Formal Definition of Measures for UML Statechart
Diagrams Using OCL

Luis Reynoso
Department of Computer Science, University of
Comahue
Buenos Aires 1400, 8300, Neuquén, Argentina
+54 02994490313

Ireynoso@uncoma.edu.ar

ABSTRACT

The informal definition of a measure in natural language is
ambiguous, so it must be accompanied by a precise and formal
definition, for avoiding misunderstanding and misinterpretation.
In this paper we show the formal definition of measures for UML
statechart diagrams using OCL, upon the UML statechart
metamodel. The use of a formal definition upon a metamodel
(where the main concepts and relationships are modelled) assure
that measures capture the concepts they intend for and could
facilitate the implementation of measures extraction tools.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics — Product metrics.

General Terms
Statechart Diagrams, Measurement, Metamodeling, UML.

Keywords

Measures, UML, OCL, Statechart Diagrams, Understandability,
Structural Properties, Formal Definition, Metamodeling.

1. INTRODUCTION

The quality of UML models should be evaluated through quality
indicators or measures [7]. However, when measures are defined
in an unclear or imprecise way many difficulties may arise. The
lack of precision of what is captured by a measure may produce
that the persons who build the measure extraction tool make their
own decision during implementation. In this way, they can arrive
at incorrect values of the measure. This situation arise when
measures are not repeatable (the same result would not be
produced each time a measure is repeatedly applied to a same
artifact by a different person). Consequently, when measures are
not repeatable, quality evaluators of models can take incorrect and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SAC’08, March 16-20, 2008, Fortaleza, Ceara, Brazil.

Copyright 2008 ACM 978-1-59593-753-7/08/0003...$5.00.

Juan Antonio Cruz-Lemus,

Marcela Genero, Mario Piattini
Alarcos Research Group

Department of Technologies and Information
Systems, University of Castilla-La Mancha,

Paseo de la Universidad 4, 13071, Ciudad Real, Spain
+32 926295300 - Ext. 3740, 13071

{JoseAntonio.Cruz, Marcela.Genero,
Mario.Piattini}@uclm.es

undesirable decisions of the external quality attributes of their
models. We believe that the understandability of what is captured
by the measure should be defined not only in natural language but
also in formal language, because how well a measure is
understood will influence the way the measure is implemented
and used.

Software measures can be defined through query operations using
the Object Constraint Language (OCL) [4] upon a particular
metamodel of the measured software artifact. The usage of the
meta modeling approach for defining model-specific measures
have been previously introduced for defining class diagram
measures [1] and OCL measures [6] upon the UML metamodel.
The contribution of this paper is the formal definition of
Statechart Diagram (SD) measures using a meta-modeling
approach. Even though many proposals of SD measures exist (see
[3]), none of them has formally defined the measures using this
formal approach.

A thoroughly definition of a set of measures for structural
properties of UML SD is presented in [3] based on the hypothesis
that structural properties of an UML SD (the software artifacts
measured) have an impact on the cognitive complexity of
modelers (subjects), and high cognitive complexity leads the
UML SD to exhibit undesirable external qualities, such as less
understandability or a reduced maintainability [2]. These
measures are supposed to be good indicators of the
understandability of such diagrams. This fact was empirically
validated in [3].

In the next section the UML SD metamodel is briefly introduced.
Section 3 provides the formal specification of two measures.
Finally, the last section presents some concluding remarks.

2. THE UML SD METAMODEL

The abstract syntax for state machines is expressed graphically in
UML SD metamodel [5], which covers all the basic concepts of
state machine graphs such as states, transitions, guards, etc. Every
state machine has a top state, usually a composite state, that
contains all the other elements of the entire state machine. The
graphical rendering of this top state within an SD is optional.

The State hierarchy has a State superclass and three subclasses,
CompositeState, SimpleState and FinalState. This hierarchy, in
fact, is part of the StateVertex hierarchy in the SD metamodel,



which also includes the PseudoState, SynchState and SubState
classes. The composite state may contain any state of the
StateVertex hierarchy. All the classes, attributes of classes and
relationships previously mentioned are part of the UML SD
metamodel [5]. Each State in an SD may have associated actions,
such as entry, exit or a do-activity actions (see the relationships
between the State and Actions classes with the entry, exit and
doActivity rolenames in the SD metamodel [5]).

Transitions usually connect two states, for example two Simple
States, a Simple State with a Final State, etc. These connections
are described through two relationships between the StateVertex
and Transition classes, where each of them identifies the source
and farget StateVertex which is connected through the transition.
So, any transition connects exactly a source to a target
StateVertex. Within an SD, transitions may also be labeled with
Guard and Events, modelled through the Guard and Event classes
which are related to the Transition class. The set of all transitions
within an SD is modeled through a relationship between the
StateMachine and the Transition classes.

3. SPECIFICATION OF SD MEASURES

In this section we will present a general overview of the
specification of SD measures using the UML SD metamodel [5].
For illustrating our approach we will show the formal definition
of two measures.

The specification of the measures relies on three query operations:

1. Alltransitions operation, defined in the StateMachine
metaclass, obtains the set of transitions in an SD.

2. AllStates operation, defined in the StateMachine metaclass,
selects the set of all the states within an SD.

3. AllSubStates operation, used by the two previous operations
and defined in the StateVertex metaclass, obtains the set of all
Subvertex included in a SD. It is recursively defined.

Their OCL definitions are shown below:

context StateMachine::allTransitions::Set(Transition)

body: result = self.transitions>
union(self.allSubStates().internaltransitions)

context StateMachine::allStates:Set(State)

body : result = self.top.allSubstates()

context StateVertex::allSubstates::Set(StateVertex)
body: result =if self.oclIsKindOf(CompositeState)

then self.oclAsType(CompositeState).subvertex->union

self.oclAsType(CompositeState).subvertex

-> select (s:StateVertex| s.allSubstates())

else Set{} endif
For obtaining the value of each SD measure (described in [3]) we
defined in the StateMachine metaclass an operation with the same
name as the measure. So, 14 operations were defined, one for each
defined measure. Using the allSubState operation the value of
many SD measures are specified. This operation returns the set of
all the states (of different kinds: Initial, Final, Simples, etc.)
included in a diagram, even those states which are part of
composite states.
For example, selecting from the allsubstate operation result, those
states of an SD which have associated a doActivity action it is
possible to obtain the value of the Number of Activity (NA)

measure. The quantity of objects selected represents the value of
the NA measure.

context StateMachine::NA():Integer
body: result = self.top.allSubstates()->select(s | s.oclType(State) and
s.doActivity->notEmpty() )-> size()

The Number of Transition (NT) measure is specified through the
use of the alltransitions operation. The cardinality of the set
represents the quantity of transitions within a SD.

context StateMachine::NT():Integer
body: result = self.allTransitions() -> size()

4. CONCLUSIONS

The main contribution of this paper is the formal definition of
measures for UML SD proposed in [3] using OCL upon the UML
SD metamodel. A formal definition of the measures is useful to
avoid misunderstanding and misinterpretation between the
stakeholders within the measurement process. This is one of the
main requirements to start any measurement program in software
development organizations. Refactoring techniques which
improve the design of SD (such as [8]) can take advantage of
using the formally defined measures of this paper. Measure value
can be computed before and after the refactoring (or model
transformation) is applied, to express the quality of the diagram
[7] and to evaluate a change. Moreover, the formal definition of
measures using OCL can be introduced in MDA compliant tools
to extract the measures values for UML models.

5. ACKNOWLEDGMENTS

This research is part of the COMPETISOFT project
(506AC0287), the MECENAS project (PBI06-0024) and
ESFINGE project (MEC, TIN 2006-15175-C05-05).

6. REFERENCES

[1] Baroni, A. L. , Braz, S., Brito e Abreu, F.. Using OCL to
Formalize Object-Oriented Design Metrics Definitions. In
Proceedings of QUAOOSE 2002, Malaga, Spain, 2002.

[2] Briand, L. C., Bunse, L. C., Daly, J. W. A Controlled
Experiment for evaluating Quality Guidelines on the
Maintainability of Object-Oriented Designs. /[EEE Trans. on
Softw. Eng., Vol. 27 N° 6, 2001, pp. 513-530.

[3] Cruz-Lemus, J. A. A Measurement-Based Approach for
Assessing  UML  Statechart Diagrams Understandability.
Ph.D. Thesis. 2007.

[4] Object Management Group. UML 2.0 OCL 2nd revised
submission. OMG Document. http://www.omg.org

[S] Object Management Group. UML Specification Version
1.4.2, OMG Document formal04-07-02. http://www.omg.org

[6] Reynoso, L., Genero, M., Piattini, M. OCL2: Using OCL in
the Formal Definition of OCL Expression Measures, In
Proceedings of the Ist Workshop on Quality in Modeling
QIM co-located with the ACM/IEEE MODELSs 2006. 2006.

[7] Saeki, M., Kaiya, H. Model Metrics and Metrics of Model
Transformation. In Proceedings of 1st Workshop on Quality
in Modeling, pp. 31-45, Genova, Italy, Oct. 1, 2006.

[8] Sunyé, G., Pollet, D., Traon, Y., Jézéquel, J.: Refactoring
UML Models, UML'01: In Proceedings of the 4th Int.
Conference on UML. 2001. pp. 134--148.



