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Measuring OCL expressions: a “tracing”-based 
approach 

Luis Reynoso, Marcela Genero, and Mario Piattini 

Abstract— Owing that class diagrams constitute the backbone of object-oriented (OO) software development, many metrics were 
proposed to measure internal quality attributes such as the structural complexity, coupling, size, etc. But none of the proposed 
metrics take into account the added complexity when class diagrams are complemented by Object Constraint Language (OCL) 
expressions. OCL expressions improve class diagrams enhancing their semantic properties, adding precision, improving their 
documentation and understandability. The importance of OCL and the lack of defined metrics for OCL expressions motivate us to 
propose a set of metrics for structural properties of OCL expressions. The first set of metrics we propose considers only those OCL 
concepts related to “tracing” technique. We believe that “tracing” technique affects the cognitive complexity, and by consequence the 
understandability of OCL expressions, and the maintenance of a UML class diagram. Therefore, the main goal of this paper is to 
show how we defined a set of metrics for structural properties of OCL expressions in a methodological way. We will also present the 
theoretical validation of these metrics according to a property-based framework proposed by Briand et. al.. 

Index Terms—Software measurement, OO measures, measure properties, cognitive complexity, tracing technique, 
understandability, maintainability, coupling. 
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1 INTRODUCTION

N software engineering it is widely acknowledged that 
the usage of metrics at the initial phases of the OO 
software life cycle can help modellers and designers to 

make better decisions, and to build OO software of a better 
quality, without unnecessary revisions at later development 
stages.  This being when changes are more expensive and 
also more difficult to perform[1], [4], [9], [11], [17], [22], [32]. 
Besides this fact, the early availability of metrics allows us 
to predict external quality attributes [12],[27], such as 
understandability and maintainability [21]. One of the key 
artefacts produced at the early development of OO 
software systems is the class diagram, because  most of the 
work of design and implementation is based on it. Hence 
class diagram quality is a crucial issue that must be 
evaluated (and improved if necessary) in order to get 
quality OO software. Many measures have been provided 
in literature that can be applied to a UML [34] class 
diagram at a high level design stage 
[5],[6],[18],[19],[23],[24],[26]. Most of these works are 
focused on the measurement of internal quality attributes 
such as structural complexity, coupling, size, etc. However, 
none of the proposed metrics take into account the added 
complexity when class diagrams are complemented by 
OCL expressions. OCL, defined by OMG [31], has became a 
fundamental language in developing OO software using 
UML, because it allows a precise UML modelling, 
providing the modeller with an expressive notation to 
capture the essential properties of the systems [30]. OCL 

enriches UML class diagrams with expressions that specifie 
semantic properties of the model [26] and improve the 
system precision, its documentation [36] and its 
understandability at early stages of OO software 
development. This led us to think  about the necessity of 
having metrics to measure structural properties of OCL 
expressions. 

The theoretical basis for developing quantitative models 
relating to structural properties and external quality 
attributes has been provided by Briand et al [10].  In this 
work we assume a similar representation to hold for OCL 
expressions. We implement the relationship between the 
structural complexity on one hand, and external quality 
attributes on the other hand (see Fig. 1). We hypothesized 
that the structural properties (such as coupling, size, length, 
etc.) of an OCL expression have an impact on its cognitive 
complexity. By cognitive complexity we mean the mental 
burden of the persons who have to deal with the artefact 
(e.g. modellers, designers, maintainers). High cognitive 
complexity leads to an artefact reducing its 
understandability, and this conduce to undesirable external 
qualities, such as decreased maintainability. We suppose 
that OCL expression structural properties have an impact 
on the cognitive complexity of modellers, due to the fact 
that when developers try to understand an OCL expression, 
they apply cognitive techniques, such as “chunking” and 
“tracing”  [14],[15],[20]. For that reason, it is important to 
study and define metrics related to these cognitive 
techniques referring to the structural properties of OCL 
expressions involved with them. 

Therefore, to accomplish this goal, the aim of this paper 
is two-fold: 

1. Propose, in a methodological way, a set of metrics 
for measuring structural properties of OCL 
expressions, considering only those OCL’s 
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concepts specified in its metamodel [31] related  
to “tracing” technique.  

2. Assure that the proposed metrics measure what 
they purport to measure through their theoretical 
validation, following a property-based framework 
proposed by Briand et al.[6],[7],[8]. 

To obtain the first goal we start in the following section 
to describe some concepts of the cognitive model of Cant et 
al. [15], on which we are based, to define the metrics. 
Section 3 presents those OCL concepts related to “tracing”. 
The proper definition of the metrics is presented in section 
4, meanwhile their theoretical validation is  presented in 
section 5.  Finally, in the last section some concluding 
remarks and future work are presented. 

2 COGNITIVE TECHNIQUES OF CANT ET. AL [15] 
The Cognitive Complexity Model (CMM) defined by Cant 
et al. [15] gives a general cognitive theory of software 
complexity that elaborates on the impact of structure on 
understandability [20]. Although the  study of Cant et al. 
has been considered a reasonable point of departure for 
understanding the impact of structural properties on 
understandability of code and the coding process, we 
believe that model can also be applied to UML developers 
when they try to understandand OCL expressions. The 
underlying rationale for the CMM argues that 
comprehension consists of two techniques: “chunking” and 
“tracing”, that are concurrently and synergistically applied 
in problem solving [15],[20]:  
• “Chunking” technique: a capacity of short term 

memory, involves recognizing groups of statements (not 
necessarily sequential) and extracting information from 
them which is remembered as a single mental 
abstraction: a “chunk” [15].  

• “Tracing” technique: involves scanning, either forward 
or backwards, in order to identify relevant “chunks” 
[20], resolving some dependencies.  
Cant et al. [15] argue that it is difficult to determine what 

constitutes a “chunk” since it is a product of semantic 
knowledge. For our purposes we will consider an OCL 
expression as a “chunk” unit, whilst also the 
comprehension of an operation, an attribute or a 
relationship with their associated OCL expression  are 
considered to be a “chunk”.  Henderson-Sellers notes that 
“tracing” disrupts the process of “chunking”. The 
comprehension of a particular “chunk” is the sum of three 

components: (1) the difficulty of understanding the 
“chunk” itself; (2) the difficulty of understanding all the 
dependencies on the “chunks” upon which a particular 
“chunk” depends, and (3) the difficulty of “tracing” these 
dependencies to those “chunks” [20]. When a method calls 
for another method to be used in a different class, or when 
an inherited property needs to be understood [20], are 
typical examples of where “tracing” is applied. This 
cognitive process is also commonly done by UML 
developers during the  understandability of OCL 
specifications. To understand an OCL expression, as a 
“chunk”, UML developers must carry out “tracing” to 
understand some properties (attributes or operations) 
belonging to other classes, for example when a operation is 
referred through messaging, navigation of relationships, 
etc. These concepts will be explained in the following 
section. 

3 OCL AND ITS CONCEPTS RELATED TO TRACING” 
OCL is mainly used to add precision to UML models 
beyond the capabilities of the graphical diagrams [30] on 
any UML model [36]. However, we will focus on UML class 
diagrams where the metrics will be applied. OCL can be 
used for different purposes: to specify invariants on classes 
and types in the class diagram, to describe pre- and post 
conditions on operations, to specify target (sets) for 
messages, to specify constraints on operations, etc. [31]. 

Due to the fact that OCL is a typed language, it is 
important to notice that each OCL expression is written in 
the context of an instance of a specific type. The type, is 
referred inside an expression trough a reserved word, self, 
which represents the contextual instance [31],[36]. The 
metrics we will define are mainly related to those OCL 
concepts related to “tracing” techniques which allows an 
expression to use properties belonging to other classes or 
interfaces, different to the type of the contextual instance, 
such as: 
• Navigations: Starting from a specific object it is 

possible to navigate an association on the class diagram, 
to refer to other objects and their properties. A relation 
is navigated when we use the rolename of the opposite 
association-end of a relation, that links the class where 
the expression is defined with another class in the 
diagram class (when the association-end is missing we 
can use the name of the type at the association-end as 
the rolename). It is possible to navigate many 

External Quality Attributes - ISO 9126

Fig 1: Relationship between structural properties, cognitive complexity, understandability and external 
quality attributes (based on [9] and [27]). 
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relationships to access as many properties as needed in 
an expression.  

• Collections: Manipulating and dealing with collections 
is an important characteristic in OO software. OCL 
provides three concrete types of collections: Set, Bag, 
and Sequence [31]. 

• In, Out and In/Out Parameters, and Return Values: 
Operations may have in, out, in/out parameters. If the 
operation has out or in/out parameters, the result of this 
operation is a tuple containing all out, in/out parameters 
and the return value [31]. 

• Collection Operations: OCL defines many operations to 
handle the elements in a collection. The operations 
allow the modeller to project new collections from the 
existing one. Operations like select, reject, iterate, forAll 
and exists, take each element in a collection and 
evaluate an expression on them. The expression 
evaluated for each collection can be defined in terms of 
new navigations. We will take into account those 
expressions of collection operations which are defined 
in terms of other navigations. 

• Messages: “OCL Message expressions are used to 
specify the fact that an object has, or will sent some 
message to another object at some moment in time” [29], 
[31].  
Finally, we will define an utility class, which is a UML 

concept, but it can be used inside an expression definition: 
• Utility class: A utility class is a value type defined as a 

new type in a class diagram [34],[36]. 
For illustrating some of the concepts defined in this 

section, and the metric calculation, we use the example 
shown in Fig. 2. This example is a small part of the Royal 
and Loyal (R&L) example proposed in [36].  
Example. R&L company handles loyalty programs for its 

Programs Partners that offer their customers various 
kinds of facilities. The LoyaltyProgram class administers 
a single loyalty program[36]. The objects of class 
Customer represent the people who have entered the 
program. A membershipCard or CustomerCard is 
issued to one customer.  The Fig. 2 also includes in its 
bottom part, five OCL expressions. For example: 
- Self^invalidate() of expression 1, is an example of a 

message sent to an object representing the contextual 
instance. 

- Membership.card of expression 2 is an example of a 
navigation from LoyaltyProgram to CustomerCard. 
It  navigates two relationships: one from 
LoyaltyProgram to Membership (an association 
class), and another from Membership to 
CustomerClass. In the former relationship there is no 
rolename attached to the association-end where 
Membership is the sink class, and for that reason the 
name of the class is used, starting with a lowercase 
letter. Meanwhile, in the latter relationship, the 
navigation is represented by its rolename “card”. 

- Self.customer of expression 2 is another example of a 
navigation where a forAll collection operation is 
specified to express that all the ages of the customers 

of a LoyaltyProgram should be  more than  30 years 
old.  

- Date is an example of a utility class, their attributes 

and operations are used in expression 1.  

4 METRICS DEFINITION FOR OCL EXPRESSIONS 
In order to define valid and reliable metrics we have 
applied a method based on [13], [16], which is composed of 
many steps beginning with the definition of the metrics 
goals and finishing with the acceptance of these metrics in 
real projects. Even though all the steps are equally 
important, in this paper we only address  the definition of 
the metrics goals, the definition of the metrics and their 
theoretical validation. It is advisable to perform the 
theoretical validation of the metrics before the empirical 
validation. In the context of an empirical study, the 
theoretical validation of metrics demostrate their construct 

(expressions 3 and 4 (pre- and post-cond. respectively)) 
   LoyaltyProgram::enroll(c: Customer) 
   pre: not customer->includes( c ) 
   post: customer = customer @ pre -> including ( c) 
 
 

(expression 1) 
   CustomerCard inv: 
   validFrom.isBefore(goodThru) or 

      goodThru.isAfter(Date.now)implies self^invalidate() 

1..*   partners  

LoyaltyProgram 
enroll(c:Customer) Customer 

name: String 
age():Integer 
 

Membership 

CustomerCard 
valid: Bolean 
validFrom: Date 
goodThru: Date 
invalidate():… 
 

ProgramPartners 
card 

program 
0..* 

cards    0..* 

Date  
$now: Date 
isBefore(t:Date): Boolean 
isAfter(t:Date): Boolean 
=(t:Date): Boolean … 
 

(expression 5 ) 
       LoyaltyProgram inv: 
       self.customer ->forAll( age() <= 30) and 

   self.customer ->forAll (c1 | self.customer ->  
      forAll (c2| c1 <> c2 implies c1.name <> c2.name ) 
 

 
Fig. 2: Examples of OCL expressions [36]. 

(expression 2) 
   LoyaltyProgram inv: 
   membership.card -> forAll (  
                        goodThru = Date.fromYMD  (2007,1, 1) 
   and self.customer->forAll (age()>30) 
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validity, i.e. it “proves” that they are valid measures to be 
used as variables in the empirical study.  The rest of the 
steps will be tackled in future works. 

Fenton [21] suggested that it is not advisable to define a 
single measure for capturing different structural properties. 
For that reason we have defined a set of metrics, each of 
which captures different structural properties of an OCL 
expression, related to a “tracing” technique.   

Using the GQM ([2],[35]) template for goal definition, 
the goal pursued for the definition of the metrics for OCL 
expression is: 

Analyse  OCL expression structures related to a “tracing” 
technique 
for the purpose of  Evaluating 
with respect to their Understandability 
from the point of view of the OO Software modellers  
in the context of OO software organizations. 

Thus, our goal is to begin defining a set of metrics for 
OCL expressions measuring their structural properties 
related to a “tracing” technique, and afterwards 
ascertaining through experimentation if these metrics could 
be used as early understandability indicators.  Next, we 
will present each of the metrics we have defined to be 
applied at OCL expression level. 

• NNR  Metric (Number of Navigated Relationships): 
This metric counts the total number of navigated 
relationships in an expression. If a relationship is 
navigated twice, for example using different properties 
of a class or interface, this relationship is counted only 
once.  
Whenever we navigate to an association class we will 
consider the association to which the association class is 
attached. 
Example . In the expression 1 of Fig. 2., the value of 

NNR = 0 because there is no navigation in the 
expression definition, however in the expression 2, 
NNR = 2 because two relationship where 
navigated: the relationship between 
LoyaltyProgram and Customer (it was navigated 
from LoyaltyProgram to Membership, and from 
LoyaltyProgram to Customer), the relationship 
between Membership and CustomerCard. 

• NAN Metric (Number of Attributes referred through 
Navigations): The number of attributes referred through 
navigations in an expression.  
Example. In the expression 2 of Fig. 2, only the 

goodThru attribute is used, then NAN = 1. 

• WNO Metric (Weighted Number of referred 
Operations through navigations): The metric is defined 
as the sum of weighted operations (operations which 
are referred through navigations). For that reason we 
must consider the operation calls. The operations are 
weighted by the number of actual parameters (only the 
values of all in or in/out parameters are necessary to 
specify in the operation call  [31]) and the number of out 
parameters acceded (also considering the operation 
return type or result). The definition of the WNO metric 

is defined as it is shown in Table 1: 
Table 1: WNO metric definition. 

∑  ( 1 + | Par(m) | ) (1+ R + |Pout, in/out  (m)|) 
                   m ∈ N(expression) 
N(expression):  Set of different1 operations referred 
through navigations. 
|Par(m)|: quantity of actual parameter of m   
R stand for the m operation result and represents the 
value of 1. 
|Pout, in/out  (m)|: quantity of out and in/out parameter of 
the m operation. Through a navigation it is possible to 
exclusively access  one result as a time [31], this weighted 
formula giving a higher weight to those operations used 
many times to access different results. 

 
Example. According to the operation called “income” 

(of [31]) and its post-condition OCL. 
context Person::income(d: Date, bonus: Integer): 
Integer 
post: result = type { bonus =….,  
                                result =….} 
The operation has a result of type Integer, an in 
parameter (d) and an out parameter (bonus). 
Now, consider an expression in which we 
navigate to the Person class, and we operates with 
the two returned values of income: 
context Salary::calculate() 
post: person.income(aDate).bonus + 
person.income(aDate).result 
Applying the WNO to the postcondition 
expression of the calculate operations we obtain:  
WNO = (1 + 1) (1 + 1 + 1). 

• NNC Metric (Number of Navigated Classes): This 
metric counts the total number of classes, association 
classes or interfaces to which an expression navigates to. 
If a class contains a reflexive relation and an expression 
navigates it, the class will be considered only one time 
in the metric. Also, as a class might be reachable from a 
starting class/interface from different forms of 
navigations (ie. following different relationships) we 
must consider this situation as a special case: If a class is 
used in two (or more) different navigations the class is 
counted only one time.  
Example. In the expression 2 of Fig. 2., the value of 

NNC = 3, because the classes Membership, 
Customer and CustomerCard are used. 

• WNM Metric (Weighted Number of Messages): The 
number of messages defined in an expression weighted 
by its actual parameters.  The weighted operation is 
carried out according to Table 2. 

Example. If we apply WNM metric to the expression 1 
of Fig. 2, WNM = 1, because there is only one 

 
1 We will consider the actual parameter of the operation call [31] in order 

to analyze if two operations (referred through navigations) are different 
elements in the N(expression)-set. Having two operation calls they will be 
different if they have different operation name or different actual 
parameters (their parameter names or/and the quantity of actual parameter 
are not equal).  
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message (without parameters) in the expression. 

 

 

• NPT Metric (Number of Parameters whose Types are 
classes defined in the class diagram): This metric is 
specially used in pre- and post-condition expressions,  
and it counts the method parameters, and the return 
type (also called result) used in an expression, having 
each parameter/result a type representing a class or 
interface defined in the class diagram. 
Example. In the expression 3 and 4 of Fig. 2., the value 

of NPT = 1 because only one parameter (c), whose 
type is a class in the class diagram (Customer), is 
used in the expression. 

• NUCA Metric (Number of Utility Class Attributes 
used). The number of attributes belonging to a utility 
class used in an expression. Attributes are counted once 
if they belong to the same utility class and are also used 
more than once.  
Example. In the expression 1 of Fig. 2, the value of 

NUCA = 1 because only one attribute (now) of a 
utility class (Date) is used. 

• NUCO Metric (Number of Utility Class Operations 
used). The definition of this metric is analogous to the 
NUCA metric, but considering operations instead of 
attributes.  
Example. In the expression 1 of Fig. 2, NUCO = 2 

because the isBefore and isAfter operations 
(belonging to the utility class Date) are used.  

• WNN Metric (Weighted Number of Navigations): As 
we explain in the previous section, an operation 
collection is composed of an expression which is 
evaluated for each collection element, and if the 
evaluated expression involves a new navigation (or 
many) we will give a higher weight to the new 
navigation used inside the definition of the outermost 
expression.  
Example .  In the expression 3 of Fig. 2, the value of 

WNN is 1, and there is only one navigation 
(self.customer). Now, we will show how the WNN 
is obtained in the expression 5 of Fig. 2. Two 
subexpressions are connected by an “and” 
operator. Each subexpression involves 
navigations. Meanwhile the navigation of the first 

 
2 In order to analyze if two messages are different we will consider the 

object to which the message is sent and its operation call as we describe in 
WNO metric.  

subexpression does not include  a new navigation 
in its evaluation, the second one (of the last 
subexpression) uses a collection operation defined 
in terms of another, and the value of WNN is 
obtained in the following way:  1 * 2 +   2 * 1 = 4. 

The number shown in italics represents the applied 
weight, and the number shown in normal font indicates 
the number of navigations. As the collection operation 
can be defined in terms of a new navigation and its 
collection operations, ie. in a recursive way, we will call 
“level” to the different composition of navigation. In the 
case that navigation B is used in the immediate 
definition of an operation collection for an navigation A, 
we said that B is in level 2 and A in level 1. 
The weight associated with each level is equal to the 
level number. Then the definition of the  WNN metric 
is: 
WNN = ∑ weight of the level* number of navigations of 
the level. 

• DN Metric (Depth of Navigations): Given that in an 
OCL expression there can be many  navigations  
regarding its definition, we build a tree of navigation 
using the class name to which we navigates to. We will 
only consider navigations starting from the contextual 
instance (from self). The root of the tree is the class name 
which self represents. Self is always the starting point of 
any expression (sometimes self can be left implicit in an 
expression), then we build a branch for each navigation, 
where each class we navigate to is a node in the branch. 
Nodes are connected by “navigation relations”. DN is 
the maximum depth of  the tree.  
When navigation includes a collection operation 
expression defined in terms of  new navigation(s), we 
will build a new tree for the navigation used in the 
collection operation expression, using the same method, 
then we will connect both trees using a “definition 
connection”.  

Example. In the expression 2 of Fig. 2 defined for 
LoyaltyProgram there are two navigations. The 
tree built using the method described above is 
shown in Fig. 3 (a). Then, the value of DN is 2. 

Example. According to expression 5 of Fig. 2, the built 
tree using this method is shown in Fig. 3 (b). A 
dashed line represents a definition connection. 
When we obtain the depth of the tree, we will 
apply the following rule: “Navigation connection 
is counted one time, and definition connection 
twice”.  The DN value for the expression of Fig. 3 
(b) is equal to 4. 

 
 
 
 
 
 
 
 
 

Table 2: WNM metric definition. 
∑      ( 1 + | Par(m) | ) 

                                      m ∈ M(expression) 

M(expression):  Set of  different operations2 used through 
messaging in an expression. 
|Par(m)|: quantity of actual parameter of the m 
operation. 

 (b) 

Fig. 3: Examples of navigation trees 
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• WCO Metric (Weighted Number of Collection 
Operations): The collection operations used in the 
expression definition are weighted according to the 
level  in which they are defined, so the metric is defined 
thus: 
WCO = ∑ weight of the level * number of collection 
operations of the level. 

5 THEORETICAL VALIDATION OF THE PROPOSED 
METRICS 

To develop the theoretical validation of metrics we have 
used the property-based framework of Briand et al. [7],[8] 
and its adaptation for interaction-based metrics for 
coupling and cohesion [6].  
Due to sake of brevity we will only show one example of 
the theoretical validation for each kind of measure. The 
theoretical validation of the rest of the metrics is 
summarized in Table 3. 

5.1 NAN properties as coupling (interaction-based) 
metric [6] 

In the context of [6] the coupling concept is defined as a 
relation between an individual software part, and its 
associated software system, rather than as a relation 
between two software parts. First at all, it is important to 
make some definitions prior to the application of properties 
of interaction-based metrics for coupling to the NAN 
metric. 

• Relation: The relations are defined between a software 
individual part (in our context, an OCL expression) and its 
associated software system (attributes to which it is 
possible to access through navigations in the NAN metric). 

• DU-interaction: The interaction from Data declaration to 
data Used in an OCL expression.  

• Import coupling: Given a software part sp (an OCL 
expression), import coupling of sp is the number of DU-
interactions between data declaration external to sp and 
data used (attributes used trough navigations) within sp. 

We only have defined metrics related to import 
coupling. Our hypothesis is similar to the ISP-hypothesis of 
[6]: The larger the number of “used” software parts, the 
larger the context to be understood, the more likely the 
occurrence of a fault. 
Following a similar approach applied in [6] the properties 
for interaction-based measures for coupling are 
instantiations, for our specific OCL context, of the 
properties defined in [7],[8] for coupling. 

• Nonnegativity: Is directly proven, and it is impossible to 
obtain a negative value. An expression sp without 
navigation (referring to attributes) in its definition has 
NAN(sp) = 0. 

• Monotonicity: Is directly verified, adding import 
interactions - in this case, DU-interactions of navigations 
referring to attributes- to an OCL expression cannot 
decrease its import coupling. If we add a new navigation 
referring to an attribute in an expression sp, two possible 

situations can happen: (1) the attribute referred to in the 
added navigation is an attribute already used by a DU-
interaction. Then the metric NAN applied to the new 
expression obtained, is equal to NAN(sp). (2) If the 
navigation added refers to a new attribute, then NAN 
applied to the new expression is greater than NAN (sp). 

• Merging Modules: This property can be expressed for our 
context in the following way: “the sum of the import 
coupling of two modules is no less than the coupling of the 
module which is composed of the data used of the two 
modules”. The value of NAN for an expression which 
consists of the union of two original expressions, is equal to 
the NAN of each expression merged when the sets of 
attributes referred to in each original expression are 
disjointed, otherwise is less than NAN of each each 
expression merged.  
In a similar way, it is possible to show that NNR, WNO, 

NNC, WNM, NPT, NUCA, NUCO are interaction-based 
measures for coupling. 

5.2 WNM  as a size metric 
For our purpose and in accordance with framework of Briand 
et al. [7],[8], we consider that an OCL expression is a system 
composed of OCL messages (elements) and relationships are 
represented by the relation “belong to”, which reflects that a 
message belongs to an OCL expression. A sub-expression will 
be considered a module. We will demonstrate that WNM 
fulfils all of the axioms that characterise size metrics, as 
follows: 

• Nonnegativity: Is directly proven and it is impossible to 
obtain a negative value. 

• Null value: An expression e without a message, has a 
WNM(e) = 0 

• Module Additivity: If we consider that an OCL expression 
is composed of modules with no message in common , the 
number of messages of an OCL expression it will be 
always the sum of the number of messages of its modules. 
In other words, when two modules (sub-expression) 
without messages in common are merged then the new 
expression has as many messages as each of the merged 
expressions. But if the original merged modules (sub-
expressions) have some message in common, then the 
WNM of the resulting expression should be less than 
adding the WNM of the original expressions. In a similar 
way, it is possible to show that WNN, WCO are size 
metrics. 

In a similar way, it is possible to show that WNN and WCO 
are size metrics. 

5.3 DN as a length metric 
For our purpose and in accordance with framework of 
Briand et al. [7],[8], we consider that an OCL expression is a 
system. The elements are the classes  (to which the 
expression navigates to) and the relationships are the 
navigations of UML relationship. We will demonstrate that 
DN fulfils all of the axioms that characterise length metrics, 
as follows: 

• Nonnegativity and Null Value are straightforwardly 
satisfied, the depth of a tree can never be negative, and an 



REYNOSO ET AL.:  MEASURING OCL EXPRESIONS: A  “TRACING”-BASED APPROACH. 7 

 

expression without navigation has a empty tree, and DN is 
0. 

• Nonincreasing monotonocity for connected components: If 
we add relationships between elements of a tree (classes or 
interfaces) the depth does not vary. 

• Nondecreasing monotonocity for non- connected 
components: Adding a relationship to two unconnected 
components (two trees) makes them connected, and its 
length is not less than the length of the two unconnected 
components.  

• Disjoint modules: The depth of a tree is given by the 
component which has more levels from the root to the 
leaves. 

6 CONCLUSIONS AND FUTURE WORK 
The main contribution of this paper is the definition of a set 

of metrics for OCL expressions in a rigorous and disciplined 
manner. The metrics were defined to measure structural 
properties of OCL expressions, considering only the OCL 
concepts that involve “tracing” technique.  

After performing the theoretical validation of the proposed 
metrics using the original  framework of Briand et al. [7], [8] 
and its adaptation to interaction-based metrics [6], we can 
conclude that NNR (Number of Navigated Relationships), 
NAN (Number of Attributes referred through Navigations), 
WNO (Weighted Number of referred Operations through 
navigations), NNC (Number of Navigated Classes), WNM 
(Weighted Number of Messages), NPT (Number of 
Parameters whose Type are classes defined in the class 
diagram), NUCA (Number of Utility Class Attributes used), 
NUCO (Number of Utility Class Operations used) are 
interaction-based coupling metrics; DN (Depth of 
Navigations) is a length metric and  WNN (Weighted Number 
of Navigations), WCO (Weighted Number of Collection 
Operations), WNM (Weighted Number of Messages) are size 
metrics. 

We are aware that to provide a complete knowledge about 
this set of metrics is necessary to perform the empirical 
validation of them. As many authors mentioned 
[3],[21],[28],[33], the empirical validation employing 
experiments or case studies is fundamental to assure that the 
metrics are really significant and useful in practice. We are 
currently planning a controlled experiment for corroborating if 
the proposed metrics could be useful as early indicators of the 
OCL expression understandability. Moreover, once we have 
empirically validated these metrics at a expression level, we 

will be able to extend them at a class level.  
We believe that is necessary to define other metrics for OCL 

expressions which capture the intrinsic complexity of an OCL 
expression, for example the complexity related to the use of 
tuples, nested “let” expressions, the reuse of variables over 
multiple OCL expressions, etc. 
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