
Formal Definition of Measures for UML Statechart

Diagrams Using OCL

Luis Reynoso
Department of Computer Science, University of

Comahue
Buenos Aires 1400, 8300, Neuquén, Argentina

+54 02994490313

lreynoso@uncoma.edu.ar

Juan Antonio Cruz-Lemus,
Marcela Genero, Mario Piattini

Alarcos Research Group

Department of Technologies and Information
Systems, University of Castilla-La Mancha,

Paseo de la Universidad 4, 13071, Ciudad Real, Spain
+32 926295300 - Ext. 3740, 13071

{JoseAntonio.Cruz, Marcela.Genero,
Mario.Piattini}@uclm.es

ABSTRACT

The informal definition of a measure in natural language is

ambiguous, so it must be accompanied by a precise and formal

definition, for avoiding misunderstanding and misinterpretation.

In this paper we show the formal definition of measures for UML

statechart diagrams using OCL, upon the UML statechart

metamodel. The use of a formal definition upon a metamodel

(where the main concepts and relationships are modelled) assure

that measures capture the concepts they intend for and could

facilitate the implementation of measures extraction tools.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – Product metrics.

General Terms
Statechart Diagrams, Measurement, Metamodeling, UML.

Keywords

Measures, UML, OCL, Statechart Diagrams, Understandability,

Structural Properties, Formal Definition, Metamodeling.

1. INTRODUCTION
The quality of UML models should be evaluated through quality

indicators or measures [7]. However, when measures are defined

in an unclear or imprecise way many difficulties may arise. The

lack of precision of what is captured by a measure may produce

that the persons who build the measure extraction tool make their

own decision during implementation. In this way, they can arrive

at incorrect values of the measure. This situation arise when

measures are not repeatable (the same result would not be

produced each time a measure is repeatedly applied to a same

artifact by a different person). Consequently, when measures are

not repeatable, quality evaluators of models can take incorrect and

undesirable decisions of the external quality attributes of their

models. We believe that the understandability of what is captured

by the measure should be defined not only in natural language but

also in formal language, because how well a measure is

understood will influence the way the measure is implemented

and used.

Software measures can be defined through query operations using

the Object Constraint Language (OCL) [4] upon a particular

metamodel of the measured software artifact. The usage of the

meta modeling approach for defining model-specific measures

have been previously introduced for defining class diagram

measures [1] and OCL measures [6] upon the UML metamodel.

The contribution of this paper is the formal definition of

Statechart Diagram (SD) measures using a meta-modeling

approach. Even though many proposals of SD measures exist (see

[3]), none of them has formally defined the measures using this

formal approach.

A thoroughly definition of a set of measures for structural

properties of UML SD is presented in [3] based on the hypothesis

that structural properties of an UML SD (the software artifacts

measured) have an impact on the cognitive complexity of

modelers (subjects), and high cognitive complexity leads the

UML SD to exhibit undesirable external qualities, such as less

understandability or a reduced maintainability [2]. These

measures are supposed to be good indicators of the

understandability of such diagrams. This fact was empirically

validated in [3].

In the next section the UML SD metamodel is briefly introduced.

Section 3 provides the formal specification of two measures.

Finally, the last section presents some concluding remarks.

2. THE UML SD METAMODEL
The abstract syntax for state machines is expressed graphically in

UML SD metamodel [5], which covers all the basic concepts of

state machine graphs such as states, transitions, guards, etc. Every

state machine has a top state, usually a composite state, that

contains all the other elements of the entire state machine. The

graphical rendering of this top state within an SD is optional.

The State hierarchy has a State superclass and three subclasses,

CompositeState, SimpleState and FinalState. This hierarchy, in

fact, is part of the StateVertex hierarchy in the SD metamodel,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SAC’08, March 16-20, 2008, Fortaleza, Ceará, Brazil.

Copyright 2008 ACM 978-1-59593-753-7/08/0003…$5.00.

which also includes the PseudoState, SynchState and SubState

classes. The composite state may contain any state of the

StateVertex hierarchy. All the classes, attributes of classes and

relationships previously mentioned are part of the UML SD

metamodel [5]. Each State in an SD may have associated actions,

such as entry, exit or a do-activity actions (see the relationships

between the State and Actions classes with the entry, exit and

doActivity rolenames in the SD metamodel [5]).

Transitions usually connect two states, for example two Simple

States, a Simple State with a Final State, etc. These connections

are described through two relationships between the StateVertex

and Transition classes, where each of them identifies the source

and target StateVertex which is connected through the transition.

So, any transition connects exactly a source to a target

StateVertex. Within an SD, transitions may also be labeled with

Guard and Events, modelled through the Guard and Event classes

which are related to the Transition class. The set of all transitions

within an SD is modeled through a relationship between the

StateMachine and the Transition classes.

3. SPECIFICATION OF SD MEASURES
In this section we will present a general overview of the

specification of SD measures using the UML SD metamodel [5].

For illustrating our approach we will show the formal definition

of two measures.

The specification of the measures relies on three query operations:

1. Alltransitions operation, defined in the StateMachine

metaclass, obtains the set of transitions in an SD.

2. AllStates operation, defined in the StateMachine metaclass,

selects the set of all the states within an SD.

3. AllSubStates operation, used by the two previous operations

and defined in the StateVertex metaclass, obtains the set of all

Subvertex included in a SD. It is recursively defined.

Their OCL definitions are shown below:

context StateMachine::allTransitions::Set(Transition)

body: result = self.transitions>

union(self.allSubStates().internaltransitions)

context StateMachine::allStates:Set(State)

body : result = self.top.allSubstates()

context StateVertex::allSubstates::Set(StateVertex)

body: result =if self.oclIsKindOf(CompositeState)

then self.oclAsType(CompositeState).subvertex->union

self.oclAsType(CompositeState).subvertex

-> select (s:StateVertex| s.allSubstates())

else Set{} endif

For obtaining the value of each SD measure (described in [3]) we

defined in the StateMachine metaclass an operation with the same

name as the measure. So, 14 operations were defined, one for each

defined measure. Using the allSubState operation the value of

many SD measures are specified. This operation returns the set of

all the states (of different kinds: Initial, Final, Simples, etc.)

included in a diagram, even those states which are part of

composite states.

For example, selecting from the allsubstate operation result, those

states of an SD which have associated a doActivity action it is

possible to obtain the value of the Number of Activity (NA)

measure. The quantity of objects selected represents the value of

the NA measure.

context StateMachine::NA():Integer

body: result = self.top.allSubstates()->select(s | s.oclType(State) and

s.doActivity->notEmpty())-> size()

The Number of Transition (NT) measure is specified through the

use of the alltransitions operation. The cardinality of the set

represents the quantity of transitions within a SD.

context StateMachine::NT():Integer

body: result = self.allTransitions() -> size()

4. CONCLUSIONS
The main contribution of this paper is the formal definition of

measures for UML SD proposed in [3] using OCL upon the UML

SD metamodel. A formal definition of the measures is useful to

avoid misunderstanding and misinterpretation between the

stakeholders within the measurement process. This is one of the

main requirements to start any measurement program in software

development organizations. Refactoring techniques which

improve the design of SD (such as [8]) can take advantage of

using the formally defined measures of this paper. Measure value

can be computed before and after the refactoring (or model

transformation) is applied, to express the quality of the diagram

[7] and to evaluate a change. Moreover, the formal definition of

measures using OCL can be introduced in MDA compliant tools

to extract the measures values for UML models.

5. ACKNOWLEDGMENTS
This research is part of the COMPETISOFT project

(506AC0287), the MECENAS project (PBI06-0024) and

ESFINGE project (MEC, TIN 2006-15175-C05-05).

6. REFERENCES
[1] Baroni, A. L. , Braz, S., Brito e Abreu, F.. Using OCL to

Formalize Object-Oriented Design Metrics Definitions. In

Proceedings of QUAOOSE’2002, Malaga, Spain, 2002.

[2] Briand, L. C., Bunse, L. C., Daly, J. W. A Controlled

Experiment for evaluating Quality Guidelines on the

Maintainability of Object-Oriented Designs. IEEE Trans. on

Softw. Eng., Vol. 27 Nº 6, 2001, pp. 513-530.

[3] Cruz-Lemus, J. A. A Measurement-Based Approach for

Assessing UML Statechart Diagrams Understandability.

Ph.D. Thesis. 2007.

[4] Object Management Group. UML 2.0 OCL 2nd revised

submission. OMG Document. http://www.omg.org

[5] Object Management Group. UML Specification Version

1.4.2, OMG Document formal04-07-02. http://www.omg.org

[6] Reynoso, L., Genero, M., Piattini, M. OCL2: Using OCL in

the Formal Definition of OCL Expression Measures, In

Proceedings of the 1st Workshop on Quality in Modeling

QIM co-located with the ACM/IEEE MODELs 2006. 2006.

[7] Saeki, M., Kaiya, H. Model Metrics and Metrics of Model

Transformation. In Proceedings of 1st Workshop on Quality

in Modeling, pp. 31-45, Genova, Italy, Oct. 1, 2006.

[8] Sunyé, G., Pollet, D., Traon, Y., Jézéquel, J.: Refactoring

UML Models, UML'01: In Proceedings of the 4th Int.

Conference on UML. 2001. pp. 134--148.

