
 Increasing the Rigorousness of Measures Definition

through a UML/OCL Model based on the Briand et al.'s

Framework

Luis Reynoso1, Marcelo Amaolo1, Daniel Dolz1, Claudio Vaucheret1, Mabel Álvarez2

1 University of Comahue
Buenos Aires 1400, Neuquén, Neuquén

{Luis.Reynoso, Marcelo.Amaolo, Daniel.Dolz,

Claudio.Vaucheret}@fai.uncoma.edu.ar
2 Patagonia San Juan Bosco University, Argentina

Belgrano y Rawson (9100) Trelew, Chubut
mablop@speedy.com.ar

Abstract. The use of a formal definition of measures upon a metamodel assures
that measures capture the software artifacts they intend for, improve repeatabil-
ity and could facilitate the implementation of measures extraction tools. How-
ever, it does not assure that the measure captures the measurement concept it
claims (like size, coupling, etc). For that purpose many formal frameworks had
been defined. The well-known property-based framework proposed by Briand
et al. defines the most important measurement concepts regardless the specific
software artifacts to which these concepts are applied. In this article we define a
UML/OCL model from the Briand's framework and we relate it with the formal
definition of measures upon metamodels. We describe a set of well-formed
properties that a measure should verify when capturing a measurement concept
(which are derived from the model). We exemplify our approach through a
thorough formal definition of UML statechart diagrams measures and its well-
formed constraints of size measures.
Keywords: Measurement, Metamodeling, Property-based Framework, UML,
MDA.

1 Introduction

Many authors argue that many difficulties may arise when measures are defined in
an unclear or imprecise way. The lack of precision of what is defined by a measure
may produce that the persons who builds the measure extraction tool, makes their
own decision during implementation [29]. In this way, they can arrive at incorrect
values of the measure. This situation arises when measures are not repeatable (the
same result would not be produced each time a measure is repeatedly applied to a
same artifact by a different person [14], [15]). Consequently, when measures are not
repeatable, quality evaluators of models can take incorrect and undesirable decisions

of the external quality attributes of their models. So, a complete definition of measure
should include not only in natural language but also in formal language, because how
well a measure is understood will influence the way the measure is implemented and
used. Given the relevance of model-driven engineering [1], [16] many authors make
profit of the metamodel of software artifacts that are available to formally define a
measure upon a metamodel. The metamodels give the more suitable framework of the
main measured concepts and relationships upon which measures may be specified.
The usage of the meta modeling approach for defining model-specific measures have
been introduced in [3], [4], for defining class diagram measures upon the UML
metamodel. Later, Reynoso et al. formally defined measures for OCL [17] upon the
OCL metamodel [19], and for BPMN models [25]. In a model-driven development
process companies need to measure their models [26] to enhance its quality [27], [28]
and to address safety-critical concerns [26].

A precise definition of the measure will ensure repeatability, however their formal
definition could neglect the mathematical properties of the measurement concept
captured by the measure (the last is known as formal or theoretical validation). Briand
et al. [24] argues about the importance of a precise definition of the mathematical
properties that characterize the most important measurement concepts like size, com-
plexity etc. regardless the specific software artifacts to which these concepts are ap-
plied. They provided a mathematical framework to define several concepts such as
size, length, complexity, cohesion and coupling. The rigorous of the framework is
provided by the mathematical underpinning. We were interested in defining a set of
OCL properties derived of that framework that a formal definition of measures should
verify according to each measurement concepts. So, in this paper we show a model to
define a set of constraints from Property-based Framework of Briand el al. (PbFB)
and then we exemplify how to use it in the formal definition of a statechart measure.
We show how the formal definition of UML Statechart Diagram (SD) measures using
a meta-modeling approach are defined and can be added with well-formed properties
of the PbFB model. We use UML models because they become the primary artifacts,
focus and products [23], [22] in recent Model-Driven Engineering (MDE) initiatives.

The advantages of a formal definition of a measure upon a metamodel are many:
(1) the formal definition of measures: misunderstanding between the authors and the
readers of the measures is avoided; (2) measures extraction tools can obtain the same
results of a same measure; (3) experimentation is not hampered [2] due to the fact that
an experiment and each of its replicas use measures which are repeatable; (4) measure
value can be computed before and after a modification of design (or model transfor-
mation) is introduced, so measure can help to assess the quality of the diagram [20];
(5) they could facilitate the implementation of measures extraction tools, even more,
they are used to generate a fully fledged measurement software [26].

Beside the aforementioned advantages of a formal definition of measure, a theo-
retical definition of measure constitutes a necessary constraint to assure that the meas-
ure captures a measurement concept [29]. In the same way the theoretical definition
of a measure is a necessary conditions but not sufficient, due to the fact the measures
should suffer an empirical validation, we argue that a formal definition of measure
upon a metamodel is a necessary condition of its definition and it should be comple-
mented with the add-on of well-formed properties derived of their theoretical defini-
tion.

Montperrus et al argues in [26] that measurement software can be generated from
an abstract and declarative specification of metrics, from a model of metric specifica-
tions. We believe that the PbFB model we provide in this article will be also useful
for measurement software, it helps to know and to monitoring how a measurement
concepts are captured by a measure during the model-driven process. We believe that
the model will be also helpful to academic purpose.

This paper starts in the next section defining the UML/OCL model for the prop-
erty-based framework of Briand (PbFB) and shows the OCL properties for size. Sec-
tion 3 gives a brief presentation of the measures for UML Statechart Diagrams de-
fined by Lemus [10]. The statechart diagrams are the software artifacts upon which
we will exemplify a set of formal definitions of measures and the application of the
PbFB model. In addition, section 3 presents the UML Statechart metamodel and an
example of an instance of the metamodel illustrated how measures can be captured.
Section 4 provides the formal specification of the measures and the application of the
PbFB Model. Finally, the last section presents some concluding remarks and future
work. Appendix A shows the complete definition of properties of the PbFB model.

2 The PbFB Model

In the property-based framework of Briand [24] a system is represented as a class
having a set of elements and a set of binary relationship between the elements of the
system. In Figure 1 we depicted the System class and two related classes, Element
and Relation classes. The system verifies the property that all the relationships link
elements of the system:

context System

inv: self.getRelationships()->forall(r:Relation |

self.getElements()->includes(r.source) and
self.getElements()->includes(r.target))

Given a system, a system is considered a module if and only if its elements (or re-

lationships) are a subset of the elements (or relationships) of the system which con-

tains it. We model a module as a system according to its definition. The module at-
tribute in System class (Boolean type) identifies whether a system is a module2. The
modules contained in a system are modeled using a relationship which links System
with itself (see Figure 1). So, a module satisfies the following property:

context System

inv: if module then

self.getElements()->forall(e: Element |

self.system.getElements()->includes(e)) and

 self. getRelationships()->forall(r: Relation |

 system.getRelationships()->includes(r))

2 A module can also be modelled as subclass of System but practically there is no difference

between a system and a system module which can be distinguished with this attribute.

 else true

The elements of a module are connected to the elements of the rest of the systems

by incoming and outgoing relationships. The InputR() operation obtains the set of
relationships from elements outside module m to those of module m. InputR() is de-
fined as:

context System:: inputR(): Set(Relation)
inv: if module then

self.system.getRelationships()->collect(r |

self.getElements()->includes(r.target) and not

self.getElements()->includes(r.source))

Fig. 1. A model used in the formalization of the PbFB

Similarly, it is possible to define OutputR(), a set of relationships from elements of

a module m to those of the rest of the system.
Included defines an observer operations to verify that a system includes the rela-

tions and elements of another:

context System:: included(m:System):Boolean
inv: if self.module and m.module then

m.getElements()->forall(e |

 self.getElements()->includes(e)) and

m.getRelationships()->forall(r |
 self.getRelationships()->includes(r))

2.1 Properties of Size. We suppose that size_md() defines a measure which
captures the size of the system. Size_md should also verify the following well-
formed properties according to Briand et al.:

Non-negativity. The size of a system is non-negative.

context System:: size_md()

post non-negativity: result > 0

0..*

+modules

+source

+target

+outgoing

+incoming

Element

System

0..1 0..1

Relation

module: Boolean

getElements(): Set(Element)

getRelationships(): Set(Relation)
addElement(e:Element): Set(Element)

+system

Null Value. The size of a system is null whether the system has no elements.

context System:: size_md()

inv null_value: self.getElements()->isEmpty()

 implies self.size_md() = 0

Module Additivity. The size of a system is equal to the size of its disjoint modules
context System:: size_md()
inv module_additivity:

self.modules->forall(m1,m2 |

 m1.getElements()->intersect(

 m2.getElements())->isEmpty())
and

self.modules->collect(m1.getElements())->flatten() =
self.getElements() implies

self.size_md()= self.modules->collect(m |

m.size_md())->sum()

The last property is equivalent to Size.IV property of Briand et al. Size.III is a par-

ticular case of Size.IV. Therefore, the following property is also valid:

Size Monotonocity Property. Adding elements to a system cannot decrease its size.
context System:: add_element(e: Element)

post monotonocity_property:

 self@pre.size_md() <= self.size_md()

An additional property is defined in Briand et al. which follows from the above
properties. The size of a system is not greater than the sum of the sizes of its modules
due to the presence of common elements:

context System:: merging_modules()

inv merging_modules:

if self.modules and self.getElements() = self.modules-

>collect(m: Module | m.getElements())->flatten() implies

self.size_md()= self.modules->collect(m | m.size_md())-

>sum()

Appendix A shows the formal definition of properties for cohesion and coupling
according to the Briand et al. framework [24]. Properties for complexity, length are
available in a technical report (see appendix A).

3 Measures for UML SD

The UML has now become the de facto standard software systems modeling and
the UML State Diagram (SD) has become an important technique for describing the

dynamic aspects of a software system [12]. An SD contributes to the behavioural
specification of a type in a model. A thoroughly definition of a set of measures for
structural properties of UML SD is presented in [10] based on the hypothesis that
structural properties of an UML SD (the software artifacts measured) have an impact
on the cognitive complexity of modelers (subjects), and high cognitive complexity
leads the UML SD to exhibit undesirable external qualities on the final software
product [14], such as less understandability or a reduced maintainability [5], [6].
These measures are supposed to be good indicators of the understandability of such
diagrams. This fact was empirically validated in [8], [9], [11]. These measures were
defined following a method consisting of three main steps [7]: measure definition,
theoretical validation and empirical validation. But initially the measures were in-
formally defined using natural language. So, one contribution of this paper is to
thoughtfully show its formal definition whose purpose was briefly described in a short
paper [30].

3.1 The UML Statechart Metamodel

A SD describes possible sequences of states and actions through which the element
instances can proceed during its lifetime as a result of reacting to discrete events (for
example, signals or operation invocations). The abstract syntax for state machines is
expressed graphically in UML StateChart Metamodel [18], which covers all the basic
concepts of state machine graphs such as states, transitions, guards, etc. In this section
we will first give an overview of the Metamodel explaining its main metaclasses and
relationships and then we will show the whole metamodel. Secondly, we will describe
an SD as an instance of the UML Statechart metamodel.

3.2 Overview of the Main Metaclasses

Every state machine has a top state (see Figure 2), usually a composite state, that
contains all the other elements of the entire state machine. The graphical rendering of
this top state within an SD is optional.

The State hierarchy has a State superclass and three subclasses, CompositeState,
SimpleState and FinalState. This hierarchy, in fact, is part of the StateVertex hierar-
chy as it is shown in Figure 3, which also includes the PseudoState, SynchState and
SubState classes. The composite state may contain any state of the StateVertex hierar-
chy.All the classes, attributes of classes and relationships previously depicted in Fig-
ures 2 and 3 are part of the UML Statechart metamodel depicted in Figure 4 [18].

Each State in an SD may have associated actions, such as entry, exit or a do-
activity actions (see in Figure 4 the relationships between the State and Actions
classes having the entry, exit and doActivity rolenames). Nevertheless, no more than
one action of a specific type is allowed for a particular state.

Transitions usually connect two states, for example two Simple States, a Simple
State with a Final State, etc. These connections are described in Figure 4 through two
relationships between the StateVertex and Transition classes, where each of them
identifies the source and target StateVertex which is connected through the transition.

So, any transition connects exactly a source to a target statevertex. From a StateVer-
tex point of view, any state can have many incoming and outgoing transitions [13].

Within an SD, transitions may also be labeled with Guard and Events. This situa-
tion is modelled through the Guard and Event classes which are related to the Transi-
tion class (see the relationship between Transition and Guard classes with the guard
rolename, and the relationship between Transition and Event classes with the trigger
rolename).

The set of all transitions within an SD is modeled through a relationship between
the StateMachine and the Transition classes.

3.3 A Metamodel Instance Sample

In order to understand both the UML Statechart metamodel and the specification of
measures for UML SD we will give in this section, a sample of how an SD is repre-
sented as a metamodel instance. The diagram we will use is shown in Figure 5 and its
representation as an instance metamodel is depicted in Figure 6.

Although the SD example is rather simple because it is composed of five simple
states and two composite states, its representation as a metamodel instance is quite
complicated and involves more than thirty objects.

The SD shown in Figure 5 describes a simple quality control process for testing in-
coming raw materials. At the beginning the received material is in the NoVerification
state. The raw material is tested in house (Testing state) when the supplier of the ma-
terial is not a certified supplier otherwise the raw material state is changed to the Ac-
cepted state. This is modelled through two labels, check[CertifiedSupplier] and
check[NoCertifiedSupplier] which represent an Event (‘check’) having each of them a
Guard (‘CertifiedSupplier’ or ‘NoCertifiedSupplier’). When a raw material is in the
Testing state the entry activity of the state is triggered, and the material is tested. The
test has two possible results: approved or rejected. According to each situation the
raw material will change to the Accepted or Rejected state respectively. A report is
filled when materials are rejected. Accepted raw materials are stored within the
warehouse (and the stock is updated) whereas rejected raw materials are returned to
the sender. In both cases, the process of reception for the raw material ends.

Now we will explain the diagram shown in Figure 5 as an instance of the UML
Statechart Metamodel. Figure 6, an object diagram, consists of many objects which
are instances of the UML statechart metamodel’ metaclasses (explained in section 3.1
and 3.2). In order to easily refer to the objects of the metamodel object diagram of
Figure 6 we have named a vertical and an horizontal axes (of the SD) with letters and
numbers in order to use them as a simple cartesian coordinate system. For example,

Fig 3. The top State of a StateMachine

SimpleState CompositeState

StateVertex
+subvertex

0..*

Substate SynchState PseudoState

FinalState

State

Fig 2. The StateVertex Hierarchy

+top
StateMachine State

1

FinalState SimpleState CompositeState

in the position A1, a Statemachine’ object, named RawMaterialReception, is shown to
represent the diagram itself. Because every state machine has a top state that contains
all the other elements of the entire state machine, the RawMaterialReception’ State-
machine object has a top state, a composite state, depicted in the A2 position of the
diagram. This composite state, which has no name, composes four states: an initial
state (a PseudoState object having the ‘initial’ value in the kind attribute [18], see
position C1 of Figure 6), two simple states (named NoVerification and WithinWare-
house, see positions F1 and D2 of Figure 6 respectively), a final state (position B2 of
Figure 6) and a composite State (position A4 of Figure 6). This last composite state
has three simple states: Accepted (position C4), Testing (position G4) and Rejected
(position I5) states.

Figure 6 also shows eight transitions between states. The transition connects dif-

ferent kinds of states. For example:
1. Transitions between Simple states: a transition between the NoVerifica-

tion and Accepted states is shown in the E3 position. Other transition be-
tween simple states are depicted in C3, D4, G3, H4 positions.

2. Transitions between Simple and Final States: a transition between the
WithinWarehouse simple state and the Final state is shown in C2 position.
Another transition between a simple and a final state is shown in the I1
position.

3. Transition between Initial and Simple State: a transition between the ini-
tial and the NoVerification states is shown in the E1 position.

Fig 4. The SD Metamodel

Each of the aforementioned transitions connects a source state to a target state. The
relationships between the StateMachine object and the transition objects are not
shown in Figure 6 to avoid clutter the readability of the diagram.

Four transitions (shown in I1, H4, D4 and C3 positions) have associated a Guard
object (shown in the I2, H5, D5 and B3 positions respectively).Similarly, two transi-
tions (see E3 and G3 positions) have an Event (D3 and G2 positions) with a Guard
associated (F3 and H3 positions) to the event.

3.4 Specification of Measures

In this section we will show the specification of SD measures using the UML
Statechart metamodel [18].

The specification of the measures relies on three query operations:
1. Alltransitions operation, defined in the StateMachine metaclass, obtains

the set of transitions in an SD.
2. AllStates operation, defined in the StateMachine metaclass, selects the set

of all the states within an SD.
3. AllSubStates operation, used by the two previous operations and defined

in the StateVertex metaclass, obtains the set of all Subvertex included in a
SD. It is recursively defined.

Their OCL definitions are shown below:

context StateMachine::allTransitions::Set(Transition)
body: result = self.transitions>

union(self.allSubStates().internaltransitions)
context StateMachine::allStates:Set(State)

body : result = self.top.allSubstates()

context StateVertex::allSubstates::Set(StateVertex)

body: result =if self.oclIsKindOf(CompositeState)

then self.oclAsType(CompositeState).subvertex->union

self.oclAsType(CompositeState).subvertex
-> select (s:StateVertex| s.allSubstates())

else Set{} endif

For obtaining the value of each SD measure of Lemus [10] we defined in the State-
Machine metaclass an operation with the same name as the measure. So, 14 opera-
tions were defined. Using the AllSubState operation we can define the value of many
SD measures. This operation returns the set of all the states (of different kinds: initial,
final, simples, etc.) included in a diagram, even those states which are part of compos-
ite states. For example, selecting from the allsubstate operation result, those states of
an SD which have associated a doActivity action, it is possible to obtain the Number
of Activity (NA) measure’s value. The quantity of objects selected represents the
value of the NA measure.
context StateMachine::NA():Integer
body: result = self.top.allSubstates()->select(s |

s.oclType(State) and s.doActivity->notEmpty())-> size()

Fig 5. A state machine called RawMaterial Reception

When the NA() operation is requested in the rawmaterialreception object of Figure
6, the obtained result is 1, due to the fact that only one state (see I5 position) has a
doActivity action associated. In a similar way we can obtain the value of Number of
Simple State (NSS) measure of Lemus [10]. First, we select those StateVertex which
are instance of SimpleState class, then we obtain the quantity of the object contained
in this selection. When the NSS() operation is requested in the rawmaterialreception
object of Figure 6, the result is 5 (the five simple states). The rest of the measures of
[10] are formally defined in a technical report [31].
context StateMachine::NSS():Integer

body: result = self.top.allSubstates()->select (s |
s.oclType(SimpleState))-> size()

4 Example of NSS and its properties

Lemus et al. [10] using the property-based framework of Briand et al. show that
NSS, NA, NLCS, NT, NCS, NCT, NCTG1 are size measures. In their theoretical
validation (see [10]) a UML Statechart Diagram is considered a system (i.e. is the
StateMachine class in Figure 4) the elements are states (i.e. is the stateVertex class in
Figure 4), the relations are transitions (the Transition class in Figure 4) and modules
are considered a subset of states and transitions of the SD.

In our formal definition, the StateMachine class is added with a self-relationship to
model the modules of a system. The getElements() and getRelationships are defined
in the following way:
context StateMachine::getElements()::Set(State)

body: self.allStates()

context StateMachine::getRelationships():Set(Relation)

body : self.alltransitions()

Fig 6. An object diagram (metamodel instantiation) for the statechart of Figure 5

So we can add a set of well-formed properties to each size measure definition ac-
cording to the properties of size defined in section 2.1. For example for the NSS defi-
nition we add the following properties:
context StateMachine::NSS():Integer

body: result = self.top.allSubstates()->select(s |
s.oclType(State) and s.doActivity->notEmpty())-> size()

post non-negativity: result > 0

inv null_value: self.getElements()->isEmpty() implies
self.NSS() = 0

inv module_additivity: self.modules->forall(m1,m2 |

m1.getElements()->intersect(m2.getElements())->isEmpty()
)

and

self.modules->collect(m1.getElements())->flatten() =
self.getElements() implies

self.NA()= self.modules->collect(m|m.NSS())->sum()

A complete list of properties for the rest of measurement concepts is included in
Appendix A.

5 CONCLUSIONS

The quality of models is acquiring more relevance within the introduction of mod-
el-driven engineering. In order to assess the quality of a model, it is unavoidable the
definition and application of measures for them. Many measures had been proliferated
in literature but they are not correctly defined, and the worst, they are not integrated
with the software artifact and with the measurement concept to which they are related
(or they claim to be). Measures defined upon a metamodel not only had benefits in
terms of the final product but also are ready to support ongoing model-driven devel-
opment process. Their definition can be derived from model to model through model
transformation. The main contribution of this paper is the definition of a UML/OCL
model which captures the property-based framework of Briand et al [24]. The model
includes the formal properties defined by Briand et al. for size, cohesion, length,
complexity and coupling measure defining a set of OCL constraints upon a small
UML model. In this paper we used the statechart measures of Lemus et al. [10], [11]
to show how to connect the formal definition of measures upon the UML statechart
metamodel and the OCL properties the measure should verify to capture the measure
concept of size defined by Briand et al.[24].

Refactoring techniques [21] and MDA-based system for measures extraction which
improve the design of UML systems can take advantage of using the formal de defini-
tion of measures and the constraints related to the measurement concepts their cap-
ture. Measure value can be computed before and after the refactoring is applied, to
evaluate the change according the quality of the statecharts [12], constraints should be
valid as part of assert-restrictions of the system. Using this approach, the rigorous
definition of measure can be useful to build solid software measurement tools and to
verify that measure constraints are verified by its metamodel, models and objects.

6 ACKNOWLEDGMENTS

This research is part of the 048/12 'Hacia el Fortalecimiento de la Sociedad en el
Uso y Aplicación Geoespacial y las TICS' of Patagonia San Juan Bosco University,
Chubut (Argentina) and the 'Modelos y Tecnologías para Gobierno Electrónico' of
Comahue University, Neuquén (Argentina)”.

7 References

1. Atkinson, C., Kühne, T.: Model-Driven Development. A Metamodeling Foundation,
IEEE Software, 20(5), 2003, pp. 36- 41.

2. Baroni, A. L.: Formal Definition of Object-Oriented Design Metrics. Master of Sci-
ence in Computer Science Thesis, Vrije Universiteit Brussel, Belgium, 2002.

3. Baroni, A. L. , Braz, S., Brito e Abreu, F.. Using OCL to Formalize Object-Oriented
Design Metrics Definitions. In Proceedings of QUAOOSE’2002, Malaga, Spain,
2002.

4. Baroni, A. L., Brito e Abreu, F.: A Formal Library for Aiding Metrics Extraction. In
Proceedings of the Int. Workshop on Object-Oriented ReEngineering at
ECOOP’2003. 2003.

5. Briand, L. C., Bunse, L. C., Daly, J. W. A Controlled Experiment for evaluating
Quality Guidelines on the Maintainability of Object-Oriented Designs. IEEE Trans.
on Softw. Eng., Vol. 27 Nº 6, 2001, pp. 513-530.

6. Briand, L. C., Wust, J. , Ikonomovski S. and Lounis, H.: Investigating Quality Fac-
tors in Object Oriented Designs: An Industrial Case-Study. 21st Int. Conf. on Soft-
ware Engineering, 1999, pp. 345-354.

7. Calero, C., Piattini, M., Genero, M. Method for Obtaining Correct Metrics. In Pro-
ceedings of the 3rd Int. Conference on Enterprise and Information Systems
(ICEIS`2001), 2001, pp. 779-784.

8. Cruz-Lemus, J.A., Genero, M., Manso, M.E. and Piattini, M. Evaluating the Effect of
Composite States on the Understandability of UML Statechart Diagrams. In Proceed-
ings of MoDELS 2005, LNCS 3713, 113-125, 2005.

9. Cruz-Lemus, J. A., Genero, M., Morasca, S., and Piattini, M. (2007). Assessing the
Understandability of UML Statechart Diagrams with Composite States - A Family of
Empirical Studies (submitted to Empirical Software Engineering).

10. Cruz-Lemus, J. A., Genero, M., Piattini, M. Metrics for UML Statechart Diagrams. In
Proceedings of Metrics for Conceptual Models. Imperial College Press, UK. 2005.

11. Cruz-Lemus, J. A., Genero, M., Piattini, M. and Toval, A. An Empirical Study of the
Nesting Level of Composite States within UML Statechart Diagrams. In Proceedings
of 24th International Conference on Conceptual Modeling (ER 2005) Workshops,
LNCS 3770, 12-22. 2005.

12. Denger, C., Ciolkowski, M.: High Quality Statecharts through Tailored, Perspective-
Based Inspections. EUROMICRO 2003. pp. 316-325.

13. Evermann, J., Wand, Y. Toward Formalizing Domain Modeling Semantics in Lan-
guage Syntax. IEEE Trans. on Soft. Eng., Vol 31(1). 2005.

14. ISO/IEC 9126. Software Product Evaluation-Quality Characteristics and Guidelines
for their Use. Geneva.

15. Kitchenham, B., Pfleeger, S. L., Fenton, N.: Towards a Framework for Software
Measurement Validation. IEEE Trans. on Softw. Eng., 21(12):929-944, 1995.

16. Object Management Group. MDA The OMG Model Driven Architecture. Available:
http://www.omg.org./mda/, 2002.

17. Object Management Group. UML 2.0 OCL 2nd revised submission. OMG Docu-
ment. Available at http://www.omg.org

18. Object Management Group. UML Specification Version 1.4.2, OMG Document for-
mal04-07-02. Available at http://www.omg.org

19. Reynoso, L., Genero, M., Piattini, M. OCL2: Using OCL in the Formal Definition of
OCL Expression Measures, In Proceedings of the 1st Workshop on Quality in Mod-
eling QIM co-located with the ACM/IEEE MODELs 2006. 2006.

20. Saeki, M., Kaiya, H.. Model Metrics and Metrics of Model Transformation. In Pro-
ceedings of 1st Workshop on Quality in Modeling, pp. 31-45, Genova, Italy, Oct. 1,
2006.

21. Sunyé, G., Pollet, D., Traon, Y., Jézéquel, J.: Refactoring UML Models, UML'01: In
Proceedings of the 4th Int. Conference on The Unified Modeling Language, Model-
ing Languages, Concepts, and Tools. 2001. pp.134--148.

22. Tang, M., Chen, M.: Measuring Object-Oriented Design Metrics from UML. In Pro-
ceedings of the UML 2002, LNCS 2460, pp. 368-382, 2002.

23. Vinter, R., Loomes, M., Kornbrot R.: Applying Software Metrics to Formal Specifi-
cations: A Cognitive Approach. In Proceedings of 5th. Int. Symposium on Softw.
Metrics. March 20 - 21, 1998, pp. 216-223.

24. Briand, L. C., Morasca, S., Basili, V.R.: Property-Based Software Engineering Meas-
urement, IEEE Trans. Softw. Eng. 22(1) 1996. pp.68--86, IEEE Press.

25. Reynoso, L., Rolón, E., Genero, M. And Garcia F., Piattini M.: Formal Definition of
Measures for BPMN Models, IWSM/Mensura, pp. 285-306. Software Process and
Product Measurement, Proceedings of the International. Conferences IWSM 2009
and Mensura 2009, Amsterdam, The Netherlands, 2009, Lecture Notes in Computer
Science 5891.

26. Monperrus, M., Jézéquel, J., Champeau, J., Hoeltzener, B.: A Model-Driven Meas-
urement Approach. MoDELS '08: Proceedings of the 11th international conference
on Model Driven Engineering Languages and Systems. Pp 505-519. Springer-Verlag.
2008.

27. Genero, M., Piattini, M., Chaudron, M.: Quality of UML models. Information &
Software Technology. 51(12), pp.1629-1630,2009.

28. Monperrus, M., Jézéquel, J.M., Champeau, J., Hoeltzener, B.: Measuring Models.
Chapter in Model-Driven Software Development: Integrating Quality Assurance
(Jörg Rech, Christian Bunse, eds.), IDEA Group, 2008.

29. Reynoso, L., Genero, M., Piattini, M.: Refinement and Extension of SMDM, a Meth-
od for Defining Valid Measures. J. UCS 16(21): 3210-3244 (2010).

30. Reynoso, L, Cruz-Lemus, J. A., Genero, M., Piattini, M.: Formal Definition of Meas-
ures for UML Statechart Diagrams using OCL. Proceedings of the 2008 ACM Sym-
posium on Applied Computing, SAC 2008: 846-847

31. Reynoso, L., Amaolo, M., Dolz, D., Vaucheret, C., Álvarez, M. A Briand et al.’s
framework-based UML/OCL Model for Increasing the Rigorousness of Measures
Definition. 2013. Tech. Report UNC-UNPSJB. Available at:
https://www.dropbox.com/sh/9vs6uy0re1owm8t/1tc2XIM3Yy/TechnicalReportFbPB.pdf

APPENDIX A: Formal definition of properties of Cohesion, Cou-

pling, Complexity, Length.

This appendix lists the properties of cohesion and coupling of PbFB according to the
Briand et al. framework [24]. Due to space limitations the length and complexity
properties are not shown in this appendix but they are available in a technical report
[31].

Properties of Cohesion and Coupling

These properties are meaningful when a modular system is defined:

context System::is_modular_system()

inv: self.getElements()->forall(e|self.modules

 ->exists(m |m.getElements()->includes(e))
and self.modular->forall(m1, m2 |m1.are_disjoint(m2))

context System::cohesion_md()
pre: is_modular_system()

context System::coupling_md()

pre: is_modular_system()

A.1 Properties of Cohesion

Non-negativity and Normalization: The cohesion of a module of a modular system
(or modular system) belongs to a specified interval .
context System::cohesion_md()
pre: is_modular_system()

 post non-negativity_normalizacion: result >= 0 and
result <= self.maxcohesion

Null Value: The cohesion of a module of modular system (or modular system) is null
if is empty.
context System::cohesion_md()

inv null_value: self.getRelationships()->isEmpty()

 implies self.cohesion_md()=0

Monotonicity: Adding intra-module relationships does not decrease [module|modular
system] cohesion. If there is no intra-module relationship among the elements of a
(all) module(s), then the module (system) cohesion is null.
context System:: cohesion_md ()
inv monotonicity : self. cohesion_md() <=

self.module->any(true).addRelationship().cohesion_md()

Cohesive Modules: The cohesion of a [module|modular system] obtained by putting
together two unrelated modules is not greater than the [maximum cohesion of the two
original modules |the cohesion of the original modular system].

context System:add_modules(m:System)

post: result.relationships = re-
sult.getRelationships()@pre-

>including(m.getRelationships())
result.elements = result.getElements()@pre-
>including(m.getElements())

context System:: cohesion_md ()

inv cohesive_modules :

self.modules->exists(m1, m2 | are_notconnected(m1, m2:

System)

m1.add_modules(m2).cohesion_md() <=

m1.cohesion_md().max(m2.cohesion_md())

A.2 Properties of Coupling

Non-negativity: The coupling of a [module|modular system] is non-negativity.

context System::coupling_md()

 inv non-negativity: result >= 0

Null Value: The coupling of a [module|modular system] is null if [OuterR(m)|R-IR]
is empty.
We need two auxiliary functions, InputR(m) and OutputR(m). InputR(m) are the in-
coming relationships of a modular system whereas Output(m) are the outcoming rela-
tionships.
context System:: inputR():Set(Relation)

post: result = self.getRelationships()->collect(r |

self.getElements()->includes(r.target) and
self.getElements()->excludes(r.source))

context System:: outputR():Set(Relation)

post: result = self.getRelationships()->collect(r |

self.getElements()->includes(r.source) and
self.getElements()->excludes(r.target))

context System:: coupling_md()
body null_value: self.inputR()->isEmpty() implies cou-

pling_md() = 0 and
self.outputR()->isEmpty() implies coupling_md() = 0

Monotonicity: Adding inter-module relationships does not decrease coupling.

context System:: coupling_md()
inv monotonocity:

self.modules()->includes(m1, m2 |
self.are_not_connected(m1, m2) implies

self.coupling_md() <=

self.addRelationshipbetween_nonCC(m1, m2).coupling_md())

Merging Modules: The coupling of a [module|modular system] obtained by merging
two modules is not greater than the [sum of the couplings of the two original mod-
ules|coupling of the original modular system], since the two modules may have com-
mon inter-module relationships.

context System:: coupling_md()

inv merging_modules :
 self.modules->forall(m1, m2 |

 m1.add_modules(m2).coupling_md() <=

 m1.coupling_md() + m2.coupling_md())

self.getelements() = m1.getElements()
->including(m2.getElements())->flatten()

 implies self.length_md =

 m1.length_md().max(m2.length_md()))

