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Abstract— Owing that class diagrams constitute the backbone of object-oriented (OO) software development, many metrics were
proposed to measure internal quality attributes such as the structural complexity, coupling, size, etc. But none of the proposed
metrics take into account the added complexity when class diagrams are complemented by Object Constraint Language (OCL)
expressions. OCL expressions improve class diagrams enhancing their semantic properties, adding precision, improving their
documentation and understandability. The importance of OCL and the lack of defined metrics for OCL expressions motivate us to
propose a set of metrics for structural properties of OCL expressions. The first set of metrics we propose considers only those OCL
concepts related to “tracing” technique. We believe that “tracing” technique affects the cognitive complexity, and by consequence the
understandability of OCL expressions, and the maintenance of a UML class diagram. Therefore, the main goal of this paper is to
show how we defined a set of metrics for structural properties of OCL expressions in a methodological way. We will also present the
theoretical validation of these metrics according to a property-based framework proposed by Briand et. al..

Index Terms—Software measurement, OO measures, measure properties, cognitive complexity, tracing technique,

understandability, maintainability, coupling.

1 INTRODUCTION

N software engineering it is widely acknowledged that

the usage of metrics at the initial phases of the OO

software life cycle can help modellers and designers to
make better decisions, and to build OO software of a better
quality, without unnecessary revisions at later development
stages. This being when changes are more expensive and
also more difficult to perform[1], [4], [9], [11], [17], [22], [32].
Besides this fact, the early availability of metrics allows us
to predict external quality attributes [12],[27], such as
understandability and maintainability [21]. One of the key
artefacts produced at the early development of OO
software systems is the class diagram, because most of the
work of design and implementation is based on it. Hence
class diagram quality is a crucial issue that must be
evaluated (and improved if necessary) in order to get
quality OO software. Many measures have been provided
in literature that can be applied to a UML [34] class
diagram at a high level design stage
[51,[61.[18],[19],[23],[24].[26]. Most of these works are
focused on the measurement of internal quality attributes
such as structural complexity, coupling, size, etc. However,
none of the proposed metrics take into account the added
complexity when class diagrams are complemented by
OCL expressions. OCL, defined by OMG [31], has became a
fundamental language in developing OO software using
UML, because it allows a precise UML modelling,
providing the modeller with an expressive notation to
capture the essential properties of the systems [30]. OCL
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enriches UML class diagrams with expressions that specifie
semantic properties of the model [26] and improve the
system precision, its documentation [36] and its
understandability at early stages of OO software
development. This led us to think about the necessity of
having metrics to measure structural properties of OCL
expressions.

The theoretical basis for developing quantitative models
relating to structural properties and external quality
attributes has been provided by Briand et al [10]. In this
work we assume a similar representation to hold for OCL
expressions. We implement the relationship between the
structural complexity on one hand, and external quality
attributes on the other hand (see Fig. 1). We hypothesized
that the structural properties (such as coupling, size, length,
etc.) of an OCL expression have an impact on its cognitive
complexity. By cognitive complexity we mean the mental
burden of the persons who have to deal with the artefact
(e.g. modellers, designers, maintainers). High cognitive
complexity leads to an artefact reducing its
understandability, and this conduce to undesirable external
qualities, such as decreased maintainability. We suppose
that OCL expression structural properties have an impact
on the cognitive complexity of modellers, due to the fact
that when developers try to understand an OCL expression,
they apply cognitive technigues, such as “chunking” and
“tracing” [14],[15],[20]. For that reason, it is important to
study and define metrics related to these cognitive
techniques referring to the structural properties of OCL
expressions involved with them.

Therefore, to accomplish this goal, the aim of this paper
is two-fold:

1. Propose, in a methodological way, a set of metrics

for measuring structural properties of OCL
expressions, considering only those OCL’s
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Fig 1: Relationship between structural properties, cognitive complexity, understandability and external
quality attributes (based on [9] and [27]).

concepts specified in its metamodel [31] related
to “tracing” technique.

2. Assure that the proposed metrics measure what
they purport to measure through their theoretical
validation, following a property-based framework
proposed by Briand et al.[6],[7],[8].

To obtain the first goal we start in the following section
to describe some concepts of the cognitive model of Cant et
al. [15], on which we are based, to define the metrics.
Section 3 presents those OCL concepts related to “tracing”.
The proper definition of the metrics is presented in section
4, meanwhile their theoretical validation is presented in
section 5. Finally, in the last section some concluding
remarks and future work are presented.

2 COGNITIVE TECHNIQUES OF CANTET. AL [15]

The Cognitive Complexity Model (CMM) defined by Cant
et al. [15] gves a general cognitive theory of software
complexity that elaborates on the impact of structure on
understandability [20]. Although the study of Cant et al.
has been considered a reasonable point of departure for
understanding the impact of structural properties on
understandability of code and the coding process, we
believe that model can also be applied to UML developers
when they try to understandand OCL expressions. The
underlying rationale for the CMM argues that
comprehension consists of two techniques: “chunking” and
“tracing”, that are concurrently and synergistically applied
in problem solving [15],[20]:

“Chunking” technique: a capacity of short term
memory, involves recognizing groups of statements (not
necessarily sequential) and extracting information from
them which is remembered as a single mental
abstraction: a “chunk” [15].

“Tracing” technique: involves scanning, either forward
or backwards, in order to identify relevant “chunks”
[20], resolving some dependencies.

Cant et al. [15] argue that it is difficult to determine what
constitutes a “chunk” since it is a product of semantic
knowledge. For our purposes we will consider an OCL
expression as a “chunk” unit, whilst also the
comprehension of an operation, an attribute or a
relationship with their associated OCL expression are
considered to be a “chunk”. Henderson-Sellers notes that
“tracing” disrupts the process of “chunking”. The
comprehension of a particular “chunk” is the sum of three

components: (1) the difficulty of understanding the
“chunk” itself; (2) the difficulty of understanding all the
dependencies on the “chunks” upon which a particular
“chunk” depends, and (3) the difficulty of “tracing” these
dependencies to those “chunks” [20]. When a method calls
for another method to be used in a different class, or when
an inherited property needs to be understood [20], are
typical examples of where “tracing” is applied. This
cognitive process is also commonly done by UML
developers during the understandability of OCL
specifications. To understand an OCL expression, as a
“chunk”, UML developers must carry out “tracing” to
understand some properties (attributes or operations)
belonging to other classes, for example when a operation is
referred through messaging, navigation of relationships,
etc. These concepts will be explained in the following
section.

3 OCL AND ITS CONCEPTS RELATED TO TRACING”

OCL is mainly used to add precision to UML models
beyond the capabilities of the graphical diagrams [30] on
any UML model [36]. However, we will focus on UML class
diagrams where the metrics will be applied. OCL can be
used for different purposes: to specify invariants on classes
and types in the class diagram, to describe pre- and post
conditions on operations, to specify target (sets) for
messages, to specify constraints on operations, etc. [31].

Due to the fact that OCL is a typed language, it is
important to notice that each OCL expression is written in
the context of an instance of a specific type. The type, is
referred inside an expression trough a reserved word, self,
which represents the contextual instance [31],[36]. The
metrics we will define are mainly related to those OCL
concepts related to “tracing” techniques which allows an
expression to use properties belonging to other classes or
interfaces, different to the type of the contextual instance,
such as:

Navigations: Starting from a specific object it is
possible to navigate an association on the class diagram,
to refer to other objects and their properties. A relation
is navigated when we use the rolename of the opposite
association-end of a relation, that links the class where
the expression is defined with another class in the
diagram class (when the association-end is missing we
can use the name of the type at the association-end as
the rolename). It is possible to navigate many
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relationships to access as many properties as needed in
an expression.

Collections: Manipulating and dealing with collections

is an important characteristic in OO software. OCL
provides three concrete types of collections: Set, Bag,
and Sequence [31].

In, Out and In/Out Parameters, and Return Values:
Operations may have in, out, in/out parameters. If the
operation has out or infout parameters, the result of this
operation is a tuple containing all out, infout parameters
and the return value [31].

Collection Operations: OCL defines many operations to
handle the elements in a collection. The operations
allow the modeller to project new collections from the
existing one. Operations like select, reject, iterate, forAll
and exists, take each element in a collection and
evaluate an expression on them. The expression
evaluated for each collection can be defined in terms of
new navigations. We will take into account those
expressions of collection operations which are defined
in terms of other navigations.

Messages: “OCL Message expressions are used to
specify the fact that an object has, or will sent some
message to another object at some moment in time” [29],
[31].

Finally, we will define an utility class, which is a UML
concept, but it can be used inside an expression definition:

Utility class: A utility class is a value type defined as a
new type in a class diagram [34],[36].

For illustrating some of the concepts defined in this
section, and the metric calculation, we use the example
shown in Fig. 2. This example is a small part of the Royal
and Loyal (R&L) example proposed in [36].

Example. R&L company handles loyalty programs for its
Programs Partners that offer their customers various
kinds of facilities. The LoyaltyProgram class administers
a single loyalty program[36]. The objects of class
Customer represent the people who have entered the
program. A membershipCard or CustomerCard is
issued to one customer. The Fig. 2 also includes in its
bottom part, five OCL expressions. For example:

- Self~invalidate() of expression 1, is an example of a
message sent to an object representing the contextual
instance.

- Membership.card of expression 2 is an example of a
navigation from LoyaltyProgram to CustomerCard.
It navigates two relationships: one from
LoyaltyProgram to Membership (an association
class), and another from Membership to
CustomerClass. In the former relationship there is no
rolename attached to the association-end where
Membership is the sink class, and for that reasonthe
name of the class is used, starting with a lowercase
letter. Meanwhile, in the latter relationship, the
navigation is represented by its rolename “card”.

- Self.customer of expression 2 is another example of a
navigation where a forAll collection @eration is
specified to express that all the ages of the customers

of a LoyaltyProgram should be more than 30 years
old.
- Date is an example of a utility class, their attributes

LoyaltyProgram rogram
enroll(c:Customer) 8 2 Customer
T |_hame: String__
| age():Integer
Membership
cards| O0..*
1..*| partners
card CustomerCard
ProgramPartners valid: Bolean
validFrom: Date
| goodThru: Date __
Date invalidate():...
$now: Date

isBefore(t:Date): Boolean
isAfter(t:Date): Boolean
=(t:Date): Boolean ...

(expression 1)
CustomerCard inv:

validFrom.isBefore(goodThru) or
goodThru.isAfter(Date.now)implies self*invalidate()

(expression 2)
LoyaltyProgram inv:
membership.card -> forAll (
goodThru = Date.fromYMD (2007,1, 1)
and self.customer->forAll (age()>30)

(expressions 3 and 4 (pre- and post-cond. respectively))
LoyaltyProgram::enroll(c: Customer)
pre: not customer->includes( c )
post: customer = customer @ pre-> including ( c)

(expression 5)
LoyaltyProgram inv:

self.customer ->forAll( age() <= 30) and
self.customer ->forAll (c1 | self.customer ->
forAll (c2] c1 <> c2 implies cl.name <> c2.name )

Fig. 2: Examples of OCL expressions [36].
and operations are used in expression 1.

4 METRICS DEFINITION FOR OCL EXPRESSIONS

In order to define valid and reliable metrics we have
applied a method based on [13], [16], which is composed of
many steps beginning with the definition of the metrics
goals and finishing with the acceptance of these metrics in
real projects. Even though all the steps are equally
important, in this paper we only address the definition of
the metrics goals, the definition of the metrics and their
theoretical validation. It is advisable to perform the
theoretical validation of the metrics before the empirical
validation. In the context of an empirical study, the
theoretical validation of metrics demostrate their construct



validity, i.e. it “proves” that they are valid measures to be
used as variables in the empirical study. The rest of the
steps will be tackled in future works.

Fenton [21] suggested that it is not advisable to define a
single measure for capturing different structural properties.
For that reason we have defined a set of metrics, each of
which captures different structural properties of an OCL
expression, related to a “tracing” technique.

Using the GQM ([2],[35]) template for goal definition,
the goal pursued for the definition of the metrics for OCL
expression is:

Analyse OCL expression structures related to a “tracing”
technique

for the purpose of Evaluating

with respect to their Understandability

from the point of view of the OO Software modellers

in the context of OO software organizations.

Thus, our goal is to begin defining a set of metrics for
OCL expressions measuring their structural properties
related to a “tracing” technique, and afterwards
ascertaining through experimentation if these metrics could
be used as early understandability indicators. Next, we
will present each of the metrics we have defined to be
applied at OCL expression level.

NNR Metric (Number of Navigated Relationships):
This metric counts the total number of navigated
relationships in an expression. If a relationship is
navigated twice, for example using different properties
of a class or interface, this relationship is counted only
once.

Whenever we navigate to an association class we will
consider the association to which the association class is
attached.

Example. In the expression 1 of Fig. 2., the value of
NNR = 0 because there is no navigation in the
expression definition, however in the expression 2,
NNR = 2 because two relationship where
navigated: the relationship between
LoyaltyProgram and Customer (it was navigated
from LoyaltyProgram to Membership, and from
LoyaltyProgram to Customer), the relationship
between Membership and CustomerCard.

NAN Metric (Number of Attributes referred through
Navigations): The number of attributes referred through
navigations in an expression.

Example. In the expression 2 of Fig. 2, only the
goodThru attribute is used, then NAN = 1.

WNO Metric (Weighted Number of referred
Operations through navigations): The metric is defined
as the sum of weighted operations (operations which
are referred through navigations). For that reason we
must consider the operation calls. The operations are
weighted by the number of actual parameters (only the

is defined as it is shown in Table 1:
Table 1: WNO metric definition.

a (1+ ] Par(m) ) (1+R+ |Pout,insout (M)])
ml N(expression)

N(expression): Set of differentt operations referred
through navigations.

| Par(m) | : quantity of actual parameter of m

R stand for the m operation result and represents the
value of 1.

| Pout, inzoue (M) ]: quantity of out and in/out parameter of
the m operation. Through a navigation it is possible to
exclusively access one result as a time [31], this weighted
formula giving a higher weight to those operations used
many times to access different results.

values of all in or in/out parameters are necessary to
specify in the operation call [31]) and the number of out
parameters acceded (also considering the operation
return type or result). The definition of the WNO metric

Example. According to the operation called “income”
(of [31]) and its post-condition OCL.
context Person::iincome(d: Date, bonus: Integer):
Integer
post: result = type { bonus =....,

result=....}

The operation has a result of type Integer, an in
parameter (d) and an out parameter (bonus).
Now, consider an expression in which we
navigate to the Person class, and we operates with
the two returned values of income:
context Salary::calculate()
post: person.income(aDate).bonus +
person.income(aDate).result
Applying the WNO to the postcondition
expression of the calculate operations we obtain:
WNO=(1+1)(1+1+1).

NNC Metric (Number of Navigated Classes): This
metric counts the total number of classes, association
classes or interfaces to which an expression navigates to.
If a class contains a reflexive relation and an expression
navigates it, the class will be considered only one time
in the metric. Also, as a class might be reachable from a
starting class/interface from different forms of
navigations (ie. following different relationships) we
must consider this situation as a special case: If aclass is
used in two (or more) different navigations the class is
counted only one time.

Example. In the expression 2 of Fig. 2., the value of
NNC = 3, because the classes Membership,
Customer and CustomerCard are used.

WNM Metric (Weighted Number of Messages): The
number of messages defined in an expression weighted
by its actual parameters. The weighted operation is
carried out according to Table 2.

Example. If we apply WNM metric to the expression 1
of Fig. 2, WNM = 1, because there is only one

1 We will consider the actual parameter of the operation call [31] in order
to analyze if two operations (referred through navigations) are different
elements in the N(expression)set. Having two operation calls they will be
different if they have different operation name or different actual
parameters (their parameter names or/and the quantity of actual parameter
are not equal).
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message (without parameters) in the expression.

Table 2: WNM metric definition.

a (1+]Par(m])
m1 M(expression)

M(expression): Set of different operations” used through
messaging in an expression.

|Par(m)]: quantity of actual parameter of the m
operation.

NPT Metric (Number of Parameters whose Types are
classes defined in the class diagram): This metric is
specially used in pre- and post-condition expressions,
and it counts the method parameters, and the return
type (also called result) used in an expression, having
each parameter/result a type representing a class or
interface defined in the class diagram.

Example. In the expression 3 and 4 of Fig. 2., the value
of NPT = 1 because only one parameter (c), whose
type is a class in the class diagram (Customer), is
used in the expression.

NUCA Metric (Number of Utility Class Attributes
used). The number of attributes belonging to a utility
class used in an expression. Attributes are counted once
if they belong to the same utility class and are also used
more than once.

Example. In the expression 1 of Fig. 2, the value of
NUCA = 1 because only one attribute (now) of a
utility class (Date) is used.

NUCO Metric (Number of Utility Class Operations
used). The definition of this metric is analogous to the
NUCA metric, but considering operations instead of
attributes.

Example. In the expression 1 of Fig. 2, NUCO = 2
because the isBefore and isAfter operations
(belonging to the utility class Date) are used.

WNN Metric (Weighted Number of Navigations): As
we explain in the previous section, an operation
collection is composed of an expression which is
evaluated for each collection element, and if the
evaluated expression involves a new navigation (or
many) we will give a higher weight to the new
navigation used inside the definition of the outermost
expression.

Example. In the expression 3 of Fig. 2, the value of
WNN is 1, and there is only one navigation
(self.customer). Now, we will show how the WNN
is obtained in the expression 5 of Fig. 2. Two
subexpressions are connected by an “and”
operator. Each subexpression involves
navigations. Meanwhile the navigation of the first

2 In order to analyze if two messages are different we will consider the

object to which the message is sent and its operation call as we describe in
WNO metric.

Membership
oy .

subexpression does not include a new navigation
in its evaluation, the second one (of the last
subexpression) uses a collection operation defined
in terms of another, and the value of WNN is
obtained in the followingway: 1*2+ 2*1=4,

The number shown in italics represents the applied
weight, and the number shown in normal font indicates
the number of navigations. As the collection operation
can be defined in terms of a new navigation and its
collection operations, ie. in a recursive way, we will call
“level” to the different composition of navigation. In the
case that navigation B is used in the immediate
definition of an operation collection for an navigation A,
we said that B isin level 2 and A in level 1.

The weight associated with each level is equal to the
level number. Then the definition of the WNN metric
is:

WNN = & weight of the level* number of navigations of
the level.

DN Metric (Depth of Navigations): Given that in an
OCL expression there can be many navigations
regarding its definition, we build a tree of navigation
using the class name to which we navigates to. We will
only consider navigations starting from the contextual
instance (from self). The root of the tree is the class name
which self represents. Self is always the starting point of
any expression (sometimes self can be left implicitin an
expression), then we build a branch for each navigation,
where each class we navigate to is a node in the branch.
Nodes are connected by “navigation relations”. DN is
the maximum depth of the tree.

When navigation includes a collection operation
expression defined in terms of new navigation(s), we
will build a new tree for the navigation used in the
collection operation expression, using the same method,
then we will connect both trees using a “definition
connection”.

Example. In the expression 2 of Fig. 2 defined for
LoyaltyProgram there are two navigations. The
tree built using the method described above is
shown in Fig. 3 (a). Then, the value of DN is 2.

Example. According to expression 5 of Fig. 2, the built
tree using this method is shown in Fig. 3 (b). A
dashed line represents a definition connection.
When we obtain the depth of the tree, we will
apply the following rule: “Navigation connection
is counted one time, and definition connection
twice”. The DN value for the expression of Fig. 3
(b) is equal to 4.

LoyaltyProgral

LoyaltyProgram

LoyaltyProgram

(a)

Fig. 3: Examples of navigation trees



WCO Metric (Weighted Number of Collection
Operations): The collection operations used in the
expression definition are weighted according to the
level in which they are defined, so the metric is defined
thus:

WCO = & weight of the level * number of collection
operations of the level.

5 THEORETICAL VALIDATION OF THE PROPOSED
METRICS

To develop the theoretical validation of metrics we have
used the property-based framework of Briand et al. [7],[8]
and its adaptation for interaction-based metrics for
coupling and cohesion [6].

Due to sake of brevity we will only show one example of
the theoretical validation for each kind of measure. The
theoretical validation of the rest of the metrics is
summarized in Table 3.

5.1 NAN properties as coupling (interaction-based)
metric [6]

In the context of [6] the coupling concept is defined as a
relation between an individual software part, and its
associated software system, rather than as a relation
between two software parts. First at all, it is important to
make some definitions prior to the application of properties
of interaction-based metrics for coupling to the NAN
metric.

- Relation: The relations are defined between a software
individual part (in our context, an OCL expression) and its
associated software system (attributes to which it is
possible to access through navigations in the NAN metric).

- DU-interaction: The interaction from Data declaration to
data Used in an OCL expression.

- Import coupling: Given a software part sp (an OCL
expression), import coupling of sp is the number of DU-
interactions between data declaration external to sp and
data used (attributes used trough navigations) within sp.

We only have defined metrics related to import

coupling. Our hypothesis is similar to the ISP-hypothesis of
[6]: The larger the number of “used” software parts, the
larger the context to be understood, the more likely the
occurrence of a fault.
Following a similar approach applied in [6] the properties
for interaction-based measures for coupling are
instantiations, for our specific OCL context, of the
properties defined in [7],[8] for coupling.

- Nonnegativity: Is directly proven, and it is impossible to
obtain a negative value. An expression sp without
navigation (referring to attributes) in its definition has
NAN(sp) =0.

- Monotonicity: Is directly verified, adding import
interactions - in this case, DU-interactions of navigations
referring to attributes- to an OCL expression cannot
decrease its import coupling. If we add a new navigation
referring to an attribute in an expression sp, two possible

situations can happen: (1) the attribute referred to in the
added navigation is an attribute already used by a DU-
interaction. Then the metric NAN applied to the new
expression obtained, is equal to NAN(sp). (2) If the
navigation added refers to a new attribute, then NAN
applied to the new expression is greater than NAN (sp).

- Merging Modules: This property can be expressed for our
context in the following way: “the sum of the import
coupling of two modules is no less than the coupling of the
module which is composed of the data used of the two
modules”. The value of NAN for an expression which
consists of the union of two original expressions, is equal to
the NAN of each expression merged when the sets of
attributes referred to in each original expression are
disjointed, otherwise is less than NAN of each each
expression merged.

In a similar way, it is possible to show that NNR, WNO,
NNC, WNM, NPT, NUCA, NUCO are interaction-based
measures for coupling.

5.2 WNM as a size metric

For our purpose and in accordance with framework of Briand
etal. [7],[8], we consider that an OCL expression is a system
composed of OCL messages (elements) and relationships are
represented by the relation “belong to”, which reflectsthata
message belongs to an OCL expression. A sub-expression will
be considered a module. We will demonstrate that WNM
fulfils all of the axioms that characterise size metrics, as
follows:

- Nonnegativity: Is directly proven and it is impossible to
obtain a negative value.

- Null value: An expression e without a message, has a
WNM(e) =0
- Module Additivity: If we consider that an OCL expression
is composed of modules with no message in common , the
number of messages of an OCL expression it will be
always the sum of the number of messages of its modules.
In other words, when two modules (sub-expression)
without messages in common are merged then the new
expression has as many messages as each of the merged
expressions. But if the original merged modules (sub-
expressions) have some message in common, then the
WNM of the resulting expression should be less than
adding the WNM of the original expressions. In a similar
way, it is possible to show that WNN, WCO are size
metrics.
In a similar way, it is possible to show that WNN and WCO
are size metrics.

5.3 DN as a length metric

For our purpose and in accordance with framework of
Briand et al. [7],[8], we consider that an OCL expression is a
system. The elements are the classes (to which the
expression navigates b) and the relationships are the
navigations of UML relationship. We will demonstrate that
DN fulfils all of the axioms that characterise length metrics,
as follows:

- Nonnegativity and Null Value are straightforwardly
satisfied, the depth of a tree can never be negative, and an
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expression without navigation has aempty tree, and DN is
0.

- Nonincreasing monotonocity for connected components: If
we add relationships between elements of a tree (classes or
interfaces) the depth does not vary.

- Nondecreasing monotonocity for non- connected
components: Adding a relationship to two unconnected
components (two trees) makes them connected, and its
length is not less than the length of the two unconnected
components.

- Disjoint modules: The depth of a tree is given by the
component which has more levels from the root to the
leaves.

Table 3: Theoretica validation of metrics according to Briand et al. [6],
[71. [8].

OCL expression metrics
Metric
Classification
NNR, NAN, WNO, [DN | WNN,WCO,
NNC, WNM, WNM
NPT,NUCA, NUCO.
Sze[7],[8] X
Length [7],[8] X

6 CONCLUSIONS AND FUTURE WORK

The main contribution of this paper is the definition of a set
of metrics for OCL expressions in a rigorous and disciplined
manner. The metrics were defined to measure structural
properties of OCL expressions, considering only the OCL
concepts that involve “tracing” technique.

After performing the theoretical validation of the proposed
metrics using the original framework of Briand et al. [7], [8]
and its adaptation to interaction-based metrics [6], we can
conclude that NNR (Number of Navigated Relationships),
NAN (Number of Attributes referred through Navigations),
WNO (Weighted Number of referred Operations through
navigations), NNC (Number of Navigated Classes), WNM
(Weighted Number of Messages), NPT (Number of
Parameters whose Type are classes defined in the class
diagram), NUCA (Number of Utility Class Attributes used),
NUCO (Number of Utility Class Operations used) are
interaction-based coupling metrics; DN (Depth of
Navigations) is a length metricand WNN (Weighted Number
of Navigations), WCO (Weighted Number of Collection
Operations), WNM (Weighted Number of Messages) are size
metrics.

We are aware that to provide a complete knowledge about
this set of metrics is necessary to perform the empirical
validation of them. As many authors mentioned
[3]1.[21],[28],[33], the empirical validation employing
experiments or case studies is fundamental to assure that the
metrics are really significant and useful in practice. We are
currently planning a controlled experiment for corroborating if
the proposed metrics could be useful as early indicators of the
OCL expression understandability. Moreover, once we have
empirically validated these metrics at a expression level, we

will be able to extend them at a class level.

We believe that is hecessary to define other metrics for OCL
expressions which capture the intrinsic complexity of an OCL
expression, for example the complexity related to the use of
tuples, nested “let” expressions, the reuse of variables over
multiple OCL expressions, etc.
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