. IEEE Transactions on Software Engineering, 21(12),
1995. 929-944.

[Klemola and Rilling 2002] Klemola, T., Rilling, J.: “Modeling Comprehension Processes in
Software Development”. In ICCI '02: Proceedings of the 1st IEEE International Conference on
Cognitive Informatics, Washington, DC, USA. IEEE Computer Society. 2002. 329-339.

[Kitchenham 1997] Kitchenham, B., Stell, J.: “The Danger of Using Axioms in Software
Metrics”. In IEEE Proceedings on Software Engineering, Volume 144, 1997. 279-285.

[Kuzniarz 2007] Kuzniarz, L., Sourouille, J. L., Staron, M.: “1st Workshop on Quality in
Modeling”, Co-located with the ACM/IEEE 9th International Conference on Model Driven
Engineering Languages and Systems, Models 2006, LNCS 4364, 2007. 76-79.

[Lorenz and Kidd 1994] Lorenz, M., Kidd, J.: “Object-Oriented Software Metrics: A Practical
Guide”. Prentice-Hall, Inc, Upper Saddle River, NJ, USA. 1994.

[McCall et al. 1977] McCall, J. A., Richards, P. K., Walters, G. F. “Factors in Software
Quality, Volume III: Preliminary Handbook on Software Quality for an Acquisition Manager”.
Technical Report RADC-TR-77-396, Vol. III., Hanscom AFB, MA 01731. 1977.

[Mendonga and Basili 2000] Mendonga, M. G., Basili, V. R.: “Validation of an Approach for
Improving Existing Measurement Frameworks”. IEEE Transactions on Software Engineering,
28(6), 2000. 484-509.

[Morasca and Briand 1997] Morasca, S., Briand, L. C.: “Towards a Theoretical Framework for
Measuring Software Attributes”. In METRICS '97: Proceedings of the 4th International
Symposium on Software Metrics, Washington, DC, USA, IEEE Computer Society, 1997. 119-
126.

[Perry et al. 2000] Perry, D. E., Porter, A. A., Votta, L. G.: “Empirical Studies of Software
Engineering: a Roadmap”. In ICSE '00: Proceedings of the Conference on The Future of
Software Engineering, New York, NY, USA, ACM Press, 2000. 345-355,

[Pfleeger et al. 1997] Pfleeger, S. L., Jeffery, R., Curtis, B., Kitchenham, B.: “Status Report on
Software Measurement”. IEEE Software, 14(2), 1997. 33-43.

[Poels and Dedene 2000] Poels, G., Dedene, G.: “Distance-based Software Measurement:
Necessary and Sufficient Properties for Software Measures. Information and Software
Technology, 42(1), 2000. 35-46.

[Reynoso et al. 2008] Reynoso, L., Cruz-Lemus, J. A., Genero, M., Piattini, M.: “Formal
definition of measures for UML statechart diagrams using OCL”.SAC '08: Proceedings of the
2008 ACM Symposium on Applied Computing. 2008. 846-847

[Reynoso et al. 2005a] Reynoso, L., Genero, M., Piattini, M.: “Assessing the impact of
coupling on the understandability and modifiability of OCL expressions within UML/OCL
combined models”. 11th IEEE International Software Metrics Symposium, 2005. 14.

[Reynoso et al. 2005b] Reynoso, L., Genero, M., Piattini, M.: “Measuring OCL Expressions:
An Approach Based on Cognitive Techniques”, 2005. M. Genero, M. Piattini and C. Calero
(Eds.) Chapter 5 in Metrics for Software Conceptual Models. Imperial College Press, UK.
2005. 161-206.

[Reynoso et al. 2006] Reynoso, L., Genero, M., Piattini, M.: “OCL2: Using OCL in the Formal
Definition of OCL Expression Measures”, 1st Workshop on Quality in Modeling QIM co-
located with the ACM/IEEE 9th International Conference on Model Driven Engineering
Languages and Systems (MODELs 2006). 1st. October, Genova, Italy. 2006. 95-115.

[Reynoso 2007] Reynoso, L.: “Measurement-based Approach for Assessing the Influence of
Import-Coupling on the Maintainability of OCL Expressions”. Ph.D. Thesis, Universidad de
Castilla La Mancha, Spain. 2007.

[Reynoso et al. 2007] Reynoso, L., Genero, M., Piattini, M.: “Using Verbal Protocols for
Assessing the Influence of Import-Coupling on the OCL Expression Comprehensibility”. Sixth
IEEE International Conference on Cognitive Informatics. IEEE ICCI 2007 6-9 August 2007
Lake Tahoe, CA, USA. 2007. 440-449.

[Robson 1993] Robson, C.: “Real World Research: A Resource for Social Scientists and
Practioners-Researchers”. Blackwell, Oxford. 1993.

[Saeki 2003] Saeki, M.: “Embedding Metrics into Information System Development Methods:
An Application of Method Engineering Technique”. Lecture Notes in Computer Science 2681,
2003. 374-389.

[Schneidewind 1992] Schneidewind, N. F.: “Methodology for Validating Software Metrics”.
IEEE Transactions on Software Engineering, 18(5), 1992. 410-422.

[Seaman 1999] Seaman, C. B.: “Qualitative Methods in Empirical Studies of Software
Engineering”. IEEE Transactions on Software Engineering, 25(4), 1999. 557-572.

[Sebrechts and Black 1982] Sebrechts, M., Black, J.: “Software Psychology: A Rich New
Domain for Applied Psychology”. Applied Psycholinguistics, 3, 1982. 223-232.

[Serrano et al. 2004] Serrano, M. A., Calero, C., Trujillo, J., Lujan-Mora, S., Piattini, M.:
“Empirical Validation of Metrics for Conceptual Models of Data Warehouses”. En 16th
International Conference on Advanced Information Systems Engineering (CAiSE 2004), Riga
(Letonia). LNCS 3084, 2004. 506-520.

[Shepperd 1995] Shepperd, M.: “Foundations of Software Measurement”, Prentice Hall, Hemel
Hempstead, England. 1995.

[Solingen and Berghout 1999] Solingen, R. V., Berghout, E.: “The Goal/Question/Metric
Method: A Practical Guide for Quality Improvement of Software Development”. McGraw-Hill.
1999.

[Solingen and Berghout 2001] Solingen, R. V., Berghout, E.: “Integrating Goal-Oriented
Measurement in Industrial Software Engineering: Industrial Experiences with and Additions to
the Goal/Question/Metric Method (GQM)”. In METRICS '01: Proceedings of the 7th
International Symposium on Software Metrics, Washington, DC, USA, IEEE Computer
Society, 2001. 246-259.

[Storey 2005] Storey, M. A.: “Theories, Methods and Tools in Program Comprehension: Past,
Present and Future”. In IWPC '05: Proceedings of the 13th International Workshop on Program
Comprehension, Washington, DC, USA, IEEE Computer Society. 2005. 181-191.

[Taylor and Bogdan 1984] Taylor, S. J., Bogdan, R.: “Introduction to Qualitative Research
Methods”. New York: John Wiley and Sons. 1984.

[Warmer and Kleppe, 2003] Warmer, J., Kleppe, A.: “The Object Constraint Language. Second
Edition. Getting Your Models Ready for MDA”, Addison-Wesley, Massachusetts. 2003.

[Weyuker 1988] Weyuker, E. J.: “Evaluating Software Complexity Measures”. IEEE
Transactions on Software Engineering, 14(9), 1988. 1357-1365.

[Whitmire 1997] Whitmire, S. A.: “Object Oriented Design Measurement”. John Wiley and
Sons, Inc., New York, NY, USA. 1997.

[Wholin et al. 2000] Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell, B., Wesslén,
M.: “Experimentation in Software Engineering: an Introduction”. Kluwer Academic Publishers.
2000.

[Zuse 1997] Zuse, H.: “A Framework of Software Measurement”. Walter de Gruyter & Co.
Hawthorne, NJ, USA. 1997.

