Workshop Materials of the 1% Workshop on

Quality in Modeling
Co-located with
the ACM/IEEE 9th International Conference on

Model Driven Engineering Languages and Systems
(MoDELS 2006)

October 1%, 2006
Genoa, Italy

Organized by:
Ludwik Kuzniarz
Jean Louis Sourrouille
Ragnhild Van Der Straeten
Miroslaw Staron
Michel Chaudron
Alexander Forster
Gianna Reggio

Organizers

Ludwik Kuzniarz - chair
Blekinge Institute of Technology, Ronneby, Sweden

lku@bth.se

Jean Louis Sourrouille — co-chair, review process
INSA Lyon, Villeurbanne Cedex, France
Jean-Louis.Sourrouille@insa-Lyon. fr

Ragnhild Van Der Straeten — co-chair, publication process
System and Software Engineering Lab, Brussels, Belgium

rvdstrae(@vub.ac.be

Miroslaw Staron - publicity
IT University, Gothenburg, Sweden
miroslaw.staron@ituniv.se

Michel Chaudron — workshop materials
Eindhoven University of Technology, The Netherlands
m.r.v.chaudron@tue.nl

Alexander Forster
University of Paderborn, Germany
alfo@uni-paderborn.de

Gianna Reggio
Universita di Genova, Italy
gianna.reggio@unige.it

mailto:lku@bth.se?subject=UML2002Workshop
mailto:Jean-Louis.Sourrouille@insa-Lyon.fr
mailto:rvdstrae@vub.ac.be
mailto:miroslaw.staron@ituniv.se
mailto:m.r.v.chaudron@tue.nl
mailto:alfo@uni-paderborn.de
mailto:gianna.reggio@unige.it

Program committee

Uwe Assmann, TU Dresden, Germany

Colin Atkinson, TU Braunschweig, Germany

Thomas Baar, EPFL, Switzerland

Benoit Baudry, IRISA-INRIA, Rennes, France

Lionel C. Briand, Simula Research Labs, Norway
Betty Cheng, Michigan State University,USA
Krzysztof Czarnecki, University of Waterloo , Canada
Alexander Eyged, University of Southern California, USA
Robert France, Colorado State University, USA
Gregor Engels, University of Paderborn, Germany
Martin Gogolla, University of Bremen, Germany
Reiko Heckel, Leicester University, UK

Heinrich Hussmann, TU Munchen, Germany

Anneke Kleppe, University Twente, The Netherlands
Mieczyslaw Kokar, Northeastern University, USA
Kai Koskimies, TU Tampere, Finland

Ludwik Kuzniarz, BTH, Sweden

Alexander Pretschner, ETH Zurich, Switzerland
Gianna Reggio, Universita di Genova, Italy

Bernhard Rumpe, Technische Universitdt Braunschweig, Germany
Pierre-Yves Schobbens, FUNDP, Belgium

Bran Selic, IBM Rational Software, Canada

Jean Louis Sourrouille, INSA Lyon, France

Miroslaw Staron, IT University, Sweden

Perdita Stevens, University of Edinburgh, UK

Hans Vangheluwe, McGill, Canada

i

Preface

Quality assessment and assurance constitute an important part of software engineering. The
issues of software quality management are widely researched and approached from multiple
perspectives and viewpoints. The introduction of a new paradigm in software development —
namely Model Driven Development (MDD) and its variations (e.g., MDA [Model Driven
Architecture], MDE [Model Driven Engineering], MBD [Model Based Development], MIC
[Model Integrated Computing]) — raises new challenges in software quality management, and
as such should be given a special attention. In particular, the issues of early quality
assessment, based on models at a high abstraction level, and building (or customizing the
existing) prediction models for software quality based on model metrics are of central
importance for the software engineering community.

The workshop is continuation of a series of workshops on consistency that have taken place
during the subsequent annual UML conferences and recently MDA-FA. The idea behind this
workshop is to extend the scope of interests and address a wide spectrum of problems related
to MDD. It is also in line with the overall initiative of the shift from UML to MoDELS.

The goal of this workshop is to gather researchers and practitioners interested in the emerging
issues of quality in the context of MDD. The workshop is intended to provide a premier
forum for discussions related to software quality and MDD. And the aims of the workshop
are:

- Presenting ongoing research related to quality in modeling in the context of MDD,

- Defining and organizing issues related to quality in the MDD.

The format of the workshop consists of two parts: presentation and discussion. The
presentation part is aimed at reporting research results related to quality aspects in modeling.
Seven papers were selected for the presentation out of 16 submissions; the selected papers are
included in these proceedings. The discussion part is intended to be a forum for exchange of
ideas related to understanding of quality and approaching it in a systematic way.

Ludwik Kuzniarz
Workshop chair

111

v

Table of Contents

Efficient Decision of Consistency in UML Diagrams with Constrained Generalization
Sets
Azzam Maraee, Mira Balaban

Consistency of Business Process Models and Object Life Cycles
Ksenia Ryndina, Jochen M. Kiister, Harald Gall

Model Metrics and Metrics of Model Transformation
Motoshi Saeki, Haruhiko Kaiya

Graph-Based Tool Support to Improve Model Quality
Tom Mens, Ragnhild Van Der Straeten, Jean-Francois Warny

Model Driven Development of a Service Oriented Architecture (SOA) Using Colored
Petri Nets
Vijay Gehlot, Thomas Way, Robert Beck, Peter DePasquale

A Qualitative Investigation of UML Modeling Conventions
Bart Du Bois, Christian Lange, Serge Demeyer, Michel Chaudron

OCL2: Using OCL in the Formal Definition of OCL Expression Measures
Luis Reynoso, Marcela Genero, Mario Piattini

15

31

47

63

79

95

vi

Efficient Decision of Consistency in UML
Diagrams with Constrained Generalization Sets

Azzam Maraee! and Mira Balaban? *

! Information Systems Engineering Department
> Computer Science Department
Ben-Gurion University of the Negev, Beer-Sheva 84105, ISRAEL.

mari@bgu.ac.il, mira@cs.bgu.ac.il

Abstract. UML class diagrams are central to software development and
to ontology engineering. The quality of a UML model affects the resulting
software or ontology. One problem that relates directly to quality has to
do with the consistency of the designed model. In presence of constraints,
it is possible to specify class diagrams that cannot be realized by any
finite, non-empty world. We believe that early detection of inconsistencies
improves the quality of modeling, and yields a more reliable software.
In this paper we present an algorithm for determining consistency of
class diagrams with constrained generalization sets. The algorithm is
simple and efficient, and can be easily added to case tools. It improves
over existing methods that require exponential resources. We study the
limitations of this approach in presence of unrestricted class hierarchy
structures.

Keywords:
UML class diagram, finite satisfiability, cardinality constraints, generalization
set constraints, class hierarchy structure.

1 Introduction

The Unified Modeling Language (UML) is nowadays the industry standard mod-
eling framework, including multiple visual modeling languages, referred to as
UML models. Traditionally, UML models are used for analysis and design of
complex systems. Their relevance has increased with the advent of the Model-
Driven Development (MDD) approach, in which analysis and design models play
an essential role in the process of software development. Recently, with the emer-
gence of web-enabled agent technology, UML models are used also for ontology
representation, construction and extraction [1, 7, §].

Consequently, it is highly important that UML models provide a reliable
support for the designed systems, and are subject to stringent quality assurance
and quality control criteria [22]. Indeed, an extensive amount of research efforts
is devoted to formalization of UML models, specification of their semantics,

* Supported by the Lynn and William Frankel Center for Computer Sciences.

and development of reasoning and correctness checking methods [3, 17]. Current
UML case tools still do not test diagram correctness, and implementation lan-
guages still do not, enforce design level constraints. Yet, with the prevalence of
the Model Driven Engineering approach, it is expected that all information in a
design model will be effective in its successive models.

Class Diagrams are probably the most important and best understood among
all UML models. A Class Diagram provides a static description of system com-
ponents. It describes systems structure in terms of classes, associations, and
constraints imposed on classes and their inter-relationships. Constraints provide
an essential means of knowledge engineering, since they extend the expressiv-
ity of diagrams. UML supports class diagram constraints such as cardinality
constraints, class hierarchy constraints, and inter-association constraints. Ex-
ample 1 below, presents a class diagram that includes cardinality and hierarchy
constraint.

Example 1. Figure 1 presents a class diagram with three classes named Aduvi-
sor, MasterStudent and PhDStudent, one association named Advise between in-
stances of the Advisor and the MasterStudent classes, with roles named advisor
and ma, respectively, a cardinality constraint that is imposed on this association,
and a genralization set with a super class Advisor and sub-classes MasterStudent
and PhDStudent. The cardinality constraint states that every Master student
must be advised by exactly one Advisor, while every Advisor must advise ex-
actly two Master students. The generalization set states that Master students
and PhD students are Advisors as well, implying that the Advisor of a Master
student can be a Master or a PhD student.

Advisor
acdvisor

Master_Student Ph.D_Student

Advise

ma

Fig. 1. A Class Diagram that is Strongly Unsatisfiable

In the presence of constraints, a model diagram may turn vacuous as it
might impose constraints cannot be satisfied. For class diagrams, it means that
no intended world can satisfy all constraints simultaneously. In Figure 1, the
interaction between the cardinality constraint of the Advise association and the
class hierarchy causes an inconsistency problem: Every Master student must
have a single Advisor, while each Advisor should advise two Master students.

However, since the MasterStudent class specializes the Advisor class, every Mas-
ter student must advise two Master students which have each a single Advisor.
In order to satisfy this constraint, the Master class must be either empty or
infinite. Since the intention behind class diagrams is to describe non-empty and
finite classes, this diagram does not admit any intended world. Such diagrams
are termed strongly unsatisfiable.

Inconsistency problems decrease the quality of a UML model, since they re-
flect a symptom of bug in the analysis phase [5]. Inconsistency might delay sys-
tem development and increase its cost [14]. [15] shows that defects often remain
undetected, even if the model is read attentively by practitioners. Therefore, it
is necessary to enrich case tools with automatic inconsistency checking.

The problem of satisfiability has been studied in the context of various kinds
of conceptual schemata [2, 4, 6, 9, 10, 16, 21]. There are methods for testing
strong satisfiability, for detecting causes for unsatisfiability, and for heuristic
suggestions for diagram correction. Yet, no method provides a feasible solution
for detecting strong unsatisfiability for the combination of cardinality constraints
and UML2.0 class hierarchy constraints.

In this paper, we present an algorithm for testing the satisfiability of UML
class diagrams that include binary associations and class hierarchies with “dis-
joint/overlapping” and “complete /incomplete” constraints. The algorithm is based
on a reduction to the algorithm of Lenzerini and Nobili [16] that was applied
only to ER-diagrams without class hierarchies. It is simple and feasible since it
adds in the worst case only a linear amount of entities to the original diagram.
It improves over previous extensions of the Lenzerini and Nobili method that
require the addition of an exponential number of new entities to the original dia-
gram [6]. An implementation of our method within a UML case tool is currently
under development. The paper is organized as follows: Section 2 summarizes rel-
evant methods for detecting strong unsatisfiability in class diagrams, introduces
the Generalization Set notion of UML2.0, and classifies different class hierarchy
structures. In Section 3 we present polynomial time algorithms for testing satis-
fiability of UML class diagrams with unconstrained generalization sets. Section
4 extends the algorithms to operate on constrained generalization sets, and in-
vestigates the limits of these methods. Section 5 is the conclusion and discussion
of future work.

2 Background

The standard set theoretic semantics of class diagrams associates a class diagram
with class diagram instances in which classes have extensions that are sets of
objects that share structure and operations, and associations have extensions
that are relationships among class extensions. We denote class symbols as C,
association symbols as A, and role symbols as rn. Henceforth, we shorten ex-
pressions like "instance of an extension of C" by "instance of C'" and "instance
of an extension of A" by "instance of A".

A cardinality constraint (also termed multiplicity constraint) imposed on a
binary association A between classes C; and Cy with roles rny, rno, respectively,
is symbolically denoted:

A(rny : C1[ming, max1],rng : C3] ming, maxsa)) (1)

The multiplicity constraint [ming, max;] that is visually written on the rn; end
of the association line is actually a participation constraint on instances of Cs.
It states that an instance of Cs can be related via A to n instances of C, where
n lies in the interval [ming, max1]. A class hierarchy constraint between a super
class C7 and a subclass Cs is written IS A(Cs, C1) and called also ISA constraint.
It states a subset relation between extensions of Cy and C;.

A legal instance of a class diagram is an instance where the class and as-
sociation extensions satisfy all constraints in the diagram. A class diagram is
satisfiable if it has a legal instance. However, following [16], it appears that a
more meaningful satisfiability property involves intended (desirable) instances,
in which all class extensions are finite, and not all are empty. Instances in which
all class extensions are empty are termed empty instances. A class diagram is
strongly satisfiable if for every class symbol in the diagram there is an instance
world with a non-empty and finite class extension®. Lenzerini and Nobili also
show, for the restricted version of class diagrams that they deal with, that a
strongly satisfiable class diagram has an instance in which all class extensions
are non-empty and finite. The problem of testing whether a class diagram is
strongly satisfiable is called the consistency problem of class diagrams.

2.1 Methods for Testing Consistency of Class Diagrams

The method of Lenzerini and Nobily is defined for Entity-Relationship (ER) dia-
grams that include Entity Types (Classes), Binary Relationships (Binary Asso-
ciations), and Cardinality Constraints. The method consists of a transformation
of the cardinality constraints into a set of linear inequalities whose size is poly-
nomial in the size of the diagram. Strong satisfiability of the ER diagram reduces
to solution existence of the associated linear inequalities system. The linear in-
equalities system is defined as follow:

1. For each association R(rni : Ci[mini, mazxi],rne : Calming, maxs]) insert
four inequalities:

r>ming-cy, T < Mary-cy, T > MmMing-ca, T < MaAx1 - C2
2. For every entity or association symbol 7" insert the inequality: 7' > 0

Lenzerini and Nobili also present a method for identification of causes for
non-satisfiability. This method is based on a transformation of the conceptual
schema into a graph and identification of critical cycles. Similar approaches are

3 The notions of satisfiability and strong satisfiability were introduced by Lenzerini
and Nobili [16] with respect to Entity-Relationship diagram.

introduced in [21, 9]. Hartman, in [10] further develops methods for handling
satisfiability problems in the context of database key and functional dependency
constraints. Heuristic methods for constraint corrections are presented in [11, 12].

Calvanese and Lenzerini, in [6], extend the inequalities based method of [16]
to apply to schemata with class hierarchy constraints. The expansion is based
on the assumption that class extensions may overlap. They provide a two stage
algorithm in which the consistency problem of a class diagram with ISA con-
straints is reduced into the consistency problem of a class diagram without ISA
constraints. Then, similarly to [16], they check satisfiability of the new class di-
agram by deriving a special system of linear inequalities (different from that of
116]).

The class diagram transformation process of [6] is fairly complex, and might
introduce, in the worst case, an exponential number, in terms of the input di-
agram size, of new classes and associations. The method was further simplified
in [5], were class overlapping is restricted to class hierarchy alone. The simpli-
fication of [5] reduces the overall number of new classes and associations, but
the worst case is still exponential. Example 2 presents the application of [5] to
Figure 1.

Ezample 2. The application of the [5] method yields four classes and eight asso-
ciations. Each class and association is represented by a variable in the resulting
inequalities system. The variables are:

1. Class variables: a; for an Advisor that is neither a Master nor a PhD; as
for an Advisor that is a Master but not a PhD; a3 for an Advisor that is a
PhD but not a Master; a4 for an Advisor that is simultaneously a Master
and a PhD;

2. Association variables: {ad;;|1 < i < 4 A j € {2,4}}. Every specialized
association relates two new classes, one for the advisor role and the other
for the ma role. The indexes represent the index of the class variable. For
example the variable adis represents the specialization of the Advise associ-
ation to an association between Advisors who are neither Masters nor PhD
students (the a; variable) and Adwvisors specialized to Masters but not to
Ph.Ds (the ag variable).

The inequalities system below results from application of the method of [5] to
Figure 1. Equations 1-8 translate the 2..2 multiplicity, equations 9-12 translate
the 1..1 multiplicity, and the inequalities in 13-26 represent the satisfiability
conditions. The inequalities system is unsolvable, implying that the class diagram
in Figure 1 is inconsistent.

- 1, 2. 2a1 < ad12 + ad14, 2a1 > ad12 + ad14

- 3, 4. 2a2 ; ad22 + ad24, 2a2 g ad22 + ad24
— 5,6. 2a3 < adgzo + adsg, 2a3 > adso + adsy
- 7,8. 2a4 < adgo + adyg, 2a4 > adgo + adyy

—9,10. a9 < adiz + adas + adse + adya, as > adiz + adas + adsas + adys
- 11, 12. a4 S ad14 + ad24 + ad34 + ad44, a4 2 ad14 + ad24 + ad34 + ad44

- 13 -24. ay,0a2,0as3, a4, ad127 ad147 ad227 ad247 ad327 ad347 ad427 ad44 Z 0
— 25. ay 4+ az +asz +aq >0,
— 26. adyg + adi4 + adss + adoy + adss + adzy + adys + adgg > 0

2.2 UML2.0 Class Hierarchy Concepts: Generalization Sets

In UML2.0 class hierarchy constraints are expressed using the Generalization Set
(GS) concept, which is similar to the former class hierarchy grouping construct
[19]. GSs may be constrained as follows [19, 20]:

1. complete - Every instance of the super class must be an instance of at least
one of the subclasses in the set.

2. incomplete- There are one or more instances of the particular general super-
class of the that are not instances of any subclass in the set.

3. disjoint- The subclasses in the set are mutually exclusive.

4. overlapping - The subclasses in the set are not mutually exclusive. The spe-
cific subclasses in the set have one or more members in common.

The GS constraints can be combined to form one of the following valid com-
bination: {complete, disjoint}, {incomplete, disjoint}, {complete, overlapping},
{incomplete, overlapping}. For example, Figure 2 includes a constrained GS that
means: (1) there is at least one Advisor who is neither a Master nor a PhD (2)
there is no Advisor who is both a Master and a PhD.

1 Aghvisor
advisar
Advise ﬁﬁdisjomt, incomplete }
q | Master_Rudent Ph.D_Student

ma

Fig. 2. Constrained Generalization Set

2.3 Classification of Class Hierarchy

Class hierarchy can arise in various structures that affect the satisfiability deci-
sion algorithm. We distinguish three parameters that determine the class hier-
archy structures and content:

1. Hierarchy Structure: ISA constraints can form three graph structures:
(a) Tree Structure: A subclass has only one super class, For example:
Figure 1.

(b) Acyclic Structure: Multiple inheritance is allowed, but the undirected
graph formed by the ISA constraints is acyclic. For example, in Figure
3, the hierarchy structure is not a tree, as F' is a sub class of both C
and D, but the undirected class hierarchy graph as acyclic. The acyclic
structure prevents multiple inheritance with a common ancestor-class.
(c) Graph Structure: unrestricted multiple inheritance. For example, Fig-
ure 4.
2. Presence of GS Constraints.
3. Number of GSs per Super-Class: The case of multiple GSs per super-
class is distinguished from the simpler case of a single GS per super-class.
For example in Figure 4, class A has 2 GSs.

R

Fig. 3. Unconstrained Acyclic Hierarchy Structure

We use an abbreviated notation that specifies the value of each of the three
parameters in a hierarchy under consideration. The hierarchy structure is de-
noted by one of {T,A,G}, standing for Tree structure, Acyclic graph, and Graph,
respectively. The presence of GS constraints is denoted by C, and the presence of
multiple GSs per super-class is denoted by M. The resulting hierarchy variants
are: [T]-GS for tree structured unconstrained hierarchy with a single GS per
super-class; [T-C]-GS for tree structured constrained GSs with a single GS per
super-class; [T-C-M]-GS for a constrained tree hierarchy, with multiple GS per
super class, [A]-GS for an unconstrained acyclic hierarchy; [A-C]-GS for a con-
strained acyclic hierarchy; [G]-GS for unconstrained graph hierarchy; [G-C]-GS
for a constrained graph hierarchy. The multiple GSs per super-class is irrelevant
outside the tree structure hierarchy.

3 Testing Consistency of UML2.0 class diagram with
Unconstrained Generalization Sets

In this section, we present a method for testing the strong satisfiability of class
diagrams with unconstrained GSs. We start with a tree structured hierarchy [T]-
GS, and extend it to the rest of the hierarchical structures: {[T-M],[A],[G]}-GS.

A

D s 1 A cs 2
| |
E

e PN

Fig. 4. Unconstrained Graph Hierarchy Structure

The method builds on top of the Lenzerini and Nobili [16] algorithm described
in Section 2. We reduce the consistency problem of a class diagram with ISA
constraints, into the consistency problem of a class diagram that is handled
by [16]. First, we state that strong satisfiability implies a fully populated legal
instance also in the presence of generalization sets. The proof is similar to the
proof for the case of the restricted ER diagrams, as presented in [16]. The result
applies only to acyclic structures.

Theorem 1. If a class diagram with acyclic hierarchy structure and possibly
constrained generalization sets is strongly satisfiable, then it has an instance in
which all class extensions are non-empty and finite.

Testing the Consistency of Class Diagrams with [T]-GS
Algorithm 1:

— Input: A class diagram CD that includes binary associations and [T]-GS.
— Output: True, if CD is strongly satisfiable; false otherwise.
— Method:

1. Class diagram reduction - Create a new class diagram C'D’ as follows:

(a) Initialize CD’ by the input class diagram CD.

(b) Remove from C'D’ all generalization set constructs.

(c) For every removed generalization set construct create new binary
associations between the superclass to the subclasses, with 1..1 par-
ticipation constraint for the subclass (written on the super class edge
in the diagram) and 0..1 participation constraint for the super class.

2. Apply the Lenzerini and Nobili algorithm to CD’.

Ezample 3. Figure 5 is the reduced class diagram of Figure 1, following step
1 in the algorithm. Applying the inequalities method of [16] (step 2) yields the
inequalities system presented below. We describe the inequalities system for Fig-
ure 5 using the symbols a for Advisor, m for Master, p for PhD, ad for advise
and isai, 1sas for the new associations ISA1, and 1.5A2 respectively.

ad > 2a, ad < 2a, ad < m, ad > m, isa; > m, isa; < m, isa; < a, isaz > p,
1sa2 < p, 1saz < a
This system has no solution and therefore the [16] algorithm returns False. The

same result was obtained in Section 2 by applying the [6],[5] algorithm to Ex-
ample 1.

1

Adwisor
aclvisor
1 1
Advise 1541 |sA2
0.1 0.1
Master_Student Ph.D_Student

ma

Fig. 5. The Reduced Class Diagram of Figure 1

Claim 1: [Correctness of Algorithm 1] Algorithm 1 tests for satisfiability
of class diagrams with [T]-GS.

Proof. (sketched) the claim builds on showing that the translated class diagram
CD’ preserves the satisfiability of the input class diagram C'D. Full proof appears
in [18]

Claim 2: [Complexity of Algorithm 1] Algorithm 1 adds to the [16] method
an O(n) time complexity, where n is the size of the class diagram (including
associations, classes and ISA constraints).

Proof. The additional work involves the class diagram reduction, which creates
a class diagram with the same set of classes and one additional association that
replaces every class hierarchy constraint. Since there is a linear additional work
per generalization set, the overall additional work is a linear to the size of the
class diagram.

Extensions for {[M], [A], [G]}-GS

Algorithm 1 applies properly also to the rest of the unconstrained structured:
{[M], [4], [G]}-GS. The extensions preserve the correctness of the algorithm
since the reduction of strong satisfiability of C'D to that of C'D’ is still correct.
The more complex structure does not break the reduction because in the lack
of constraints on the GSs, ISA constraints can be simulated by regular links
between the involved classes. Different instances of a super-class C in CD’ can
be unified into a single instance of C' in C'D, without breaking any constraints.

4 Testing the Consistency of Class Diagrams with
Constrained Generalization Sets

In order to test satisfiability under constraints, the consistency problem of a
class diagram C'D with ISA constraints, is reduced into the consistency problem
of a “constrained” class diagram CD’ without class hierarchy. The additional
constraints on C'D’ preserve the constraints on the GSs of C'D. The inequalities
system obtained by applying the method of [16] to C'D’ is expanded with new
inequalities that reflect the GS constraints. We begin with an algorithm for
[T-C]-GS. Then we show that it can be extended for [T-C-M]-GS. Finally we
explore the limits of the algorithm for the {[G-C], [A-C]}-GS structures, where
we show that for certain GS constraints it applies, while for other constraints it
falls short for deciding consistency.

4.1 Testing the Consistency of Class Diagram with [T-C]-GS

Algorithm 2

— Input: A class diagram C'D that includes binary associations and [T-C]-GS.
— Output: True, if CD is strongly satisfiable; false otherwise.
— Method:
1. Class diagram reduction:
(a) Steps l.a, 1.b, 1.c from Algorithm 1.
(b) For every generalization set C, C1, ..., Cy, in CD, add counstraint Const
on its classes as follows:
for disjoint/overlapping constraint, Const is: “there is no/(at least
one) instance of class C' who is associated with more than one in-
stance from C1,... C,, via the I.SA links”;
for complete/incomplete constraint, Const is: “all/part of the in-
stances of class C are associated with the instances of the classes
Ci,...,C, via the ISA links”.
2. Inequalities system construction:
(a) Create the inequalities system for C'D’ according to the Lenzerini
and Nobili algorithm.
(b) For every constraint Const added in step 1b, extend the inequalities
system, as follows:

i. Const = disjoint,incomplete: C > Z?:l Cj
ii. Const = disjoint,complete: C' = Z?:l C;
iii. Const = overlapping, complete: C < 22:1 C;

iv. Const = overlapping, incomplete: Vj € [1,n].C > C;

10

Ezample 4. Consider Figure 2. The interaction between the cardinality con-
straint, the hierarchy, and the GS constraints causes an inconsistency problem.
Applying the method of [16] with the extension in Algorithm 2, step 2.b.i, to the
reduced class diagram of Figure 2 yields the unsolvable inequalities system (same
variables from Example 3) presented below, implying that the class diagram is
inconsistent.

1. ad > a, ad < a, ad < m, ad > m, isa; > m, isa; < m, isa; < a, iSas > P,
1sa2 < p, isaz < a
2. a>m+np.

Claim 3: [Correctness of Algorithm 2] Algorithm 2 tests for strong satisfi-
ability of class diagrams with [T-C]-GS hierarchy structure.

Proof. (Sketched) The claim builds on showing that the translated class diagram
CD’ together with its associated constraints, preserves the strong satisfiability
of the input class diagram CD. As for the second step of the algorithm, we
show that for each constraint the additional inequality (or equality) provides
a necessary and sufficient condition for the existence of a C'D’ instance that
satisfies the generalization set constraint. For example, inequality [i] in step 2.b
of Algorithm 2 characterizes the existence of a CD’ instance that satisfies the
referenced disjoint, incomplete constraint. Note that the additional inequalities
are not exclusive. For example, inequality [i] implies inequality [iv], which implies
the existence of a C'D’ instance that satisfies an disjoint, incomplete constraint.
For full proof consult [18].

Claim 4: [Complexity of Algorithm 2] Algorithm 2 adds an O(n) time
complexity to the [16] method, where n is the size of the class diagram (including
associations, classes and ISA constraints).

Proof. The additional work involves the class diagram reduction, which creates
a class diagram with the same set of classes and one additional association that
replaces every class hierarchy constraint. In addition, every GS constraint adds
a single inequality. Since the work per generalization set is linear in its size, the
overall additional work is linear in the size of the class diagram.

4.2 Extension for Class Diagrams with [T-C-M]-GS Hierarchy
Structure

Algorithm 2 can determine consistency in class diagrams with [T-C-M]-GS hi-
erarchy structure. We notice that the presence of single GS constraints, as in
disjoint, requires refinements of the generalization set constraints.

disjoint: C' > Z?:l Cj.

complete: C' < Z?:l C;.

incomplete: Vj € [1,n].C > C;.

overlapping: No additional inequality is needed here.

-

11

4.3 Extension For Class Diagrams with {[G-C], [A-C]}-GS
Hierarchy Structure - Exploring the Limits of the Suggested
Method

The combination of GS constraints with a non-tree hierarchy structure provides
additional expressivity, but makes consistency decision harder. Our method does
not extend to the full case [G-C]-GS. Therefore, we carefully investigate its
limits. We do it in a stepwise manner. First, we investigate [G-C]-GS hierarchies
with a single G'S constraint. Then, we extend our investigation to pairs of GS
constraints.

[G-C]-GS Hierarchy Structure with a Single GS Constraint The Re-
finements for single constraint inequalities is like the ones in Section 4.2:

1. Only overlapping or complete: Our method extends properly. Inconsis-
tency problems caused by the complete constraint are directly reflected in the
inequalities system and force it to be unsolvable. The overlapping constraint
can alway be satisfied.

2. Only disjoint: Our methods cannot determine consistency of class diagrams
that include a disjointness GS constraint. The disjointness constraint can
cause problems of enforced class emptiness or enforced class infinity. Both
cannot be detected by our method.

(a) Emptiness: The emptiness problem arises in [G-C]-GS structures that
cyclic (as undirected graphs) and are assigned a disjointness constraint.
For example, in Figure 4, the addition of a disjoint constraint enforces
and empty extension to F.

(b) Infinity: Infinity is caused by the interaction between cardinality con-
straints and a graph hierarchy structure. In Figure 6, for example, every
legal instance is has either an empty or infinite extension for C.

3. Only incomplete : Our methods cannot determine consistency of class dia-
grams that include incomplete GS constraint. An incomplete constraint can
cause an enforced infinity problem that cannot be detected by our method.
For example, in Figure 6, if we replace the disjoint constraint by an incom-
plete constraint, and let class A be a subclass of E, then legal instance is
has either an empty or infinite extension for D

[G-C]-GS Hierarchy Structure with Pairs of GS Constraints Our method
can handle the pair constraint complete, overlapping, and falls short of handling
either complete, disjoint or incomplete, disjoint.

Extension for [A-C]-GS. The problems which arise in unrestricted graph
hierarchy with G'S constraints do not arise when the hierarchy structure is acyclic
(as undirected graph). Every instance of a class with multiple super-classes does
not violate the disjointness constraint since all the parents of this super-classes
are pairwise disjoint. Therefore, our method recognizes all the inconsistency
problems occurring in this structure, both in the single constraint case and in
the pair constraint case.

12

disjoint

[® [[e [[®

Fig. 6. Graph Hierarchy: Finitely Inconsistent Problem

Summary of the Extensions

Our method succeeds in determining inconsistency for the following cases: [G]-GS
and {[T-C], [T-C-M], [A-C]}-GS with all the GS constraints. For the [G-C]-GS
case, the complete and overlapping constraints can be handled, while the disjoint
and incomplete cannot. The emptiness problem is instigated in [1, 3, 13].

5 Conclusions and Future Work

In this paper, we introduced a simple and effective algorithm for checking strong
satisfiability of class diagrams with constrained GS. The advantage of our method
lies in its simplicity and efficiency. In this paper we have also studied the limits
of this method with respect to the interaction between class hierarchy structure
to the kind of GS constraints.

In the future, we plan to explore the possible extension of the presented
method for testing inconsistency in the presence n-ary association with complex
cardinality constraints, qualifier constraints, and association classes.

Another direction involves the possibility of expanding our method with
heuristics for detecting and repairing inconsistency constraints, following the
ideas of [11, 12]. The intension is to apply similar strategies for repairing incon-
sistency in UML2 class diagrams with class hierarchy constraints.

References

[1] Baclawski, K., Kokar, M., Smith, J., Letkowski, J.: Consistency Checking of
Ontologies Expressed in UML. International Conference on Formal Ontolo-
gies in Information Systems, (2001)

[2] Balaban, M., Shoval, P.. MEER-An EER Model Enhanced with Structure
Methods. Information Systems, Volume 27, Issue 4 (2002)

[3] Berardi, D., Calvanese, D., Giacomo, De.: Reasoning on UML class diagrams.
Artificial Intelligence (2005)

[4] Boufares, F., Bennaceur, H.: Consistency Problems in ER-schemas for
Database Systems. Information Sciences, Issue 4 (2004)

13

[5] Cadoli, M., Calvanese, D, De Giacomo, G, Mancini, T.: Finite Satisfiability
of UML Class Diagrams by Constraint Programming. In Proc. of the CP
2004 Workshop on CSP Techniques with Immediate Application, (2004)

[6] Calvanese, D., Lenzerini, M.: On the Interaction between ISA and Cardinality
Constraints. Proc. of the 10th IEEE Int. Conf. on Data Engineering (1994)

[7] Cranefield, S., Hausteiny, S.: Purvis, M.: UML-Based Ontology Modelling for
Software Agents. Proc. of Ontologies in Agent Systems Workshop, Montreal,
(2001)

[8] Guizzardi, G., Wagner G., Guarino, N., van Sinderen, M.: An Ontologically
well-Founded Profile for UML Conceptual Models. 16th International Confer-
ence on Advanced Information Systems Engineering (CAISE), Latvia, (2004)

[9] Hartman, S.: Graph Theoretic Methods to Construct Entity-Relationship
Databases. LNCS, Vol. 1017, (1995)

[10] Hartman, S.: On the Implication Problem for Cardinality Constraints and
Functional Dependencies. Ann.Math.Artificial Intelligence, (2001)

[11] Hartman, S.: Coping with Inconsistent Constraint Specifications. LNCS,
Vol. 2224, (2001)

[12] Hartman, S.: Soft Constraints and Heuristic Constraint Correction in
Entity- Relationship Modeling. LNCS, Vol. 2582, (2002)

[13] Kaneiwa, K., Satoh, S.: Consistency Checking Algorithms for Restricted
UML Class Diagrams. In Proceedings of the Fourth International Symposium
on Foundations of Information and Knowledge Systems (2006)

[14] Kozlenkov, A., Zisman, A.: Discovering Recording, and Handling Incon-
sistencies in Software Specifications. Int. J. of Computer and Information
Science 5(2), (2004)

[15] Lange, C., Chaudron, M., Muskens. J.: In Practice: UML Software Archi-
tecture and Design Description. IEEE Software, vol. 23, no. 2, (2006)

[16] Lenzerini, M. Nobili, P.: on the Satisfiability of Dependency Constraints in
Entity-Relationship Schemata. Information Systems, Vol. 15, 4, (1990)

[17] Liang. P.: Formalization of Static and Dynamic UML Using Algebraic. Mas-
ter’s thesis, University of Brussel (2001)

[18] Maraee, A.: Consistency Problems in UML Class Diagram. Master’ thesis,
Ben-Gurion University of the Negev (2006)

[19] OMG.: UML 2.0 Superstructure Specification, (2005)

[20] Rumbaugh., J., Jacobson, G., Booch, G.: The Unified Modeling Language
Reference Manual Second Edition. Adison Wesley (2004)

[21] Thalheim, B.: Entity Relationship Modeling, Foundation of Database Tech-
nology. Springer-Verlag, (2000)

[22] Unhelkar, B.: Verification and Validation for Quality of UML 2.0 Models.
Addison-Wesley,(2005)

14

Consistency of Business Process Models
and Object Life Cycles

Ksenia Ryndina'?, Jochen M. Kiister!, and Harald Gall?

! IBM Zurich Research Laboratory, Saumerstr. 4
8803 Riischlikon, Switzerland {ryn, jku}@zurich.ibm.com
2 Department of Informatics, University of Zurich, Binzmiihlestr. 14
8050 Zurich, Switzerland gall@ifi.unizh.ch

Abstract. Business process models and object life cycles can provide
two different views on behavior of the same system, requiring that these
models are consistent with each other. Consistency is an important qual-
ity attribute for models, but in this case it is difficult to reason about
consistency since the relation between business process models and ob-
ject life cycles is not well-understood. We clarify the relation between
these two model types and propose an approach to establishing their
consistency. Object state changes are first made explicit in a business
process model and then the process model is used to generate life cycles
for each object type used in the process. We define two consistency no-
tions for a process model and an object life cycle and express these in
terms of conditions that must hold between a given life cycle and a life
cycle generated from the process model.

1 Introduction

Business process models [9] are nowadays a well-established means for represent-
ing business processes in terms of tasks that need to be performed to achieve
a certain business goal. In addition to tasks, business process models also show
how business objects are passed between tasks in a process. Complete behav-
ior of business objects is usually modeled using a variant of a state machine or
a statechart [19] called an object life cycle (see e.g. [5]). Object life cycle model-
ing is valuable at the business level to explicitly represent how business objects
go through different states during their existence.

There are situations where it is beneficial or even required to use both busi-
ness process models and object life cycles. Consider an insurance company that
uses business process models for execution and also maintains object life cycles
for business objects. In this case, life cycles serve as a reference to employees for
tracking progress of business objects. For instance, when an employee receives
an enquiry about the state of a submitted claim, he/she can explain the current
state of the claim to the customer in the context of the entire claim life cycle
that shows all the possible states and transitions for claims. Another example
is encountered in compliance checking, where existing business process models
are benchmarked against best practice models (e.g. ACORD [2] and IFW [4])

15

given as object life cycles. Given a best practice object life cycle, it is required
to ensure that an existing business process model is compliant with it.

In situations such as the ones described above, where both business process
models and object life cycles are used, it is required that these models are con-
sistent with each other. Inconsistencies can give rise to unsatisfied customers or
to compliance violations. For example, customer discontent may emerge if the
insurance company employee incorrectly informs the customer about the pro-
cessing that still needs to be done before a claim is settled. On the other hand,
inconsistencies between an existing process model and a best practice life cycle
lead to compliance violations that can cause legal problems for a company.

Consistency of object-oriented behavioral models, such as scenarios and state
machines, has already been extensively studied [11,12,18,21]. However, the re-
lation between business process models and object life cycles is not yet well-
understood, which makes it impossible to reason about their consistency.

In this paper, we present our approach to establishing consistency of a busi-
ness process model and an object life cycle. Prototype tool support for this ap-
proach has been implemented as an extension to the IBM WebSphere Business
Modeler [1]. The remainder of the paper is structured as follows: In Section 2,
we introduce subsets of UML2.0 Activity Diagrams (UML AD) and State Ma-
chines (UML SM) [3] chosen to represent business process models and object life
cycles, respectively. In Section 3, we give an overview of the proposed solution,
followed by a detailed description of the solution in the next three sections. Sec-
tion 4 describes how we augment business process models to explicitly capture
object state changes. Then in Section 5, we present a technique for generating
life cycles for each object type used in a given process. In Section 6, we define
two consistency notions for a business process model and an object life cycle and
express these in terms of conditions that must hold between the given life cycle
and the life cycle generated from the process model. Finally, we discuss related
work in Section 7, and conclusions and future work in Section 8.

2 Business process models and object life cycles

UML AD constitute one of the most widely used languages for business process
modeling. In this paper, we consider process models created using a subset of
UML AD that includes the following elements: action nodes that represent tasks
in a process and control nodes that show splits and merges of process execution
paths, as well as beginning and end of process execution. Control nodes com-
prise decision and merge nodes that represent points in a process where one of
several possible execution paths is taken, fork and join nodes that model par-
allel execution paths, start nodes® that model beginning of a process, and flow
final nodes and activity final nodes that represent end of a process execution
path and end of all process execution paths, respectively. All process nodes are
connected with directed edges, which are used to represent control and object

3 These are called initial nodes in UML AD, but renamed here to avoid confusion with
initial states of object life cycles introduced later.

16

flows. Furthermore, input and output pins are used to model connection points
that allow object flows to be attached to nodes, with the exception of start nodes
that may not have outgoing object flows. Data inputs and outputs of processes
are modeled using input and output parameters.

More advanced elements such as structured activity nodes, loop nodes, pa-
rameter sets and call behavior actions are not considered in this paper. We make
a further simplification by associating data types with object flows instead of
pins as done in UML AD, thus ensuring that data type is the same for two pins
connected by an object flow. For the elements in the selected language subset,
the semantics prescribed in the UML AD specification [3] are assumed.

Figure 1 shows an example business process model for a Claims handling
process from the insurance industry that is represented in the chosen subset of
UML AD. Elements highlighted in gray represent an extension to the notation
introduced at a later stage and should be ignored at this point.

/ Claim
[Fraudulent]
Claim @

Claim

Initiate
fraud
investigation

[Fraudulent,

.—) [Registered] NotFraudulent]
Register Check for
] new claim H 0 fraud H
Claim
[NotFraudulent]
Settlement Settlement Settlement Settlement

[Requested] [Requested] [Authorized] [Settled]
Prepare Carry out [
et Claim ,—> settlement ‘ payment
ettlement Claim
Granted| i
. [] [Granted] Claim Claim
Claim [Settled]
[Granted, [Closed]
Rejected, Claim
cted, Close
PreRejected] [Rejected] Claim ©
] Evaluate
[Settled,
Claim Claim Rejected]
[NotFraudulent, Claim [Rejected]
NeedsReevaluation] Jai
[PreRejected] Claim

[Rejected,
NeedsReevaluation]

Notify

L rejection

Claim
K [NeedsReevaluation] j
LEGEND data-type ‘ \L s data-type
data-
. lata-type B 0 <> *)E |_) ® @ [states]
1 —|

start control object action pin flow final activity object
node flow flow node f decision node merge node fork node join node node final node state

Claim
[NeedsReevaluation]

Prepare for
reevaluation

Fig. 1. Claims handling business process model

As can be seen from the diagram in Figure 1, the Claims handling process
starts when a requested Settlement is received by the process, after which a new
Claim is registered. The Claim further goes through a number of processing
steps and at the end of the process it is either found to be fraudulent, or it is
rejected or settled and subsequently closed.

For modeling object life cycles, we use a basic subset of the UML SM lan-
guage. This subset comprises states, including one initial state and one or more

17

final states, and transitions connecting the states. Each state in an object life
cycle that is not an initial or a final state has a unique name or state label.
Transitions initiated by a particular triggering event are labeled with a trigger
label, while completion transitions without an explicit trigger are unlabeled. As
the main application context of this work is a business environment, a simple
notation for object life cycles is chosen. Advanced features of UML SM, such as
composite and concurrent states, are thus not considered here.

Figure 2 shows two example life cycles for Claim and Settlement object types.
Such life cycles and the Claims handling process model introduced earlier could
be developed in the same insurance company by the same or different modelers.

LEGEND

e [J | @

. X initial state transition final
Claim registered

state state
Fraud |Redistered
detected No fraud
Settlement requested
[Fraudu\ent} NotFraudulent
Requested
Grant Reject
© Authorize settlement
{ Granted J { Rejected J Authorized Pay out installment
Semel Close
Close .5“;“‘I‘e PartiallySettied
Settled infu -
Pay final
Settled installment pay out
installment

@®
@ (b)

“It

Fig. 2. Object life cycles: (a) Claim (b) Settlement

In Figure 2(a) it can be seen that all objects of type Claim go through state
Registered directly after the initial state and pass through either Fraudulent or
Closed states before they reach a final state. In the Settlement life cycle in Fig-
ure 2(b), it is shown that after a Settlement is Authorized, the payment for the
Settlement can either be made in full or in a number of installments. Further,
every object of type Settlement always reaches a final state through state Settled.

In this paper we use the following definition for an object life cycle, adapted
from the definition of a UML State Machine in [16]:

Definition 1 (Object life cycle). An object life cycle OLC for object type O is
a tuple (S, T, L,stL,trL, s, Sq), where:
— S is a finite set of states;
— T C S xS isaset of transitions, where each transition is an ordered pair (si,s2)
such that s1 € S is the source state and sz € S is the target state;
— L is a finite set of labels that is further partitioned into a set of state labels L
and a set of trigger labels L;;
— stL: S\ ({sa}USqa) — Ls is an injective function that associates each state that
is not an initial or a final state with a unique state label;
— trL : T — Ly is a partial function that associates a transition with a trigger label;
— Sa € S is the initial state;
So C S is a set of final states.

18

Additionally to the above definitions, the following well-formedness con-
straints are defined for an object life cycle: the initial state has no incoming
transitions; a final state has no outgoing transitions; all states that are not ini-
tial or final have at least one incoming and at least one outgoing transition.

3 Overview of proposed solution

For establishing consistency of business process models and object life cycles,
we use an existing methodology for managing consistency of behavioral mod-
els [6, 10]. According to this methodology, the consistency problem must first be
identified by determining the overlap between two given models. Then, aspects
of the models that contribute to the consistency problem must be mapped into
a suitable semantic domain, where consistency conditions can be defined and
checked.

For business process models and object life cycles, the overlap between the mod-
els first needs to be made explicit. For achieving this, we augment the process
model definition, such that states of objects passed along object flows in the pro-
cess can be captured. Given this augmentation, there are two main alternatives
for defining consistency conditions, shown in Figure 3.

UMLAD
Business
process model
UMLAD UMLSM_ | +
| Business process |) 1 b Explicit
| model ! consistency ! P object states :
+ kwﬂ Object life cycles | |1)
' ' ' generation UML SM
Explicit ' ; [T . i
object states | ! ; b consistency

L femmmmmmmneneeeee ' 1| Object life cycles I <—>conditions Object life cycles I

(@ (b)

Fig. 3. Solution alternatives

Consistency conditions can be defined directly between a business process
model with explicit object states and an object life cycle, as shown in Fig-
ure 3(a). In this case, no mapping of the given models is necessary, since the
semantic domain contains both UML AD and SM. However, this approach re-
quires defining consistency conditions across language boundaries, as UML AD
and SM can be considered as two different modeling languages. This complicates
the definition of consistency conditions.

The other alternative shown in Figure 3(b), uses UML SM as the semantic
domain. Once object states are made explicit in a business process model, the
model is mapped into the UML SM domain through the generation of object life
cycles for each object type used in the modeled process. With this approach, con-
sistency conditions are defined between models expressed in the same language,
namely UML SM.

19

The latter approach is beneficial, as defining consistency conditions and inter-
preting inconsistencies between two models in the same language is easier than
across language boundaries. Further, an object life cycle produced by the gener-
ation step provides an additional view on the original process model where one
specific object type is in focus. This is valuable, as in complex business process
models with many different objects being passed between actions, tracing one
specific object is not easy.

As a consequence, we follow the second alternative in this paper. In the
following three sections we describe the augmentation of a business process model
with object states, generation of object life cycles from a process model, and
consistency checking between the generated and the given object life cycles.

4 Business process models with object states

As objects are passed along object flows from one node to another in a business
process model, it is only action nodes that perform work on these objects and
hence make changes to their state. According to the semantics of UML AD,
control nodes are executed without side-effects. Additionally, we assume that
an object cannot change its state while it is being passed along an object flow.

Taking the mentioned assumptions into account, we augment business pro-
cess models by providing a means of associating a set of states with an object
flow to represent that objects passed along this flow are in one of the associated
states. Given that all object flows in a business process model are associated with
such state information, we can determine input and output states of all objects
for each node in the process model. Figure 4(a) shows an example, where objects
of type O are received in state s; by action A, passed to action B in either state
s or sz and further change their state to s4 after action B executes.

o] o] [e]
[s.] [5,54] lsd
AL
[s]
@ 1 2 ﬂ-
S.
-
s 51 Is,54 fsd b -.
50 A B o0 F5
(c) (d)

(b)

Fig. 4. Examples of explicit object state modeling

Referring back to Figure 1, we can see how state information (highlighted
in gray) can be indicated for each object flow in the Claims handling process.
For example, in this process Claim objects are created in state Registered by
the Register new claim action. Further, objects of type Claim change state to
either Fraudulent or NotFraudulent after Check for fraud action. Claims in state
Fraudulent are routed along the upper object flow to Initiate fraud investigation,
while those in state NotFraudulent are passed through the merge node to the

20

Evaluate action. It can also be seen that objects of type Settlement are passed
to the process via an input parameter in state Requested.

In the current specification of UML AD [3], limited support for representing
object state is provided. Input and output pins have an attribute called inState
that can be used to associate a pin with a set of possible states of type State
from UML SM. In the specification, this attribute defines “the required states of
the object available at this point in the activity”. No further semantic explana-
tions, references or well-formedness constraints about the inState attribute are
mentioned in the specification.

Associating state information with object flows is more appropriate than
using input and output pins for process models considered here. Figure 4(b)
shows an example where associating object states with pins allows for modeling
of unreachable states. In the diagram, action B receives objects of type O from
action A in state so, while state s3 associated with the input pin of B is never
reached. As our final goal is to generate object life cycles from a process model
that capture states and transitions that occur in the process for a given object
type, we want to exclude states such as s3 that are not reachable in the process.
Therefore, placing state information on object flows is more suitable to our needs,
as it does not allow for modeling of unreachable states. Furthermore, when states
are defined on pins, additional well-formedness constraints are required to forbid
cases where mutually exclusive states are defined for two pins connected by an
object flow.

For well-formedness of a business process model with object state modeled on
object flows, it is required that an object state set associated with the incoming
object flow of a decision node must be a union of the state sets associated with
all the object flows going out of that decision node. All decision nodes in Figure 1
are well-formed: consider the decision node following the Check for fraud action
and states associated with its incoming and outgoing object flows ({ Fraudulent,
NotFraudulent} = {Fraudulent} U {NotFraudulent}). Another well-formedness
constraint applies to merge nodes and is the reciprocal of the constraint for
decision nodes.

Well-formedness constraints for concurrent execution paths modeled with
fork and join nodes are more challenging to define. This is partially due to
the incomplete semantics of object flow on concurrent regions in the UML AD
specification [3], where it is largely left up to the modeler to decide whether data
is passed by reference or by value and what locking mechanisms are assumed
for concurrent object access. Currently, we make a simplifying assumption that
process models do not contain concurrent splits of object flows by fork nodes
and merging of object flows by join nodes. Hence, we do not consider process
models such as the example shown in Figure 4(c), because the fork node splits
object flow of type O. However, we allow object flow to be routed to one of the
execution paths in a concurrent region. This is illustrated in Figure 4(d), where
the fork node splits control flow and object flow of type O is connected directly
to an input pin of action node B.

21

In this section we have shown how object states are made explicit in business
process models and what additional well-formedness constraints are necessary
due to this augmentation. In the next section we explain how augmented process
models are used to generate object life cycles.

5 Generation of object life cycles

An object life cycle generated from a given business process model for a particular
object type should capture all possible state changes that can occur for objects
of this type in the given process. Additionally, initial and final states need to
be identified in the generated life cycles. We next describe how this is achieved
with our generation technique.

Given a business process model P where each object flow is associated with
a non-empty set of states, we generate an object life cycle for each object type
used in P. For a particular object type O used in P, we first create an object
life cycle OLCp that contains only the initial state. Then, for each unique state
associated with object flows of type O in process P, a state is added to OLCp.
Transitions and final states are added to O LCp according to the generation rules
shown in Figure 5.

Process model P Object life cycle OLC;, for O
Rule 1 (objectCreation) °
A A
[N | A

a
]

—> up

action A creates objects of type O in one of several possible states add transitions from initial state labeled A
Rule 2 (stateChange)
o

o

AT A
—>
add transition from every incoming
action A has different incoming and outgoing states for object type O state to every outgoing state labeled A
Rule 3 (finalConsumption
(Pe
51,8 A A
R —>
® - ®
objects of type O are inputs to action A , but are not outputs of A ‘ add transitions to final states labeled A
Rule 4 (finalNode) o o \
[$q,-s8p] (ST | :> * @
— ® Oor ®
® . ®
objects of type O passed to final node in several possible states add unlabeled transitions to final states

Rule 5 (processinput)

;

process P has output parameters of type O

o START, START,
Ol [sq... Sl
process P has input parameters of type O add transitions from initial state labeled START,
Rule 6 (processOutput)
o
[s1,-...8,] 1O ENDp END,
=y = =

add transitions to final states labeled ENDy

Fig. 5. Rules for object life cycle generation

Each row in Figure 5 represents a high-level generation rule, where the left-
hand side shows patterns that are matched in process model P and the right-

22

hand side shows what is created in the generated object life cycle OLCp. Each
of the depicted rules is explained next.

Rule 1 (objectCreation) applies when some action A has an outgoing ob-
ject flow of type O, but no incoming object flows of this type. The interpretation
is that A creates objects of type O in one of several possible states. As shown on
the right-hand side of the rule, transitions from the initial state to states asso-
ciated with the outgoing object flow are added to OLCp. These transitions are
labeled A to indicate that they are triggered during the execution of this action.

Rule 2 (stateChange) is applicable when some action A has incoming
and outgoing object flows of type O. When states of the outgoing object flow
are not the same as those of the incoming object flow, we deduce that action A
changes the state of objects of type O. In OLC'p, a transition labeled A from each
incoming state to each possible outgoing state for objects of type O is added,
for all cases where the outgoing state is different from the incoming state.

Rule 3 (finalConsumption) applies when an action A has an incoming
object flow of type O, but no outgoing object flow of this type. The interpretation
is that objects of type O are used by A, but are not passed further in the process
and thus reach their final state. Transitions labeled A from each of the states of
the incoming object flow to a new final state are added to OLCp.

Rule 4 (finalNode) is applicable when there is an object flow of type O
connecting some node in P to a flow final or an activity final node, as shown by
the two patterns on the left-hand side of the rule. The interpretation is that on
execution paths that end when the final node is reached, objects of type O are not
further processed and thus reach their final state. Hence, transitions from each
of the states of the object flow to a new final state are added to OLCp. These
transitions are unlabeled, as they can be considered as completion transitions.

Rule 5 (processInput) applies when the process model has an input
parameter of type O and an object flow connects this parameter to some node
in the process. The interpretation is that objects of type O are received by the
process in one of the states associated with the object flow connected to the input
parameter. In OLC'p, transitions from the initial state to each of the states of
the object flow are added. These transitions are labeled START p to indicate
that they are triggered at the time when process P starts execution.

Finally, Rule 6 (processOutput) applies when the process model has
an output parameter of type O that is connected by an object flow to some
node in the process. The interpretation is that objects of type O leave the pro-
cess in one of the states associated with the object flow connected to the output
parameter. In OLCp, transitions from each of the states of the object flow to
a new final state are added. These transitions are labeled END p to indicate that
they are triggered at the time when process P ends execution.

As part of our prototype, we have implemented a generation algorithm that
iterates over all the elements in a process model, searching for matches of the pat-
terns defined for the generation rules and applying the rules when such matches
are found. Provided that all object flows in the process model are associated with
non-empty state sets, well-formedness of the generated life cycles is ensured by

23

the generation rules. A detailed definition of the generation algorithm is not in-
cluded in this paper due to space limitations and will be the subject of a future
publication.

Figure 6 shows life cycles for Claim and Settlement object types generated
from the Claims handling process model with explicit object states (Figure 1).

! Register new claim
Check .
for fraud, Registered Check
\ov fraud
Fraudulent Evaluate_— NotFraudulent Evaluate
Initiate fraud
investigatio Evaluate Notify \

® /{ Granted } [PreRejemeu]—'eieC‘L[Rejel:ted}

Notif Prepare settlement
Settle Eva\uate]\ L i
\ Evaluate

ejection Evaluate
Authorized
NeedsReevaluation
Settled
Close

I

START,

il

Carry out payment

Settled

ikl

(b)

Fig. 6. Generated object life cycles: (a) Claim (b) Settlement

In the next section we show how generated object life cycles are used for
defining consistency conditions to establish whether a given process model is
consistent with a given life cycle for a particular object type.

6 Consistency of object life cycles

We identify two consistency notions for a given business process model and
an object life cycle: life cycle compliance and coverage. A given process model
is compliant with a given life cycle for a particular object type, if the process
initiates only those state transitions for objects of this type that are defined in
the given life cycle. Compliance allows objects of the given type to traverse only
a part of their given life cycle in the given process. On the other hand, coverage
requires that objects traverse the entire given life cycle in the given process, but
additional transitions not defined in the given life cycle may be incurred in the
given process model.

Depending on the circumstances, one or both of the introduced consistency
types may be required to hold. For example, if the Claims handling process (Fig-
ure 1) is used for execution and the Claim life cycle (Figure 2(a)) is referenced
by employees for interpreting the state of Claim objects, both compliance and
coverage must hold. If the process is not compliant with the life cycle and takes
Claim objects into states not shown in the life cycle or performs different tran-
sitions, this will disconcert the employees. On the other hand, customers will
be incorrectly informed and thus unsatisfied if the process does not provide a
coverage of the life cycle. An example of this occurs if a customer expecting a

24

Claim in state Granted to eventually reach state Settled according to the given
life cycle, but this never happens in the Claims handling process.

We next give more precise definitions of compliance and coverage, providing
consistency conditions that must hold between a life cycle generated from a
process model for a particular object type and a given life cycle for that type.
We first give two definitions that simplify the expression of consistency conditions
that follow. Definitions 2 and 3 can be applied to any two object life cycles:
OLC = (8,T,L,sL,tL,ss,Sp) and OLC' = (8", 17", L', sL’,tL',s,,, Sp).

)

Definition 2 (State correspondence). A state correspondence exists between a state
s € S and a state s' € S, if and only if one of the following holds:

— §=154 and s’ = s.;

— s5€ 8Sq and s’ € Sy,.

— stL(s) = stL'(s');

Definition 3 (Transition correspondence). A transition correspondence ezists be-
tween a transition t = (51, 52) € T and a transition t' = (s3,84) € T’ if and only if
there are state correspondences between s1 and ss, and between s2 and S4.

In Definition 2, we define a state correspondence between two states if they
are both initial states, they are both final states or their state labels are the same.
In Definition 3, we define a transition correspondence between two transitions if
there are state correspondences between their sources states and between their
target states.

In Definitions 4 and 5, P is a given process model, OLC = (S, T, L, sL,tL, s4,S0)
is a given life cycle for object type O and OLCp = (Sp,Tp, Lp,sLp,tLp, Sapr, S0p)
is the life cycle generated from P for O.

Definition 4 (Life cycle compliance). A business process model P is compliant
with an object life cycle OLC if and only if for each transition tp € Tp that is not labeled
STARTp or ENDp, there exists a transition t € T' such that there is a correspondence
between tp and t.

According to Definition 4, life cycle compliance requires that each transition
in the generated object life cycle has a transition correspondence to some transi-
tion in the given life cycle. However, there are two exceptions to this consistency
condition: transitions labeled START p and ENDp in the generated object life
cycle. These transitions are generated when the given process model P has input
or output parameters of object type O. We do not place restrictions on these
transitions, thus allowing objects of type O to be received by and passed from
the given process in any state and not necessarily a state following the initial
state or preceding a final state.

Definition 5 (Life cycle coverage). A business process model P provides a coverage
of an object life cycle OLC if and only if all of the following conditions hold between
OLC and OLCp:

(a) For each transition t € T there exists a transition tp € Tp such that there is
a correspondence between t and tp.
(b) There are no transitions labeled STARTp or ENDp in Tp.

25

Condition(a) in Definition 5 requires every transition in the given object life
cycle to have a transition correspondence to some transition in the generated life
cycle. Furthermore, condition(b) requires that the given process does not have
input or output parameters of the given type, hence objects of this type must
be created and reach their final states within the process boundaries.

We next illustrate the notions of life cycle compliance and coverage using
examples. Figure 7 shows the given object life cycles for the Claim and Set-
tlement object types on the left and the object life cycles generated from the
Claims handling process on the right. Transitions that have a correspondence
between them are marked with the same number, while transitions without a
correspondence are marked with a cross.

GIVEN Q®N , _ GENERATED
OLC for Claim Claim received Register new claim OLC; for Claim

Check .
Fraud for fraud (3) Registered @~ Check
possibility detected >) No fraud for fraud
Evaluate Evaluate
[Fraudulent] { NotFraudulent } 9 @
. !nltlalg frayd Evaluate _
@ Ct @ investigation Notify

!

rejection
® Penogcied @'
rante @
1 Notify
Settle ® Close <:> Settlj Evaluate Evaluate rejection Evaluatg
se ® NeedsReevaluation O
L o
@ Closed
@® @
(@ @
GIVEN g GENERATED
OLC for Settlement Settlement requested START, OLCq for Settlement

Requested

Requested
o Authorize settlement

@)Prepare settlement
@ Pay out installment
Authorized

in full - @ Carry out payment

Authorized

Pay out
installment

(b)

Fig. 7. Consistency of Claim and Settlement object life cycles

In Figure 7(a), it can be seen that the shown object life cycles satisfy all
the consistency conditions for life cycle coverage. As all the transitions in the
given life cycle for Claim have a correspondence to transitions in the generated
life cycle, condition(a) from Definition 5 is satisfied. Further, the generated life
cycle does not contain transitions labeled START p or ENDp, as required by
condition(b) for life cycle coverage. Therefore, the Claims handling process pro-
vides a coverage of the given Claim life cycle. However, the Claims handling
process is not compliant with this life cycle, due to transitions in the generated
life cycle without transition correspondences to transitions in the given life cycle.

26

Figure 7(b) shows that the Claims handling process is compliant with the given
Settlement life cycle, but does not provide a coverage for it.

The prototype that we have implemented determines life cycle compliance
and coverage for a given business process model and an object life cycle by
checking the consistency conditions defined in this section.

7 Related work

A research area closely related to our work is object life cycle inheritance, where
consistent specialization of object behavior is required (see e.g. [5,8,13, 15, 16]).
Ebert and Engels [5] distinguish between life cycles representing observable and
invocable behavior, and define consistency notions for specialization of each life
cycle type. With respect to this classification, object life cycles considered in
this paper represent observable behavior of business objects. In our work, state
transitions are not linked to object methods that can be directly invoked and
thus invocable behavior is not in our focus.

In their comprehensive work, Schrefl and Stumptner [13,16] define consis-
tency conditions for life cycle specialization by eztension and refinement. Differ-
ent types of consistent specialization, such as observation consistent extension,
are defined based on traces of states traversed by objects called life cycle occur-
rences and traces of executed transitions called activation sequences.

Currently, the main goal of our work is to establish a link between business
process models and object life cycles, and thus life cycle inheritance is not in
our main focus. However, there may be situations where it is required that
the relation between a given business process model and an object life cycle is
a certain type of specialization. Thus, it would be beneficial for our approach to
make use of the consistency notions already defined for life cycle inheritance.

Another related area is synthesis of state machines from scenarios [21, 18],
where the goal is to use given scenario specifications to generate state machines
for different objects that participate in these scenarios. Techniques used for state
machines synthesis from scenarios are different from our life cycle generation, due
to several fundamental differences between business process models and scenar-
ios. While scenarios represent interaction between objects via messages, process
models show the flow of objects between tasks. Furthermore, process models gen-
erally capture all the possible task executions relevant to the modeled process
and do not describe alternative scenarios. In state machine synthesis, it is pos-
sible that a synthesized state machine contains so-called implied scenarios [17,
14], which are behaviors that are not valid with respect to the original scenario
specifications. Under certain conditions, a similar phenomenon can occur in our
life cycle generation step. We leave a more detailed investigation of this issue for
future work.

Consistency of behavioral models as discussed in this paper is conceptually
related to notions of equivalence and refinement, which have been thoroughly
studied in the context of formal process specifications [7]. However, as discussed
in [20], it is challenging to directly apply the existing equivalence and refine-
ment definitions to modeling languages such as UML AD and SM, as they do

27

not have an agreed formal semantics. Additionally, equivalence checking is not
always well-suited for practical application due to its high computational com-
plexity. Regardless, as future work we intend to establish a clear relation of our
consistency notions to the existing equivalence and refinement definitions and
investigate which are most appropriate in practice.

8 Conclusion and future work

Consistency of business process models and object life cycles needs to be
established in situations where process models manipulate business objects with
an explicitly modeled life cycle.

In this paper we have presented our approach to establishing consistency
between business process models and object life cycles. There are three main
contributions of our approach: We bridge the conceptual gap between business
process models and object life cycles by making object states explicit in pro-
cess models and describing the required well-formedness constraints. The second
contribution is a technique for generating life cycles from process models. The
third contribution is a precise definition of consistency conditions that can be
used to check two consistency notions for a given business process model and an
object life cycle, namely compliance and coverage. With regards to tool support,
we have developed a prototype as an extension to the IBM WebSphere Business
Modeler [1] that allows us to capture object states in business process models,
generate life cycles from process models and check the consistency conditions.

There are several directions for future work. Firstly, we need to extend our
approach to handle hierarchical nesting and concurrent object access in process
models. Secondly, we intend to adapt our consistency conditions to check compli-
ance and coverage between several process models that use objects of the same
type and a given life cycle for this object type. Further future work includes
an investigation of implied scenarios in the context of our life cycle generation
and relation between our consistency notions and the existing equivalence and
refinement definitions.

Acknowledgement: The authors would like to thank Michael Wahler for his
valuable comments on an earlier version of this paper.

References

1. IBM WebSphere Business Modeler. http://www-306.ibm.com/software/integra
tion/wbimodeler/.

2. ACORD Life & Annuity Standard. ACORD Global Insurance Standards, Final
Version 2.13.00, September 2005.

3. UML2.0 Superstructure, formal/05-07-04. OMG Document, 2005.

4. IBM Industry Models for Financial Services, The Information Framework (IFW)
Process Models. IBM General Information Manual, 2006.

5. J. Ebert and G. Engels. Specialization of Object Life Cycle Definitions. Fach-
berichte Informatik 19/95, University of Koblenz-Landau, 1997.

28

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

G. Engels, J. M. Kiister, L. Groenewegen, and R. Heckel. A Methodology for
Specifying and Analyzing Consistency of Object-Oriented Behavioral Models. In
Proceedings of the 8th European Software Engineering Conference - ESEC’01, pages
186-195. ACM Press, 2001.

A.-W. Fayez. Comparative Analysis of the Notions of Equivalence for Process
Specifications. In Proceedings of the 3rd IEEE Symposium on Computers & Com-
munications - ISCC’98, page 711, Washington, DC, USA, 1998. IEEE Computer
Society.

D. Harel and O. Kupferman. On the Inheritance of State-Based Object Behavior.
Technical Report MCS99-12; Weizmann Institute of Science, Faculty of Mathe-
matics and Computer Science, 1999.

M. Havey. Essential Business Process Modeling. O’Reilly, 2005.

. J. M. Kiister. Consistency Management of Object-Oriented Behavioral Models.

PhD thesis, University of Paderborn, March 2004.

J. M. Kiister and J. Stehr. Towards Explicit Behavioral Consistency Concepts in
the UML. In Proceedings of the 2nd International Workshop on Scenarios and
State Machines: Models, Algorithms and Tools, 2003.

B. Litvak, S. Tyszberowicz, and A. Yehudai. Behavioral Consistency Validation of
UML Diagrams. 1st International Conference on Software Engineering and Formal
Methods -SEFM’03, page 118, 2003.

M. Schrefl and M. Stumptner. Behavior-Consistent Specialization of Object Life
Cycles. ACM Transactions on Software Engineering and Methodology, 11(1):92—
148, 2002.

H. Muccini. An Approach for Detecting Implied Scenarios. In Proceedings of
the Workshop on Scenarios and State Machines: Models, Algorithms, and Tools -
ICSE’02, 2002.

J. L. Sourrouille. UML Behavior: Inheritance and Implementation in Current
Object-Oriented Languages. In Proceedings of UML’99, volume 1723 of LNCS,
pages 457—472. Springer-Verlag, 1999.

M. Stumptner and M. Schrefl. Behavior Consistent Inheritance in UML. In Pro-
ceedings of Conceptual Modeling - ER 2000, volume 1920 of LNCS, pages 527-542.
Springer-Verlag, 2000.

S. Uchitel, J. Kramer, and J. Magee. Detecting Implied Scenarios in Message
Sequence Chart Specifications. In Proceedings of European Software Engineering
Conference (ESEC/FSE’01), 2001.

S. Uchitel, J. Kramer, and J. Magee. Synthesis of Behavioral Models from Scenar-
ios. IEEE Transactions on Software Engineering, 29(2):99-115, 2003.

M. von der Beeck. A Comparison of Statecharts Variants. In Proceedings of Formal
Techniques in Real Time and Fault Tolerant Systems, pages 128-148. Springer-
Verlag, 1994.

M. von der Beeck. Behaviour Specifications: Equivalence and Refinement Notions.
In Visuelle Verhaltensmodellierung verteilter und nebenldufiger Software-Systeme,
8. Workshop des Arbeitskreises GROOM der GI Fachgruppe 2.1.9 Objektorientierte
Software- Entwicklung, Universitdt Minster, 2000. Techreport 24,/00-1.

J. Whittle and J. Schumann. Generating Statechart Designs from Scenarios.
In Proceedings of the 22nd International Conference on Software Engineering -
ICSE’00, pages 314-323, New York, NY, USA, 2000. ACM Press.

29

30

Model Metrics and Metrics of Model Transformation

Motoshi Saeki! and Haruhiko Kaiya?®

! Dept. of Computer Science, Tokyo Institute of Technology
Ookayama 2-12-1, Meguro-ku, Tokyo 152, Japan
% Dept. of Computer Science, Shinshu University
Wakasato 4-17-1, Nagano 380-8553, Japan

saeki@se.cs.titech.ac.jp,kaiyalcs.shinshu-u.ac.jp

Abstract. In this paper, we propose the integrated technique related to metrics
in a Model Driven Development context. More concretely, we focus on the fol-
lowing three topics; 1) the application of a meta modeling technique to specify
formally model-specific metrics, 2) the definition of metrics dealing with seman-
tic aspects of models (semantic metrics) using domain ontologies, and 3) the
specification technique for the metrics of model transformations based on graph
rewriting systems.

1 Introduction

To develop information systems of high quality, measuring quality in the earlier phases
of the development process such as a modeling phase is one of the key issues. There are
wide varieties of modeling methods such as object-oriented modeling, data flow mod-
eling, activity modeling etc. and many kinds of models are produced following these
modeling methods. For example, an object-oriented modeling method mainly adopt
class diagrams consisting of classes and their associations, while in data flow modeling
data flow diagrams having processes (data transformation), data flows and data stores,
etc. are used. In this situation, according to models, we should have different metrics to
measure their quality, and it is necessary to define the metrics according to the model-
ing methods. For example, in the object-oriented method, we can use the CK metrics
[6] to measure the structural complexity of a produced class diagram. The technique of
Cyclomatic number [12] can be applied to an activity diagram of UML (Unified Mod-
eling Language) in order to measure its complexity, so that we can avoid constructing a
structurally complicated activity diagram. These examples show that effective metrics
vary on a modeling method.

The existing metrics such as CK metrics and Halstead’s Software Science are for
expressing the structural, i.e. syntactical characteristics of a product only, but do not
reflect its semantic aspects. Suppose that we have two class diagrams of Lift Control
System, which are the same except for the existence of class “Emergency Button”; one
includes it, while the other one does not. It can be considered that the diagram having
“Emergency Button” is structurally more complex rather than the other, because the
number of the classes included in it is larger. However, it has higher quality in the se-
mantics of Lift Control System because Emergency Button is mandatory for the safety
of passengers in a practical Lift Control Systems. This example shows that the metrics

31

expressing semantic aspects is necessary to measure the quality of products more cor-
rectly and precisely. In particular, these semantic aspects are from the properties specific
to problem and application domains.

In Model Driven Development (MDD), model transformation is one of the key tech-
nologies [2, 13] and the transformations that can improve the quality of models are
significant. One of the problems in MDD is how to identify what transformations can
improve the quality of models. If a metrics value can express the quality of a model, the
changes of the metrics values before and after a model transformation can be the im-
provement of the model quality. It means that the formal definition of a transformation
should include the specification of metrics so that the metrics can be calculated dur-
ing the transformation. Furthermore the quality of model transformation as well as the
quality of models should be considered and formally defined based on the improvement
degree of the quality of the model.

In this paper, we propose a technique to solve the above three problems; 1) speci-
fying metrics according to modeling methods, 2) semantic metrics, and 3) formal def-
inition of model transformation with metrics. More concretely, we take the following
three approaches;

1. Meta modeling technique
Since a meta model defines the logical structure of models, we specify the definition
of metrics, including its calculation technique, as a part of the meta model. Thus
we can define model-specific metrics formally. We use Class Diagram plus Object
Constraint Language (OCL) to represent meta models with metrics definitions.

2. Domain ontology
We use a domain ontology to provide for the model the semantics specific to a
problem and application domain. As mentioned in [11], we consider an ontology
as a thesaurus of words and inference rules on it, where the words in the thesaurus
represent concepts and the inference rules operate on the relationships between the
words. Each concept of an ontology can be considered as a semantically atomic el-
ement that anyone can have the unique meaning in the domain. The thesaurus part
of the ontology plays a role of a semantic domain in denotational semantics, and
the inference rules can automate the detection of inconsistent parts and of the lacks
of mandatory model elements [9]. Thus we can calculate semantic metrics such as
the degree on how many inconsistent parts are included in the model, using infor-
mation on mapping from a model to a domain ontology. Intuitively speaking, the
semantic metrics value is based on the degree of how faithfully the model reflects
the structure of the domain model.

3. Graph rewriting system
Since we adopt Class Diagram to represent a meta model, a model following the
meta model is mathematically considered as a graph. Model transformation rules
can be defined as graph rewriting rules and the rewriting system can execute the
transformation automatically. Metrics values can be evaluated and propagated be-
tween the models during the transformation. The evaluation and propagation meth-
ods can be defined within the graph rewriting rules. Furthermore we can define the
quality of a transformation with an increase in the quality metrics values before and
after the transformation.

32

The usages of the meta modeling technique for defining model-specific metrics [15]
and of graph rewriting for model transformation [7, 10, 14] are not new, but the contri-
bution of this paper is the integrated application technique of meta modeling, domain
ontologies and graph rewriting to solve simultaneously the above three problems with
unified framework.

The rest of the paper is organized as follows. In the next section, we introduce our
meta modeling technique so as to define model-specific metrics. Section 3 presents
the usage of domain ontologies to provide semantic metrics and the way to embed them
into the meta models. In section 4, we define model transformation with graph rewriting
and illustrate the metrics being calculated on the transformation. Furthermore we show
an example of the quality metrics of model transformations. Section 5 is a concluding
remark and discusses the future research agenda.

2 Meta Modeling

Roughly speaking, the description of a modeling method consists of product and pro-
cess parts. The product parts, so called meta model, specify the structure or data type of
the products. On the other hand, the process part specifies the activities for constructing
the products, such as “at first, identify classes and objects” to construct a class diagram.
In this paper, since we discuss the quality of the models, not the activities, we focus
on the product part only. In addition, we should consider constraints on the models.
Suppose that we define the meta model of the models which are described with class
diagrams. In any class diagram, we cannot have different classes having the same name,
and we should specify this constraint to keep consistency of the models on their meta
model.

In our technique, we adopt a class diagram of UML for specifying meta models and
OCL [20] for constraints on models. The example of the meta model of the simplified
version of class diagrams is shown in Figure 1 (a). As shown in the figure, it has the
concepts “Class”, “Operation” and “Attribute” and all of them are defined as classes
and these concepts have associations representing logical relationships among them.
For instance, the concept “Class” has “Attribute”, so the association “has_Attribute”
between “Class” and “Attribute” denotes this relationship.

Metrics is defined as a class having the attribute “value” in the meta model as shown
in the Figure 1 (b). The “value” has the metrics value and its calculation is defined as
a constraint written with OCL. For example, WMC (Weighted Method per Class) of
CK metrics is associated with each class of a class diagram and it can be defined as
follows?.

WMC value =
#{m : ClassDiagram_Operation |
de: ClassDiagram_Class - (has-WMC'(c, sel f) A has_Operation(c,m))} (1)
where predicates has-W M C/(x,y) and has_Operation(u,v) express that the class x
has y of the WMC class and that the class u has the operation v. These predicates are
from the associations on the meta model of Class Diagram as shown in Figure 1 (a). #

3 For the readers unfamiliar to OCL notation and its built-in identifiers, we do not use the OCL
notation but usual mathematical notation including formal logic.

33

ClassDiagram StructuralComplexity
& T NMvalue : Integer

] —
‘ ggregation
generalization_| Class NOC

has. WMC
has_Attr/'b/ute has_Operation

DIT

Attribute Operation WMC
value : Integer

(b) MetaModée of

(@) MetaModel of Class Diagram Structural Complexity Metrics

Fig. 1. Meta Model with Syntactical Metrics Definitions

P denotes the cardinality of the set P. The technique of using OCL on a meta model to
specify metrics was also discussed in [5, 15]. WMC and the other CK metrics are for
a class not for a class diagram. Thus we use the maximum number of WMCs in the
class diagram or the average value to represent the WMC for the class diagram. In this
example, which is used throughout the paper, we take the sum total of WMCs for the
class diagram, and the attribute TNMvalue of StructuralComplexity holds it as shown
in Figure 1 (b).

We have a meta CASE tool called CAME (Computer Aided Method Engineering)
[16], which takes meta models as inputs and generates diagram editors having the func-
tions of calculating defined metrics. Figure 2 illustrates a screen snap shot of this meta
CASE. The process aspect of a modeling method is represented with an activity dia-
gram as shown in the right part of this figure. The left part is the meta model of Class
Diagram, a complicated version to Figure 1, and the window CAMEPackage displays
the definition of WMC metrics as a constraint. When a model engineer (an engineer to
develop a model), who is the user of the generated diagram editor, reaches the second
activity “CalculateStructuralComplexity”, the value of WMC is automatically calcu-
lated according to the OCL description, because it is specified in the meta model that
the activity produces WMC instances. The details of this tool is out of scope of the
paper, and is shown in [16] and [15].

3 Using Domain Ontologies

Ontology technologies are frequently applied to many problem domains nowadays [8,
19]. As mentioned in section 1, an ontology plays a role of a semantic domain in de-
notational semantics. Basically, our ontology is represented in a directed typed graph
where a node and an arc represent a concept and a relationship (precisely, an instance
of a relationship) between two concepts, respectively.

Let’s consider how a model engineer uses a domain ontology to measure the quality
of his or her models. During developing the model, the engineer should map its model

34

WM vl = #{rm ClassDRagram_op
eraion | exists cClassDiagram_Class
has_¥WMC (¢ sl and hasis,m}

Fig. 2. Meta CASE tool

Model

Domain Ontology (thesaurus part only)

Fig. 3. Mapping from a Model to an Ontology

35

element into atomic concepts of the ontology as shown in Figure 3. In the figure, the
engineer develops a data flow diagram, while the domain ontology is written in the form
of class diagrams. For example, the element “aaa” in the data flow diagram is mapped
into the concepts A, B and the relationship between them. Formally, the engineer spec-
ifies a semantic mapping F where F(aaa) = {A, B, a relationship between A and B}.
In the figure, although the model includes the concept A, it does not have the concept
C, which is required by A. Thus we can conclude that this model is incomplete be-
cause a necessary element, i.e. the concept C is lacking, and we can have the metrics of

completeness (COMPL) by calculating the ratio of the lacking elements to the model
elements, i.e.

COMPL_value =

1—#{cl | Je,u, c2-(require(e, u) Asemantic.mapping(cl, e) A\semantic-mapping(c2, u)
A=(cl € ModelElement) A ¢2 € Model Element)}/# M odel Element)

—— MetaModel of Class Diagram

- - @

ClassDiagram

Semantic
mapping
i
/ . i
aggregation /

generalization Class /

Ontological
element

1

Relationship

generaize

Attribute
I
L

[Operation /
I |
|

aggregate
synonym

] /

antonym

require

contradict

apply

perform

8

Metrics Meta Model

COMPL Ontology Meta Model

B I ——
Lvalue : Real

Fig. 4. Combining an Ontology Meta Model to a Meta Model

the “concept” class and “relationship”. In the figure, “object” is a subclass of a concept
class and a relationship “apply” can connect two concepts. Concepts and relationships
in Figure 4 are introduced so as to easily represent the semantics of the models of in-
formation systems. A semantic mapping plays a role of the bridges between the model
written in class diagram and a domain thesaurus, and the model engineer provides the
semantic mapping during his or her development of the model. In the figure, as the

36

examples of semantic metrics, there are four metrics completeness (COMPL), consis-
tency (CONSIS), correctness (CORREC) and unambiguity (UNAMB), which resulted
from [4]. Their values are calculated from the model, the thesaurus and the semantic
mapping, and the attribute “value” of the metrics holds the calculation result. Similar
to Figure 1 and the formula (1), the calculation formulas are defined as constraints and
the example of COM P L_value (the attribute “value” in COMPL) was shown in the
formula (2).

Figure 5 shows a part of an ontology of Lift Control Systems, and we use class
diagram notation to represent an ontology. Stereo types attached to class boxes and as-
sociations show their types. For example, “Open” belongs to a “function” concept of
Figure 4. An association between “Open”” and “Door” is an “apply” relationship, which
presents that an object “Door” participates in the function “Open”. In this example, we
have 12 model elements in the class diagram of Lift Control System and 2 elements
(Close and Stop) to be required are lacking there. Because, in the thesaurus, the func-
tions Open and Move requires Close and Stop respectively. As a result, we can get the
completeness metrics (COMPL) 1 — (2/12) = 0.83. As for the other semantic met-
rics such as consistency, correctness and unambiguity, their calculation methods were
discussed in [9].

Scheduler ntic mapping
@i status — Funtioh fFunctiond>

~¥| Move . Sto
Warrived() v require L Stop |

apply apply
Ol <<Object>>
Lift Emergency Button

@position

Bup()
Rdown ()

Wrequest()
apply, apply
<{Function®> <{Function}>
/r&wqu/re Open require | _Close req
[
|

EmergencyButton Door
Fpush() Sopen()
Domain Ontology (Thesaurus) in
Model (Class Diagram) Lift Control Systems

Fig. 5. An Example of Lift Control System

The calculation formula of this example is general because we calculate the ratio on
how many generally required concepts are really included in the model. On the other
hand, we sometimes need to define the metrics whose calculation formulas have the
domain-specific properties, and these metrics can be defined as sub classes of the gen-
eral metrics class. In the example of Lift Control System domain, we can consider that

37

the quality of the model having no emergency buttons is low from the viewpoint of
completeness. As shown in Figure 6, we set the sub class DS-COMPL of COMPL and
specify a new calculation formula for the domain-specific completeness value as fol-
lows.
DSCOM PL_value = super.valuex

(1 + 3 - (semanticomapping(c, EmergencyButton) A (c € Model Element)))/2 (3)
It uses the completeness value of the super class COMPL (super.value). If no emer-
gency buttons are included, the completeness quality is super.value x (14 0)/2), i.e.
a half of the previous definition shown in the formula (2).

SemanticQuality
——
1

0
|
COMPL
CORREC
<vaue : Real =
I

p

DS-COMPL
Gvalue : Real

Fig. 6. Domain Specific Metrics

Three dimensional space model of Figure 7 summarizes our approach of using meta
modeling for both syntactic metrics and semantics one. In the figure, we have three axes
for “syntax vs. semantics”, “model vs. meta model” and “product vs. metrics”. For ex-
ample, the left and right parts of the horizontal axis “model vs. meta model” in Figure
7 stand for model level (M1 layer in MOF) and meta model level (M2) respectively. On
the other hand, syntactic entities are put on the upper area of the figure and the onto-
logical entities on the lower area, following the vertical axis “syntax vs. semantics”. A
meta model and ontology meta model are used to specify how to calculate a model met-
rics with a metrics meta model. Following the metrics meta model, the model metrics
is calculated from a triple of a model, semantic mapping and a domain ontology.

Note that we can implement semantic mapping by using UML stereo types of UML
profile [3], considering a stereo type as an ontological concept. However, powerful in-
ferences based on the relationships on ontological concepts to calculate semantics met-
rics are not so easy to define and implement on UML profile.

4 Model Transformation as Graph Rewriting

In Model Driven Development, one of the technically essential points is model trans-
formation. Since we use a class diagram to represent a meta model, a model, i.e. an
instance of the meta model can be considered as a graph, whose nodes have types and
attributes, and whose edges have types, so called attributed typed graph. Thus in this
paper, model transformation is defined as a graph rewriting system, and graph rewriting

38

e Semantics Model level: M1 (MOF) | Meta Level: M2 (MOF)
product & model . i .
vs. metrics vs. metamodel ¢ instantiate Meta
Model '

syntax M
eee_____SGmantic____________
mapping
semantics

Metrics Metrics
<,‘:|

Meta Model
WMC =3 instantiate —
. (evaluate) WMC = the number of methods per Class
COMPL =0.83 COMPL =1 - the ratio of lacking elements

Fig. 7. Relationships among Models, Ontologies, Metrics and Meta Models

rules dominate allowable transformations. In this section, we introduce a graph rewrit-
ing system and show that metrics values can be evaluated and propagated between the
models associated with graph rewriting rules. And the quality of transformation can be
defined using the metrics values before and after the model transformation.

4.1 Graph Rewriting System

A graph rewriting system converts a graph into another graph or a set of graphs fol-
lowing pre-defined rewriting rules. There are several graph rewriting systems such as
PROGRESS [17] and AGG [18]. We use the definition of the AGG system in this pa-
per. A graph consists of nodes and edges, and type names can be associated with them.
Nodes can have attribute values depending on their type. The upper part of Figure 8
is a simple example of rewriting rules. A rule consists of a left-hand and a right-hand
side which are separated with “::=". A rectangle box stands for a node of a graph and
it is separated into two parts with a horizontal bar. Type name of a node appears in the
upper part of the horizontal bar, while the lower part contains its attribute values. In the
figure, the node of “TypeA” in the left-hand graph has the attribute “val” and its value is
represented with the variable “x”. Numerals are used for identifying a node between the
left-hand graph and the right-hand graph. For example, the numeral “1” in the node of
“TypeA” in the left-hand means that the node is identical to the node of “TypeA” having
“1” in the right-hand. A graph labeled with NAC (Negative Application Condition) ap-
pearing in the left-hand controls the application of the rule. If a graph includes the NAC
graph, the rule cannot be applied to it. In addition, we add the conditions that are to be

39

satisfied when the rule is applied. In this example, “val” of the node “1:TypeA” have to
be greater than 4 to apply this rule. The procedure of graph rewriting is as follows;

1. Extracting the part of the graph that structurally matches to the left-hand side of the
rule. If the type names are attached with nodes and/or edges, these names should
also match during this process. Suitable values are assigned into the variables ap-
pearing in attributes of the nodes.

2. Checking if the condition holds and if NAC does not appear. If successful and if
none of the parts that structurally match a graph of NAC appears, the rewriting
process continues, but if not so, the application of this rule is dismissed.

3. Replacing the extracted part with the right-hand of the rule and embedding the
result to the original graph. New attribute values are calculated and assigned to the
attributes.

The lower part of Figure 8 illustrates graph rewriting. The part encircled with a dotted
rectangular box in the left-hand is replaced with the sub graph that is derived from the
right-hand of the rule. The attribute values 5 and 2 are assigned to x and y respectively,
and those of the two instance nodes of “TypeD” result in 7 (x+y) and 3 (x—y). Note
that the value of “TypeA” is 5, greater than 4, and none of nodes typed with “TypeD”
appear, so the rule is applicable. The other parts of the left-hand side graph are not
changed in this rewriting process.

Rewriting Rule

: >
Y 1:TypeA val >4

. TypeD TypeD
val =x NAC val=x+y val=x-y
a b TypeD - a a
L:TypeA 2:TypeB
’ 4¥ng B }—.{b _TypeC ‘ val=x ° val=y
val=y
Rewriting
TypeA i
: val=7 val=3
Yo ‘ ' TypeC | : 2
331 :Bz Hb 2 ‘ i TypeA TypeB
: : : —— val=5 ® val=2
Cy a &c
‘ TypeE ‘ ‘ TypeA ‘

‘ TypeE ‘ ‘ TypeA ‘

Fig. 8. Graph Rewriting Rules and Rewriting Process

4.2 Metrics on Model Transformation

The model following its meta model is represented with an attributed typed graph and it
can be transformed by applying the rewriting rules. We call this graph instance graph in
the sense that the graph is an instance of the meta model. Figure 9 shows the example of

40

a class diagram of Lift Control System and its instance graph following the meta model
of Figures 1 and 4. The types of nodes are from the elements of the meta model such
as Class, Attribute and Operation, while the names of classes, attributes and operations
are specified as the values of the attribute “name”. In the figure, the class Lift in the
class diagram corresponds to the node typed with Class and whose attribute “name” is
Lift. Some nodes in the instance graph have metrics values as their attribute values. For
example, a node typed with WMC has the attribute “value” and its value is the number
of the operations of the class, which is automatically calculated using the formula (1).
The WMC value of class Lift is 3 as shown in the figure.

‘Aftribute - :Structural Complexity
name=lift status 1C|a$Dlmf3mk TNMvaue=6
Scheduler Qm
@Iift_status
Farrived) hsjtio
Lift .Class
Bposition name=Lift
Fup()
Sdown()
Drequest()
EmergencyButton Door
®oush() ®open() value=0.83
.)) Metrics Nodes
(@) Class Diagram (b) Instance Graph with Metrics Nodes

Fig. 9. Class Diagram and Its Instance Graph

We can design graph rewriting rules considering the nodes of the metrics and their
values. See an example of a transformation rule shown in Figure 10. Two conditions
x2 > a and 3 < y3 are attached to the rule for rewriting the graph G1 with G2 and
these conditions should be satisfied before the rule is applied. This rule includes two
nodes for metrics; one is the metrics for G1 and the other is for G2. The first condi-
tion 2 > a expresses that the rule cannot be applied until the value of the metrics m2
before the rewriting is greater than a certain value, i.e. “a”. It means that this model
transformation is possible when the model has a quality higher than a certain standard.
The second condition 3 < y3 specifies monotonic increasing of the metrics m3 in this
transformation. This formula has both values of metrics before and after the transfor-
mation as parameters and it can specify the characteristics of the transformation, e.g. a
specific metrics value is increasing by the transformation. As shown in the figure, the
calculation of the metrics n2 uses the metrics m1 of the model before the transforma-
tion, and this calculation formula of n2 shows that the metrics value of G1 is propagated
to G2. The quality of a transformation can be formally specified by using this approach.
In Figure 10, we can calculate how much the quality could be improved with the trans-

41

formation by using the metrics values of the model before the transformation and those
after the transformation. The function g in the figure calculates the improvement degree
of the quality.

metrics for G1 metrics for G2
X2>a
x3<y3
_—
7\
[/ A
Gl G2

qudlity of the transformation: g(x1,x2,x3,..., y1,f(x1),y3,...)

Fig. 10. Metrics and Model Transformation

Let’s consider the example of a model transformation using graph rewriting rules.
The model of Lift Control System in Figure 9 (a) can be considered as a platform inde-
pendent model (PIM) because of no consideration of implementation situation, and we
illustrate its transformation into a platform dependent model (PSM). We have a sched-
uler to decide which lift should be made to come to the passengers by the information of
the current status of the lifts (the position and the moving direction of the lift), and we
do not explicitly specify an alternative technique to implement the function of getting
the status information from the lifts. If the platform that we will use has an interrupt-
handling mechanism to detect the arrival of a lift at a floor, we put a new operation
“notify” to catch the interruption signal in the Lift module. The notify operation calls
the operation “arrived” of Scheduler and the “arrived” updates the lift_status attribute
according to the data carried by the interrupt signal. As a result, we can get a PSM that
can operate under the platform having interrupt-handling functions. In Figure 11, Rule
#1 is for this transformation and PSM#1 is the result of applying this rule to the PIM of
Lift Control System.

Another alternative is for the platform without any interrupt-handling mechanism,
and in this platform, we use multiple instances of a polling routine to get the current lift
status from each lift. The class Thread is an implementation of the polling routine and
its instance is concurrently executed so as to monitor the status of the assigned lift. To
execute the thread, we add the operations “start” for starting the execution of the thread
and “run” for defining the body of the thread. The operation “attach” in Scheduler is for
combining a scheduler object to the thread objects. Rule #2 and PSM#2 in the figure
specifies this transformation and its result respectively. The TNMvalue, the total sum of
the operations, can be calculated following the definition of Figure 1 for PIM, PSM#1
and PSM#2. It can be considered that the TNM value expresses the efforts to implement

42

the PSM because it reflects the volume of the source codes to be implemented. Thus the
difference of the TNMvalues (AT N Mwvalue) between the PIM to the PSM represents
the increase of implementation efforts. In this example, PSM#1 is easier to implement
because AT N Mwvalue of PSM#1 is smaller than that of PSM#2, as shown in Figure
11. So we can conclude that the transformation Rule #1 is of higher quality rather
than Rule #2, only from the viewpoint of lower implementation efforts. This example
suggests that our framework can specify formally the quality of model transformations
by using the metrics values before and after the transformations.

Since in the above example we calculate just metrics values before and after the
transformation, associating the calculating rule with the transformation rule seems not
to be necessary. However, considering a whole of a transformation process consisting
of a run of applying transformation rules, a calculation rule for quality should be associ-
ated with each of transformation rules and a metrics value of the model transformation
can be composionally calculated from the metrics values obtained from the applications
of the transformation rules. Complexity metrics of graph rewriting, e.g. the length of a
transformation path and the number of the potentials of alternative applications, can be
significant factors of the metrics of a model transformation.

5 Conclusion and Future Work

In this paper, we propose three formal techniques related to model metrics in MDD con-
text; 1) the application of a meta modeling technique to specify model-specific metrics,
2) the definition of metrics dealing with semantic aspects of models (semantic met-
rics) using domain ontologies and 3) the specification technique for metrics of model
transformations based on graph rewriting systems.

The future research agenda can be listed up as follows.

1. Development of supporting tools. We consider the extension of the existing AGG
system, but to support the calculation of the metrics of transformations and the se-
lection of suitable transformations, we need more powerful evaluation mechanisms
of attribute values. This graph rewriting engine should be embedded into our meta
CASE shown in Figure 2. The mechanisms for version control of models and re-
doing transformations are also necessary to make the tool practical.

2. Collecting useful definitions of metrics. In the paper, we illustrated very simple
metrics for explanation of our approach. Although the aim of this research project
is not to explore useful and effective quality metrics, making a kind of catalogue of
metrics definitions and specifications is important in the next step of the supporting
tool. The assessment of the collected metrics is also a research agenda.

3. Constructing domain ontologies. The quality of a domain ontology has a great ef-
fect on the preciseness of the semantic metrics, and we should get a domain on-
tology for each problem and application domain. In fact, developing various kind
of domain ontologies of high quality by hand is a time-consuming and difficult
task. Adopting text mining approaches are one of the promising ones to support the
development of domain ontologies [1].

43

Ruletl

R . :Class N

‘rg\lrﬁ " :ClassDiagram ame=x :ClassDiagram

:Class :Structural Complexity -Class :Operation :Structural Complexity

name=! TNMvalue=m nam name=notif TNMvaue=n
Rulet2

:Operation
name=attach

Transformation from aPIM to a PSM
Scheduler

Scheduler

Iift_statu s

[®arrived)
O

PIM

:Structural Complexity
TNMvalue=m

:Operation :ClassDiagram
name=start

o
name=Thread

:Operation

hame=run :Structural Complexity

TNMvaue=n

[E&lift_status
®arrived)

quality of the transformation
= ATNMvaue=n-m=1

Rulet Cift
®hnotify()
Scheduler
[E&lift_status ifresd
PSM#2 larrived() lfs?!r(g()
attach() /7
‘ monitors
Rule#2 quality of the transformation
= ATNMvalue=n-m=3
 —

Fig. 11. Model Transformation Example

PSM#1

References

—

10.

11.
12.

13.
14.

15.

16.

17.

18.

19.

20

. KAON Tool Suite. http://kaon.semanticweb.org/.

. OMG Model Driven Architecture. http://www.omg.org/mda/.

. Visual Modeling Forum - Domain-Specific Modeling.
http://www.visualmodeling.com/DSM.htm.

. IEEE Recommended Practice for Software Requirements Specifications. Technical report,
IEEE Std. 830-1998, 1998.

. F.B. Abreu. Using OCL to Formalize Object Oriented Metrics Definitions. In Tutorial in 5th
International ECOOP Workshop on Quantitative Approaches in Object-Oriented Software
Engineering (QAOOSE 2001), 2001.

. S. Chidamber and C. Kemerer. A Metrics Suite for Object-Oriented Design. IEEE Trans. on
Software Engineering, 20(6):476-492, 1994,

. K. Czarnecki and S. Helsen. Classification of Model Transformation Approaches. In OOP-
SLA2003 Workshop on Generative Techniques in the context of Model Driven Architecture,
2003.

. M. Gruninger and J. Lee. Ontology: Applications and Design. Commun. ACM, 45(2), 2002.

. H. Kaiya and M. Saeki. Ontology Based Requirements Analysis: Lightweight Semantic

Processing Approach. In QSIC, pages 223-230, 2005.

G. Karsai and A. Agrawal. Graph Transformations in OMG’s Model-Driven Architecture:

(Invited Talk). In AGTIVE, pages 243-259, 2003.

A. Maedche. Ontology Learning for the Semantic Web. Kluwer Academic Publishers, 2002.

T. McCabe and C. Butler. Design Complexity Measurement and Testing. CACM,

32(12):1415-1425, 1989.

S. Mellor and M. Balcer. Executable UML. Addison-Wesley, 2003.

M. Saeki. Role of Model Transformation in Method Engineering. In Lecture Notes in Com-

puter Science (Proc. of CAiSE’2002), volume 2348, pages 626—642, 2002.

M. Saeki. Embedding Metrics into Information Systems Development Methods: An Appli-

cation of Method Engineering Technique. In Lecture Notes in Computer Science (Proc. of

CAiSE 2003), volume 2681, pages 374-389, 2003.

M. Saeki. Toward Automated Method Engineering: Supporting Method Assembly in

CAME. In Engineering Methods to Support Information Systems Evolution (EMSISE’03

in O0IS’03). http://cui.unige.ch/db-research/EMSISE03/, 2003.

A. Schurr. Developing Graphical (Software Engineering) Tools with PROGRES. In Proc. of

19th International Conference on Software Engineering (ICSE” 97), pages 618-619, 1997.

G. Taentzer, O. Runge, B. Melamed, M. Rudorf, T. Schultzke, and S. Gruner. AGG : The

Attributed Graph Grammar System. http.//tfs.cs.tu-berlin.de/agg/, 2001.

Y. Wand. Ontology as a Foundation for Meta-Modelling and Method Engineering. Informa-

tion and Software Technology, 38(4):281-288, 1996.

. J. Warmer and A. Kleppe. The Object Constraint Language. Addison Wesley, 1999.

45

46

Graph-Based Tool Support to Improve Model Quality

Tom Mens', Ragnhild Van Der Straeten?, and Jean-Francois Warny

! Software Engineering Lab, Université de Mons-Hainaut
Av. du champ de Mars 6, 7000 Mons, Belgium
tom.mens@umh.ac.be
2 Systems and Software Engineering Lab, Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussel, Belgium
rvdstrae@vub.ac.be

Abstract. During model-driven software development, we are inevitably con-
fronted with design models that contain a wide variety of design defects. Inter-
active tool support for improving the model quality by resolving these defects
in an automated way is therefore indispensable. In this paper, we report on the
development of such a tool, based on the underlying formalism of graph trans-
formation. Due to the fact that the tool is developed as a front-end of the AGG
Engine, a general purpose graph transformation engine, it can exploit some of its
interesting built-in mechanisms such as critical pair analyis and the ability to rea-
son about sequential dependencies. We explore how this can help to improve the
process of quality improvement, and we compare our work with related research.

1 Introduction

During development and evolution of design models it is often desirable to tolerate
inconsistencies in design models. Indeed, such inconsistencies are inevitable for many
reasons: (i) in a distributed and collaborative development setting, different models may
be developed in parallel by different persons; (ii) the interdependencies between mod-
els may be poorly understood; (iii) the requirements may be unclear or ambiguous at
an early design stage; (iv) the models may be incomplete because some essential infor-
mation may be deliberately left out, in order to avoid premature design decisions; (v)
the models are continuously subject to evolution; (vi) the semantics of the modeling
language itself may be poorly specified.

All of these reasons hold in the case of UML, the de-facto general-purpose mod-
elling language [1]. Therefore, current UML modeling tools should provide better sup-
port for resolving these inconsistencies in an automated way. Other types of design
defects may also affect the quality of a model. Therefore, we suggest an automated
approach to detect and resolve, among others, the following types of defects:

nonconformance to standards (both industry-wide and company-specific standards);
breaches of conventions (e.g., naming conventions);

incomplete models, that are only partially specified and still have missing items [2];
syntactic inconsistencies, i.e., models that do not respect the syntax of the modeling
language;

47

2 Mens, Van Der Straeten, Warny

— semantic inconsistencies, i.e., models that are not well-formed with respect to the
semantics of the modeling language?;

— design smells (in analogy with “bad smells”) that indicate opportunities for per-

forming a model refactoring;

redundancies (e.g., double occurrences of a model element with the same name);

visual problems (e.g., overlapping model elements in a diagram);

bad practices;

antipatterns, i.e., misuses or violations of design patterns

In addition, these problems may either be localised in a single UML diagram, or may
be caused by mismatches between different UML diagrams.

The goal is therefore to provide a general framework and associated tool support
to detect and resolve such design defects. In this paper, we suggest a transformation-
based approach to do this. More in particular, we propose to use graph transformation
technology. We report on an experiment that we have carried out and a tool that we have
developed to achieve this goal, and we discuss how our approach may be integrated into
comtemporary modeling tools.

2 Suggested approach

In Figure 1 we explain the iterative process of gradually improving the quality of a
design model in an iterative way. First, defects in the model are identified. As explained
above, these defects can be of diverse nature. Next, resolutions are proposed, selected
and applied. The user may also wish to ignore or disable certain types of defects or
resolutions. This process continues until all problems are resolved or until the user is
satisfied.

When trying to develop tool support for this process, it is important to decide how
the design defects and their resolutions should be specified. We opted for a formal
specification, because this gives us an important added value: it allows us to analyse and
detect mutual conflicts and sequential dependencies between resolution rules, which can
be exploited to optimise the resolution process.

The particular formalism that we have chosen is the theory of graph transformation
[3,4]. The main idea that will enable us to perform conflict and dependency analysis is
the application of theoretical results about critical pairs [5], which allow us to reason
about parallel and sequential dependencies between rules.

3 Graph transformation

To perform detection and resolution of model defects, the tool relies entirely on the
underlying formalism of graph transformation.

The UML metamodel is represented by a so-called type graph. A simplified version
of the metamodel, showing a subset of UML 2.0 class diagrams, statemachine diagrams

3 In UML this is a common problem due to the lack of a formal semantics combined with the
fact that some parts of the semantics are deliberately left open, which makes the models subject
to interpretation.

48

Improving Model Quality 3

<<datastore>> <<datastore>>
Fact base of design defects Fact base of resolution rules

use use
no problems found]

(Detect all design defects \

Propose resolution rules

~%/[problems found]

Tool

anmptate use

Apply resolution

<<datastore>> update

Model

create

H Select and load model Select resolution rule(s)

Fig. 1. UML activity diagram showing the interactive process for detecting and resolving design
defects in a model.

User

and sequence diagrams, is given in Figure 2. The notion of design defect is incorporated
explicitly in this type graph by the node type Conflict, which is used to identify
model defects.

Every UML model will be represented internally as a graph that satisfies the con-
straints imposed by the aforementioned type graph. Figure 3 shows a simple example
of a UML class diagram, represented as a graph model. More precisely, it corresponds
to a directed, typed, attributed graph. These graph representations can be generated au-
tomatically from the corresponding UML model without any loss of information. *

Detection of design defects will be achieved by means of graph transformation rules.
For each particular defect, a graph transformation rule will be specified that detects the
defect. This is realised by searching for the occurrence of certain graph structures in
the model, as well as the absence of certain forbidden structures (so-called negative
application conditions or NACs). We call the defects that can be expressed as graph
transformations, structural defects. Structural defects are all kinds of defects that can be
expressed as a combination of the presence and/or absence of certain graph patterns.

A simple example of a detection rule is given in Figure 4. It detects the so-called
Dangling Type Reference defect. This occurs when an Operat ion contains Parameters
whose t ype has not (yet) been specified. The specification of this rule as a graph trans-
formation is composed of three parts. The middle pane represents the left-hand side
(LHS) of the rule, which is basically the occurrence of some Operation having a
Parameter. The leftmost pane represents a negative application condition (NAC),
expressing the fact that the Parameter of interest does not have an associated type.
Finally, the rightmost pane represents the right-hand side (RHS) of the rule, showing
the result after the transformation. In this case, the only modification is the introduction

* An experiment along these lines has been carried out by L. Scolas as a student project.

49

4 Mens, Van Der Straeten, Warny

hasCanflict

/STATEMAGHINE nmsonfiﬁ‘

[Gamam

behaviour tgen

Operaticn
String name
String visibility

int nuOfPars
boolean isAbstract

represents_~T,.1
1

f A
| [atetine " F——p[Messageneespec”
| ‘ ontains Ugl L

confains receiveEvent

CLASS DIAGRAM)| [contains

. 0.1 0.1
contains connection \

FeT | o [Message I 5 3

| |Interaction” |- P Siring expr |+ Gt Connector = o> String name

A Imultiplicity
String name
String aggregationKind | 1

3.

1

MultiplicityElement
T
int upper /

B

Fig. 2. Simplified metamodel for UML class diagrams, state machine diagrams, expressed as a
type graph with edge multiplicities in AGG. In addition, a node type Conflict is introduced to

represent model defects.

Operaticn

Class tgegln Class contains name="n"
name="A" T 1 ———————=|name="§" P visibility="public’
isAbstract=true contains - -~ isAbstract=true nuOfPars=0

A LDI’I[EI"SR""'---_ contains + instanceOf isAbstract=true

[x‘-‘mnibute Attribute

| 2 name="a name="b"

| Operation pdates _laggregationKind="none" aggregationKind="composite”

kgen name="m" mult{plicity contins f multiplicity

| Vls‘of’llyt‘f:'li\-lbht' & | contains

nuOfPars= ey e

| N i MultiplicityElement ! MultiplicityElement

| isAbstract=false Tower=1 Asscciation Tower=1

| hasParam upper=1 name="BrontainsA” upper=1000

| order=1

| Parameter -

" na) i Operation
Class contains name="n"
name="C" P visibility="public®
isAbstract=false nu0fPars=0

isAbstract=true

Fig. 3. Simplified UML class diagram model represented as a directed, typed, attributed graph in

AGG.

50

Improving Model Quality 5

of a Conflict node that is linked to the Parameter to show that there is a potential
design defect.

NoParameterType DanglingTypeReference

] 3:hasParam hasConflict i
pe -hasParam |2 Operation »1 Parameter| description="undefined tu‘pe“|

]
1:Paramater| - |2 Operanonl—bh Parameter‘ B

Fig. 4. Graph transformation representing the detection of a design defect of type Dangling Type
Reference.

Given a source model, we can apply all detection rules in sequence to detect all
possible design defects. By construction, the detection rules are parallel independent,
i.e., the application of a detection rule has no unexpected side effects on other detection
rules. This is because the only thing a detection rule does is introducing in the RHS a
new node of type Conflict and a new edge of type hasConflict pointing to this
node. Morever, the LHS and NAC of a detection rule never contain any Conflict
nodes and hasConflict edges.

If we apply all detection rules (only one of these has been shown in Figure 4) to
the graph of Figure 3, this graph will be annotated with nodes of type Conflict,
as shown in Figure 5, to represent all detected design defects. The type of defect is
indicated in the description attribute of each Conflict node. Observe that the
same type of conflict may occur more than once at different locations, and that the same
model element may be annotated by different types of conflicts.

o Operaticn

Class gen Class contains name="n"

name="A" ey tgen ——————={name="§" B visibility="public”

isAbstract=true comtaing T T —— — T 7 isAbstract=true nuOfPars=0

— ai instanceQf isAbstract=true
II‘ col -KLA . contains *
ttribute Attribute
| name="a" name="b"

dates T * . -
| Dperation Hp aggregaticnKind="none aggregationkind="composite | e
nstanceSpecification
igen name="m" /’/ multiplicity contains 4 multiplicity name=""
| visibility="public’ i ’Illcon[:ins
| "'ﬂ:ﬂ'g_lr | MultiplicityElement / MultiplicityElement :
| SISt atae Tower=1 Association Tower=1 3
| hasParam upper=1 name ="BcontainsA” upper=1000 hasConflict
order=1
|
| Parameter O
3 nAmE="T" . peration
Class P contains name="n" v

mes"Ce 3 {visibility="public" InstanceSpecification (Conflic)
isAbstract=false hasConflict nuOfPars=0 ames |description="nameless instance” |

_AisAbstract=true

“~~._hasConflict

o “ I1::E.__:z1'ﬂllc / hasConflict

Conflict =

Jescription="undefined tvoe" -~ P %

description="undefined type] ‘/, (Canflict | rl!ct_] ‘
anflict |description="nameless instance” | |description="classless instance” |

|description="abstract operation in concrete subclass” |

Fig. 5. Same UML class diagram model as in Figure 3, but annotated with all detected design
defects.

51

6 Mens, Van Der Straeten, Warny

Graph transformations will also be used to resolve previously detected design de-
fects. For each type of design defect, several resolution rules can be specified. Each
resolution rule has the same general form. On the left-hand side, we always find a
Conflict node that indicates the particular defect that needs to be resolved. On the
right-hand side, this Conflict node will no longer be present because the rule re-
moves the design defect.

Figure 6 proposes three resolution rules for the Dangling Type Reference defect
mentioned previously. The first one removes the problematic parameter, the second one
uses an existing class as type of the parameter, and the third one introduces a new class
as type of the parameter.

DanglingTypeReference-Resl of MyTransformationSystem

hasParam

Parameter

hasConflict

J. S
|Conflict|

DanglingTypeReference-Res2 of MyTransformationSystem

5:hasParam 5:hasPararp
l:Parame[erl |2:Dperaii0n
hasConflict
> -
(Conflict|

DanglingTypeReference-Res3 of MyTransformationSystem

4:hasParam 4:hasParam
Tparameter] | | [2:0peration
hasConflict
A, St Class ype
[Conflict| name=n

isAbstract=a

Fig. 6. Three graph transformations specifying alternative resolution rules for the Dangling Type
Reference defect.

4 Tool support

The tool that we have selected to perform our experiments is AGG> (version 1.4), a
state-of-the-art general purpose graph transformation tool [6]. We rely on the AGG

5Seehttp://tfs.cs.tu-berlin.de/agg/

52

Improving Model Quality 7

engine as a back-end, and we have developed a dedicated user interface on top of it to
enable the user to interactively detect and resolve design defects [7]. This tool is called
SIRP, for Simple Interactive Resolution Process. As will explained in more detail in the
discussion section, integration of this tool into a UML modeling environment is left for
future work.

Figure 7 shows a screenshot of the tool in action. It displays the detected design de-
fects of Figure 3 as well as the resolution rules proposed to resolve these defects. In the
screenshot, we see three resolution rules that can be selected to resolve the occurrence
of the Dangling Type Reference defect. After selecting one of these rules, we can apply
the chosen resolution, after which the model will be updated and the list of remaining
design defects will be recomputed.

According to the resolution process of Figure 1, each resolution step is followed by
a redetection phase. Currently, during redetection, we follow a brute-force approach,
and detect all design defects again from scratch. A more optimal approach would be
to come to an incremental redetection algorithm, thereby remembering those design
defects that have already been identified in a previous phase. However, when doing
this, we need to deal with a number of situations that may occur due to side effects that
may impact existing model defects:

— Orphan defects arise when certain model elements have been removed as a result
of resolving a certain design defect. In that case, some Conflict nodes may
remain in the graph without any model element to which they refer (because the
model element has been removed).

— Expired defects arise if the resolution of a certain design defect also resolves other
design defects as a side-effect. If this is the case, there will be a Conflict node
that points to some model element, even though the defect has already been re-
solved.

To address these two problems, we need to provide so-called cleanup rules, that
remove all Conflict nodes that are no longer necessary. Such cleanup rules can be
generated automatically from the detection and resolution rules.

5 Graph transformation dependency analysis

There are also other types of problems that may inevitably occur during the detection
and resolution process, due to the inherently incremental and iterative nature of the
conflict resolution process.

Induced defects may appear when the resolution of a certain design defect intro-
duces other design defects as a side effect. An example is given in Figure 8. Suppose that
we have a model that contains a defect of type Abstract Object, i.e., an instance specifi-
cation (an object) that refers to an abstract class (labelled 1 in Figure 8). The resolution
rule AbstractObject-Resl resolves the defect by setting the attribute isAbstract of
class 1 to false. As aresult of this resolution, the design defect called Abstract Oper-
ation suddenly becomes applicable. This is the case if class 1, which now has become
concrete, contains one or more abstract operations.

53

8 Mens, Van Der Straeten, Warny

808 Simple Iterative Resolution Process
-~ " .'/ " -\‘.
& “...I Open a model ... File name uinc multinc g [Reload file)
Internal name SimplifiedineMgmt
File reading...

TypeGraph name

SimplifiedTypegraph

(" Showin AGG ...)

StartGraph name

Defect detection result

simplifiedGraph

< Properties ...

Found defects

Defect Name
abstract object
nameless instance
nameless instance

Concerned Artifact
InstanceSpecification (unnamed)
InstanceSpecification (unnamed)
InstanceSpecification (unnamed)

Informatio

Available resolution rules

Rule Mame
AbstractObject-Resl 1
AbstractObject-Res2 (n) -1
AbstractObject-Res3 -1
AbstractObject-Res4 (n) -1

Popularity

Z'f_-: Apply the chosen resolution

Resolution history | Detailed view

2 removed J 0 added --> 4 left defects.

L g Result 1 :
_ Result 2 : 0 removed / 0 added --> 4 left defects.
_ Result 3 : 0 removed / 0 added --> 4 left defects.
¥ Result4:1removed /0 added --> 3 left defects.
_ Removed : undefined type for Parameter "p"
¥/ Result5:1removed /0 added --> 2 left defects.
__ Removed : classless instance for InstanceSpecification (unnamed)
¥ Result®:1removed /0 added --> 1 left defects.]

_ Removed : abstract operation in concrete subclass for Operation "n" |«

A

Fig.7. Screenshot of the tool in action. Several defects have been resolved already, as shown
in the resolution history. Resolution rules are proposed for each remaining defect with a certain
popularity (based on whether the rule has already been applied before by the user). Selected rules
can be applied to resolve the selected defect.

54

Improving Model Quality 9

e W =Wz Far

fur) 2a8205] :
) () (1)change |) Rule 1
AbstractObject-Res1

2:InstanceSpecification
2:InstanceSpecification

. ﬂ 2:InstanceSpecification
3:instanceOf -instanceOf MasCandi 1 3:instanceOf
1'Class“ [L:Class | (Conflict | v 7 [LClass
T TR A |isAbstract=true | |description="abstract object’| isAbstract=false
- Purd
5:contains 8eoe 4o Rule2
AbstractOperation

h 4
<:0peration
isAbstract=true

0

1:Class
isAbstract=false

5:contains
4:Operation
isAbstract=true

Fig. 8. Induced defects: Example of a sequential (causal) dependency of detection rule Abstrac-
tOperation on resolution rule AbstractObject-Res1.

1:Class [Conflict
isAbstract=false I\clescription:"abstract operation in concrete

5:contains

hasCoanictT

4:Operation

Conflicting resolutions may appear when there are multiple design defects in a
model, each having their own set of applicable resolution rules. It may be the case that
applying a resolution rule for one design defect, may invalidate another resolution rule
for another design defect. As an example, consider Fig. 9. The left pane depicts a situa-
tion where two defects occur, one of type Abstract Operation and Dangling Operation
Reference respectively, but attached to different model elements. The resolution rules
AbstractOperation-Res4 and DanglingOperationRef-Res2 for these defects (shown on
the right of Fig. 9) are conflicting, since the first resolution rule sets the relation contains
connecting class 1 to operation 2 to connecting class 4 and operation 2, whereas the sec-
ond resolution rule requires as a precondition that class 1 is connected to operation 2
through a containment relation.

]

use-conflict

| _AbstractOperation-Resd

[=
(3StateMachine pilicass__ | p{2:0peration | 1 Gl 2.Operation n] 7 Operation
TS behaviour] | g [| [SABsvacaTanE | - |iAbgract A SABsvateTaRE| [isAbsiraci-tue
" ¥ |} Tageys
; 4.Class 3 inconsistency [i e ————— g
[:Repon] ’-mmuci-me} |descrition="absuact operaton” J,‘:‘,:::m_,,wlIl::“'.r:;.";_':_ e .I . 4:Class
RS wecTue| A il
16:referredOperation J=XaXE) % Rule2
(10 Transiton] ~ ~b{1 1 Gperation DanglingOpérationRel-Res2 —
13:behaviou; 13 behavioy
i s 5 5:5utemachine | 2.Operatan) ﬂ (B Sumsachne) — = w1 Ciass] {2 Operanon
(#Region) |'. omitency . [eRegen) referredDokration
|a “Gangiing operation reference’ s s
. ARqeferredOperatoa_t " ’
(10 Tramsiion] = = — = Jln Operation] '8 [10Transhion) [11:0eration]

Fig. 9. Conflicting resolutions: Example of a critical pair illustrating a mutual exclusion between
resolution rules AbstractOperation-Res4 and DanglingOperationRef-Res2.

To identify and analyse the two situations explained above in an automated way, we
need to make use of the mechanism of critical pair analysis of graph transformation
rules [5, 8]. The goal of critical pair analysis is to compute all potential mutual exclu-

55

10 Mens, Van Der Straeten, Warny

sions and sequential dependencies for a given set of transformation rules by pairwise
comparison. Such analysis is directly supported by the AGG engine, so it can readily be
used in our approach.

The problem of induced defects is a typical situation of a sequential dependency: a
detection rule causally depends on a previously applied resolution rule. Figure 10 shows
an example of a dependency graph that has been generated by AGG. Given a selection
of design defects, it shows all induced defects, i.e., all detection rules that sequentially
depend on a resolution rule. This information is quite important in an incremental res-
olution process, as it informs us, for a given resolution rule, which types of defects will
need to be redetected afterwards.

AbstractObject-Res1
AbstractOperation
AbstractStateMachine-Res3

AbstractStateMachine-Res2

[DanglingOperationRef-Res2

DanglingOperationRef

bslraclSla[eMachine

AbstractObject

Fig. 10. Dependency graph generated by AGG showing all induced defects, i.e., all defect detec-
tion rules that sequentially depend on a resolution rule.

The problem of conflicting resolutions is a typical situation of a parallel conflict:
two rules that can be applied in parallel cannot be applied one after the other (i.e.,
they are mutually exclusive) because application of the first rule prevents subsequent
application of the second one. Again, the information reported in the graph is quite
important during an internative resolution process, as it informs the user about which
resolution rules are mutually exclusive and, hence, cannot be applied together.

Figure 11 shows an example of a conflict graph that shows a number of conflict-
ing resolutions between the resolution rules for the Abstract Operation defect and the
resolution rules of other design defects. Except for some layout issues, this graph has
been automatically generated by AGG’s critical pair analysis algorithm. In the Figure,
we can see lots of conflicts between the resolution rules for Abstract Operation and the
resolution rules for Dangling Operation Reference.

56

Improving Model Quality 11

I i z][Dangh t-R [oangmooenwnner-nm[Danghe e'asomer-nes-tl | BanglngTypeReferunce-Resl
¥ IE — .

YT i LY

I DanglngTypeReference-Res3]‘I DanglingTypeReference -Resz]
n T

Ce - PN : N\ Ve
- , - -~ | .
.hbnrac'.oaaranon-ﬂ.es]] [Abs\raﬂDDemoﬂ-‘uﬂ] I AbstractOperation: F.ul] Iaewa(m('a:.an-nessl I.Anwampg.'non—ngss“ AbstractOperation-Res2
— v - 1
[ADSIfl{‘UDJ([I-ﬂ!ﬂI [AbstractStateMachine Ill"\‘l [Anunrlt)nprr-lnd]

Fig. 11. Conflict graph generated by AGG showing conflicting resolutions (i.e., mutual exclu-
sions) between the resolution rules for the Abstract Operation defect and resolution rules for
another design defect.

6 Cycle detection and analysis

As illustrated in Figure 12, starting from the dependency graph, we can also compute
possible cycles in the conflict resolution process. This may give important information
to the user (or to an automated tool) to avoid repeatedly applying a certain combination
of resolution rules over and over again. Clearly, such cycles should be avoided, in order
to optimise the resolution process (e.g., by preventing cycles to occur).

l AbstractStateMachine-Res3 AbstractOperation AbstractObject-Resl l

r Y F Y

h 4

l AbstractStateMachinelﬂ—l AbstractOperation-Res3 AbstractObject

Fig. 12. Some examples of detected cycles in the sequential dependency graph.

As an example of such cycle, consider Figure 12, which represents a carefully se-
lected subset of sequential dependencies that have been computed by AGG.® In this
figure, we observe the presence of two cycles, both of them involving the Abstract Op-
eration defect. Both cycles are of length 4, and correspond to two successive detection
and resolution steps. The cycle corresponding to region 1 shows that we can repeatedly
apply resolution rules AbstractStateMachine-Res3 and AbstractOperation-Res3 ad in-
finitum. This is the case because the two resolution rules are each others inverse. There-
fore, after applying one of both rules, the interactive resolution tool should not propose
the other rule because it would undo the effect of the first one. The cycle corresponding
to region 4 is similar to the previous one, except that it occurs between resolution rules
AbstractObject-Res1 and AbstractOperation-Res3.

% To interpret the dependency graph, the blue lines could be read as “enables” or “triggers”.

57

12 Mens, Van Der Straeten, Warny

Because the sequential dependency graph can be very large, manual detection of cy-
cles is unfeasible in practice. Therefore, we have used a small yet intuitive user interface
for detecting all possible cycles in a flexible and interactive way, based on the output
generated by AGG’s critical pair analysis algorithm. This program has been developed
by S. Goffinet in the course of a student project.

7 Discussion and Future Research

Currently, our approach has not yet been integrated into a modeling tool. The reason is
that there are many mechanisms for doing this, and we haven’t decided yet on which
alternative is the most appropriate. The most obvious solution would be to directly inte-
grate the proposed process into an existing UML modeling tool. ArgoUML’ seems the
most obvious candidate for doing this because it is open source and already provides
support for design critics. It is not clear, however, how this can be combined easily with
critical pair analysis since this requires an underlying representation based on graph
transformation. Therefore, another more feasible approach could be to develop a mod-
eling tool directly based on graph transformation as an underlying representation. Sev-
eral such tools have already been proposed (e.g. VIATRA, GReAT, Fujaba), but none
of those currently provides support for critical pair analysis. Another alternative could
therefore be to build a modeling environment on top of the AGG engine. To achieve
this, one may rely on the Tiger project, an initiative to generate editors of visual models
using the underlying graph transformation engine [9].

The fact that the resolution of one model defect may introduce other defects is a
clear sign of the fact that defect resolution is a truly iterative and interactive process.
One of the challenges is to find out whether the resolution process will ever terminate.
It is easy to find situations that never terminate (cf. the presence of cycles in the depen-
dency graph). Therefore, the challenge is to find out under which criteria a given set of
resolution rules (for a given set of design defects and a given start graph) will terminate.
Recent work that explores such termination criteria for model transformation based on
the graph transformation formalism has been presented in [10].

Another challenge is to try and come up with an optimal order of resolution rules.
For example, one strategy could be to follow a so-called “opportunistic resolution pro-
cess”, by always following the choice that corresponds to the least cognitive effort (i.e.,
the cognitive distance between the model before and after resolution should be as small
as possible). How to translate this into more formal terms remains an open question. A
second heuristic could be to avoid as much as possible resolution rules that give rise to
induced defects (i.e., resolutions that inadvertently introduce other defects). Yet another
strategy could be to prefer resolution rules that give rise to expired defects (since these
are rules that resolve more than one defect at once).

Another important question pertains to the completeness of results. How can we
ensure that the tool detects all possible defects, that it proposes all possible resolution
rules, and that all conflicting resolutions and sequential dependencies are correctly re-
ported? How can we avoid false positives reported by the tool?

7 http://argouml.tigris.org/

58

Improving Model Quality 13

A related question concerns minimality. Is it possible to detect and avoid redundancy
between detection rules and between resolution rules? Is it possible to come up with a
minimal set of resolution rules that still cover all cases for a given set of detection rules?

A limitation of the current approach that we are well aware of, is the fact that not
all kinds of defects and resolution rules can be expressed easily as graph transformation
rules. For example, behavioural inconsistencies are also difficult to express in a graph-
based way. Because of this, our tool has been developed in an extensible way, to make
it easier to plug-in alternative mechanisms for detecting defects, such as those based
on the formalism of description logics [11]. Of course, it remains to be seen how this
formalism can be combined with the formalism of graph transformation, so that we can
still benefit from the technique of critical pair analysis.

8 Related Work

Critiquing systems originate in research on artificial intelligence, and more in particular
knowledge-based systems and expert systems. Rather than giving a detailed account of
such systems, let us take a look at one particular attempt to incorporate these ideas into a
modeling tool, with the explicit aim to critic and improve design models [12, 13]. In this
view, “a design critic is an intelligent user interface mechanism embedded in a design
tool that analyses a design in the context of decision-making and provides feedback to
help the designer improve the design. Support for design critics has been integrated into
the ArgoUML modeling tool. It is an automated and unobtrusive user interface feature
that checks in the background for potential design anomalies. The user can chose to
ignore or correct these anomalies at any time. Most critiquing systems follow the so-
called ADAIR process which is sequentially composed of five phases: Activate, Detect,
Advice, Improve and Record. Without going into details, our approach roughly follows
the same process.

Another approach that is very related to ours is reported in [14]. A rule-based ap-
proach is proposed to detect and resolve inconsistencies in UML models, using the Java
Rule Engine JESS. In contrast to our approach, where the rules are graph-based, the
specification of their rules is logic-based. However, because the architecture of their
tool provides a Rule Engine Abstraction Layer, it should in principle be possible to
replace their rule engine by a graph-based one.

The main novelty of our approach compared to the previously mentioned ones, is the
use of the mechanism of critical pair analysis to detect mutual inconsistencies between
rules that can be applied in parallel, as well as sequential dependency analysis between
resolution rules.

There have been several attempts to use graph transformation in the context of in-
consistency management. In [15], distributed graph transformation is used to deal with
inconsistencies in requirements engineering. In [16], graph transformations are used to
specify inconsistency detection rules. In [17] repair actions are also specified as graph
transformation rules. Again, the added value of our approach is the ability to analyse
conflicts and dependencies between detection and resolution rules.

The technique of critical pair analysis of graph transformations has also been used
in other, related, domains. [18] used it to detect conflicting functional requirements in

59

14 Mens, Van Der Straeten, Warny

UML models composed of use case diagrams, activity diagrams and collaboration dia-
grams. [19] used it to detect conflicts and dependencies between software refactorings.
[20] used it to improve parsing of visual languages.

An important aspect of research on model quality that is still underrepresented in
literature is empirical research and case studies on the types of defects that commonly
occur in industrial practice and how these can be resolved [2, 21, 22].

9 Conclusion

In this article we addressed the problem of model quality improvement. The quality of a
model can be improved in an iterative way by looking for design defects, and by propos-
ing resolution rules to remove these defects. Interactive tool support for this process can
benefit from a formal foundation. This article proposed a tool based on the underlying
formalism of graph transformation. Given a formal specification of the UML model as
a graph (and the metamodel as a type graph), design defects and their resolutions were
specified as graph transformation rules. Furthermore, critical pair analysis was used
to identify and analyse unexpected interactions between resolution rules, new defects
that are introduced after resolving existing defects, and cycles in the resolution process.
Futher work is needed to integrate this tool ino a modeling environment.

References

1. Object Management Group: Unified Modeling Language 2.0 Superstructure Specification.
http://www.omg.org/cgi-bin/apps/doc?formal/05-07-04.pdf (2005)

2. Lange, C.F., Chaudron, M.R.: An empirical assessment of completeness in uml designs. In:
Proc. Int’l Conf. Empirical Assessment in Software Engineering. (2004) 111-121

3. Rozenberg, G., ed.: Handbook of graph grammars and computing by graph transformation:
Foundations. Volume 1. World Scientific (1997)

4. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook of graph grammars and
computing by graph transformation: Applications, Languages and Tools. Volume 2. World
Scientific (1999)

5. Plump, D.: Hypergraph rewriting: Critical pairs and undecidability of confluence. In: Term
Graph Rewriting. Wiley (1993) 201-214

6. Taentzer, G.: AGG: A graph transformation environment for modeling and validation of
software. In: Proc. AGTIVE 2003. Volume 3062 of Lecture Notes in Computer Science.,
Springer-Verlag (2004) 446453

7. Warny, J.F.: Détection et résolution des incohérences des modeles uml avec un outil de
transformation de graphes. Master’s thesis, Université de Mons-Hainaut, Belgium (2006)

8. Ehrig, H., Prange, U., Taentzer, G.: Fundamental theory for typed attributed graph trans-
formation. In: Proc. Int’l Conf. Graph Transformation. Volume 3256 of Lecture Notes in
Computer Science., Springer-Verlag (2004) 161-177

9. Ehrig, K., Ermel, C., Hinsgen, S., Taentzer, G.: Generation of visual editors as eclipse plug-
ins. In: Proc. Int’l Conf. Automated Software Engineering, ACM Press (2005) 134-143

10. Ehrig, H., Ehrig, K., de Lara, J., Taentzer, G., Varrd, D., Varr6-Gyapay, S.: Termination
criteria for model transformation. In: Proc. Fundamental Aspects of Software Enginering
(FASE). Volume 3442 of Lecture Notes in Computer Science., Springer-Verlag (2005) 49—
63

60

13.

14.

15.

16.

17.

18.

20.

21.

22.

Improving Model Quality 15

. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using description logics to main-

tain consistency between UML models. In: UML 2003 - The Unified Modeling Language.
Volume 2863 of Lecture Notes in Computer Science., Springer-Verlag (2003) 326-340

. Robbins, J.E., Redmiles, D.F.: Software architecture critics in the argo design environment.

Knowledge-Based Systems 11 (1998) 47-60

Robbins, J.E.: Design Critiquing Systems. PhD thesis, University of California, Irvine (1999)
Technical Report UCI-98-41.

Liu, W., Easterbrook, S., Mylopoulos, J.: Rule-based detection of inconsistency in UML
models. In: Proc. UML 2002 Workshop on Consistency Problems in UML-based Software
Development, Blekinge Insitute of Technology (2002) 106-123

Goedicke, M., Meyer, T., , Taentzer, G.: Viewpoint-oriented software development by dis-
tributed graph transformation: Towards a basis for living with inconsistencies. In: Proc.
Requirements Engineering 1999, IEEE Computer Society (1999) 92-99

Ehrig, H., Tsioalikis, A.: Consistency analysis of UML class and sequence diagrams using
attributed graph grammars. In: ETAPS 2000 workshop on graph transformation systems.
(2000) 77-86

Hausmann, J.H., Heckel, R., Sauer, S.: Extended model relations with graphical consis-
tency conditions. In: Proc. UML 2002 Workshop on Consistency Problems in UML-Based
Software Development. (2002) 61-74

Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting functional requirements
in a use case-driven approach. In: Proc. Int’l Conf. Software Engineering, ACM Press (2002)

. Mens, T., Taentzer, G., Runge, O.: Analyzing refactoring dependencies using graph trans-

formation. Software and Systems Modeling (2006) To appear.

Bottoni, P., Taentzer, G., Schiirr, A.: Efficient parsing of visual languages based on critical
pair analysis and contextual layered graph transformation. In: Proc. IEEE Symp. Visual
Languages. (2000)

Lange, C., Chaudron, M., Muskens, J.: In practice: Uml software architecture and design
description. IEEE Software 23 (2006) 40-46

Lange, C.F., Chaudron, M.R.: Effects of defects in uml models — an experimental investiga-
tion. In: Proc. Int’l Conf. Software Engineering (ICSE), ACM Press (2006) 401410

61

62

Model Driven Development of a
Service Oriented Architecture (SOA)
Using Colored Petri Nets

Vijay Gehlot!, Thomas Way', Robert Beck!, and Peter DePasquale?

! Center of Excellence in Enterprise Technology, Department of Computing Sciences
Villanova University, Villanova, Pennsylvania 19085, USA
{vijay.gehlot, thomas.way, robert.beck } @villanova.edu
http://ceet.villanova.edu

2 Department of Computer Science, The College of New Jersey, Ewing, NJ 08628, USA
depasqua@tcnj.edu

Abstract. Service-Oriented Architecture (SOA) is achieving widespread accep-
tance in a variety of enterprise systems, due to its inherent flexibility and inter-
operability, improving upon the more tradition and less supportable “stovepipe”
approach. The high degree of concurrency and both synchronous and asyn-
chronous communications inherent in SOA makes it a good candidate for a
Petri Nets based model driven development (MDD). Such an approach, with its
underlying verification and validation implications, becomes more crucial in
mission-critical applications, such as those with defense implications. This pa-
per reports on our experience with using Colored Petri Nets (CPNs) for model
driven development and quality assessment of a defense-targeted service-
oriented software architecture. We identify features of CPN that have resulted
in ease of adoption as a modeling tool in our present setting. Preliminary results
are provided which support the use of CPNs as a basis for model driven soft-
ware development, and verification and validation (V&YV) for quality assurance
of highly concurrent and mission-critical SOAs.

1 Introduction

Designers of enterprise architectures have embraced the Service Oriented Architec-
ture (SOA) approach, which leverages significant advances in distributed computing
and networking technologies to enable large scale interoperability [1,2]. Although the
SOA approach promotes flexibility, reuse and decoupling of functionality from im-
plementation, the inherent complexity of the enterprise class of services makes the
verification and validation (V&V) of such systems difficult [3]. Specific requirements
of SOA applications to net-centric Department of Defense (DoD) deployments, such
as stringent service guarantees, fault tolerance and security, among others [4], cou-
pled with the significant costs involved in fulfilling these strict requirements, suggests
a need for a model driven development and quality assurance approach that can ac-
commodate the highly concurrent nature of enterprise uses of SOA. We show how

63

support for hierarchical and abstraction features, concurrency, and both synchronous
and asynchronous communications in Colored Petri Nets (CPNs) enable modeling
real-world SOA implementations to perform V&V and quality assurance required for
DoD deployments. As part of a model driven approach, the created model is also
intended to be used for quality predictions.

2 Service Oriented Architectures

Service-Oriented architecture (SOA) is a distributed network architecture design
approach that separates services provided from the entities that consume those ser-
vices. Services communicate with each other, yet are self-contained and do not de-
pend on the state of other services, leading to a loosely coupled architecture that, as a
result of this decoupling of services, is easily reconfigurable. Generally, SOA is de-
fined as an “enterprise-wide IT architecture that promotes loose coupling, reuse, and
interoperability between systems,” with the more specific view as “architectures mak-
ing use of Web service technologies such as SOAP, WSDL, and UDDI... conforming
to the W3C Web services architecture (WSA).” [2]

The SOA approach is attractive for enterprise systems because of its inherent flexi-
bility and reusability and its isolation of functionality from the details of implementa-
tion. Developers of SOA providers and consumers design complex software systems
using implementation-neutral interfaces, rather than less flexible, highly integrated
interfaces resulting from proprietary specification and design approaches. By main-
taining interoperability at the interface, developers evolve services with isolated in-
ternal implementations of which external services need not be aware. [4] The roles
described in SOA are service provider, service consumer and service discovery (Fig.
1).

" Service Discovery

L)
4. List of service S — 2. Publish service
providers & 3. Find services and description and
descriptions thelr providers information
P N 6. Request e e
"~ Service Consumer service _ Service Provider .
| 5. Develop application &)/ < | 1. Develop service,
“._ bind to service -~ 7. Dellver e document 4

T il service T interface

Fig. 1. Overview of roles in Service-Oriented Architecture (SOA). [4]

The service provider is responsible for producing a service, making it available to
service consumers by publishing a service interface in a service registry. The service

64

consumer makes use of the service produced by the service provider based on the
rules specified in the published interface. The service discovery component of SOA
provides the service publication mechanism so that service providers can make
known their service interface to service consumers.

The service interfaces published by service providers adhere to the SOA approach
by decoupling implementation from definition, maintaining strict configuration man-
agement so that service consumers can seamlessly migrate from one version of a
service interface to another, providing backward compatibility with existing interface
versions, and allowing interface and implementation versions to evolve independ-
ently. [4]

2.1 DoD Net-Centric Enterprise Solutions for Interoperability (NESI)

The flexibility and interoperability of SOA makes it an attractive solution for enter-
prise services within DoD deployments. The DoD and Defense Information Systems
Agency (DISA) have defined a core set of enterprise services for use in defense-
related SOA systems [5], as part of an initiative called Net-Centric Enterprise Solu-
tions for Interoperability (NESI). These Net-Centric Enterprise Services (NCES)
define by NESI are a set of net-centric services, nodes and utilities for use in DoD
domain- and mission-related enterprise information systems (Fig. 2, [4]). Develop-
ment of NCES is ongoing with significant efforts currently underway in systems for
various defense applications.

Infrastructure

=1
/ - anlun
! - |
Sa:u'fty T 1 -—
Services Core = Data - P &

Enterprise

User2 LUser3 ervice B

" Node C g

Fig. 2. Node interoperability in NESI Net-Centric Enterprise Architectures. [4]

65

Within SOA deployments, providers and consumers of services, when related, are
collectively referred to as nodes. As illustrated in Fig. 2, the DoD GIG architecture
describes a node as a set of information systems that form a single element in a net-
centric enterprise. These nodes can include servers for web, portal, applications, and
databases to provide services. To support robustness, when a node loses enterprise
connectivity it should continue to serve local consumers of its services.

3 A SOA Architecture for DoD Applications

Various characteristics of SOA can be identified as necessary characteristics for
broad defense applications that are otherwise not part of a traditional web-services
based view of SOA. These are as follows:

Service guarantees

Fault tolerance

Dynamic service discovery
Interoperable multiple connection types
Availability awareness

Load balancing

Security

A proposed general solution is to have an architecture with a mediator responsible
for dynamic discovery, awareness, and load balancing. To allow interoperable multi-
ple connection types would require a well-defined internal format and protocol with
well-defined external to internal interfaces and mechanisms for internal transport and
buffering. We call this architecture Service Oriented Defense Architecture (SODA).

A reference implementation of this architecture is under development by a defense
contractor. Our focus is to integrate a model based approach into this software devel-
opment that can be used to guide the implementation and to assess the reliability,
scalability and performance of the SODA product using simulation, verification, and
validation. In addition, the research goal is to provide, through modeling and analysis,
feedback to the development and DoD communities to enhance their understanding of
capabilities and limitations, influence architectural and technical decision making
process, and set the expectations for network-centric technology architecture behav-
iors. The specific goals for our project are as follows:

e Gain greater understanding of the performance characteristics of multi-

channel service oriented architectures.

e Achieve greater acceptance of the real world “deployability” and reliability of
the multi-channel service oriented architecture, thereby accelerating “real
world” legacy migrations to service-based infrastructures.

e Provide a deeper understanding of the tradeoffs that exist between perform-
ance and agility in a service-enabled environment.

e Construct a reusable set of models for researching the behaviors of large-scale
deployments of service-enabled systems and the technologies that support
them.

66

e Establish some level of benchmarking for large-scale distributed systems
based on the proposed architecture.

e Create a model-based verification and validation framework for distributed
systems that are based on SODA.

We discuss some details of our proposed architecture in Section 5 in conjunction
with the formal model of the architecture that is being developed. We are using Col-
ored Petri Nets (CPNs) as our modeling language. The next section gives some de-
tails of CPN.

4 Colored Petri Nets and CPN Tool

Our modeling approach is based on Colored Petri Nets (CPNs) [6]. Petri Nets pro-
vide a modeling language (or notation) well suited for distributed systems in which
communication, synchronization and resource sharing play important roles. CPNs
combine the strengths of ordinary Petri nets [7,8] with the strengths of a high-level
programming language together with a rigorous abstraction mechanism. Petri nets
provide the primitives for process interaction, while the programming language pro-
vides the primitives for the definition of data types and the manipulations of data
values.

As with Petri nets, CPNs have a formal mathematical definition and a well-defined
syntax and semantics. This formalization is the foundation for the different behavioral
properties and the analysis methods. The complete formal definition of a CPN is
given below and more details can be found in [8,9]. It should be noted that the pur-
pose of this definition is to give a mathematically sound and unambiguous description
of a CPN. In practice, however, one would create a CPN model using a tool such as
CPN Tool [10]. This tool is a graphical tool that allows one to create a visual repre-
sentation of a CPN model and analyze it.

Definition: A Colored Petri Net is a nine-tuple (Z, P, T, A, N, C, G, E, I), where:

(i) X is a finite set of non-empty types, also called color sets. In the associated
CPN Tool, these are described using the language CPN-ML. A token is a
value belonging to a type.

(il)) P is a finite set of places. In the associated CPN Tool these are depicted as
ovals/circles.

(iii) T is a finite set of transitions. In the associated CPN Tool these are depicted
as rectangles.

(iv) A is a finite set of arcs. In the associated CPN Tool these are depicted as di-
rected edges. The sets of places, transitions, and arcs are pairwise disjoint,
that is

PNT=PNnA=TNnA=0.

(v) N s a node function. It is defined from A into P x T U T x P. In the associ-

ated CPN Tool this depicts the source and sink of the directed edge.

67

(vi) Cisa color function. It is defined from P into X.
(vii) G is a guard function. It is defined from T into expressions such that:
Vvt €T: [Type(G(t)) = Boolean A Type(Var(G(t))) < Z].
(viii) E is an arc expression function. It is defined from A into expressions such
that:
Va eA: [Type(E(a)) = C(p)vis A Type(Var(E(a)) < Z]
where p is the place of N(a) and C(p)ys denotes the multi-set type over the
base type C(p).
(ix) I is an initialization function. It is defined from P into closed expressions
such that:
¥p P: [Type(I(p)) = C(p)wis]-
In the CPN Tool this is represented as initial marking next to the associated
place.

The distribution of tokens, called marking, in the places of a CPN determine the
state of a system being modeled. The dynamic behavior of a CPN is described in
terms of the firing of transitions. The firing of a transition takes the system from one
state to another. A transition is enabled if the associated arc expressions of all in-
coming arcs can be evaluated to a multi-set, compatible with the current tokens in
their respective input places, and its guard is satisfied. An enabled transition may fire
by removing tokens from input places specified by the arc expression of all the in-
coming arcs and depositing tokens in output places specified by the arc expressions
of outgoing arcs.

CPN models can be made with or without explicit reference to time. Untimed CPN
models are usually used to validate the functional/logical correctness of a system,
while timed CPN models are used to evaluate the performance of the system.

The time concept in CPN is based on a global clock. The clock value represents
the model time. In the timed version, each token carries a time stamp. The time stamp
of a token determines the earliest (simulation) time at which the token will become
available.

One aspect of CPN that is attractive for creating models of large systems is being
able to create hierarchical CPN. Hierarchical CPN allow one to relate a transition
(and its surrounding arcs and places) to a separate sub-net (called a subpage in CPN
parlance) structure. The subnet then represents the detailed description of the activity
represented by the associated transition. This allows one to build a model either in
top-down or bottom up manner and also allows one to either hide or expose details as
necessary. Complete detail of a hierarchical CPN and its semantics can be found
in [6].

S CPN Model of SODA

We present some details of the SODA by discussing its CPN model. At the most
abstract level, a general SOA, and hence SODA, can be viewed as consisting of re-
quests for services that are sent through some discovery/mediation/transport mecha-

68

nism to be processed and responses returned by providers of services. In the CPN
model this is the top-level page called Top and is shown in Fig. 3.

@ ReqPKT_T ReqOut

TransportDiscoveryMediation

ReqPKT_T

ServiceProvider

ServiceProvider

ServiceConsumer

ServiceConsumer

[TransportDiscoveryMediation]

RespPKT_T RespPKT_T
Fig. 3. Top level page in CPN model giving the most abstract view of the system.

The transport, discovery and mediation mechanism itself consists of several com-
ponents. These are detailed on the CPN subpage TransportDiscoverMediation and
are shown in Fig. 4. Tracing the flow of data through this net, an incoming request
packet arrives via the component Ext2IntInbound. This component is responsible for
accepting the request and possibly converting it into a desired internal format. This
component is also responsible for any encryption/decryption that needs to happen as
part of the request.

ReqPKT T ReqPKT T ReqPKT T ReqPKT T ReqPKT_T RegPKT_T
EthIntInbound IntTransportInbound DlscoveryAndMedlatlon IntTransportOutbound | | Ext2IntOutbound

[Ext2IntInbound HIntTransportinbound [DiscoveryAndMediation IntTransportOutbound }Ext2IntOutbound

2 = & =

RespPKT_T
RespPKT,T RespPKT_T RespPKT_T RespPKT_T RespPKT T p

Fig. 4. The components of transport, discovery and mediation mechanism.

These different characteristics of what constitutes a request can be modeled very
easily and explicitly by defining appropriate types for the associated tokens. The
language for various type (or color in CPN parlance) and function declarations is
CPN ML which is based on the functional programming language ML[11]. For our
current purposes, a request is treated as a 3-tuple consisting of a consumer request
identifier (CID), a connection type (ConnType) and type of service (SERVICE). The
declaration of a request type (ReqPKT) in CPN ML is specified as:

69

colset RegPKT =

product CID * ConnType * SERVICE;

CPN supports a timed version by associating a time-stamp with each token. The
general mechanism for this is to create timed color sets. For example, timed request
tokens of color set, say, ReqPKT T, can be defined as follows:

colset RegPKT_T =

RegPKT timed;

We skip the explanation and details of the various other color sets and functions
declarations for our CPN model because of space limitations.

The next component is IntTransportinbound. This component is responsible for
essentially buffering and forwarding the request to the DiscoveryAndMediation com-
ponent, which is the heart and the brain of this architecture. For our present purposes
we focus on very simple discovery and mediation mechanism. This will get refined in
the subsequent versions of the system, and this is one of the place where we hope the
model to guide the implementation. Once a request has gone through service discov-
ery and mediation, it is forwarded to outbound internal transport IntTransportOut-
bound and from there to the outbound external to internal interface component
Ext2IntOutbound. Response packets simply follow the reverse route, as illustrated.

Using the hierarchical features of CPN, details of these individual components
have been created on the associated pages. Next we present details of two of the
components, namely, Ext2IntInbound and DiscoveryAndMediation.

For our present purposes, we are only focusing of one connection type, namely,
http. In general though, the connection type on the service consumer side can be dif-
ferent from that on the service provider side and all this could be different from the
internal connection type. The internal details of Ext2IntInbound, shown in Fig. 5, are
as follows. It receives the service request (as a CPN timed token of type ReqPKT T)
from the consumer. It can then accept this request by firing the AcceptConnection
transition. CPN provides facility to associate code segments with firing of transitions.

70

ReqPKT_T
RegPKT_T

EI2ITIn

(i1,http,s1) (i1,http,s1) @+ transDel()

AcceptConnection

il @+ timerValIn()

CloseConnection -
- TimeOut | [i1=i2] (i2,http,s2)
(i2,http,ERR1) [i1=i2]
RespPKT_T
RespPKT_T
PRIl (i2,http,s2) @+ transDel()

Input action associated with AcceptConnection Input actions associated with CloseConnection
transition. It writes out the request packet and and TimeOut transitions. Eachwrites out the
the current simulation time onto a data file response packet (or ERR1 if timed out) and
(dataOutl.txt). It also adds the id number and the current simulation time onto data file
current time (as a string since time in CPN is (dataOut1.txt). It also computes the roundtrip
represented as big integers) into the global delay and writes onto data file dataOut2.txt.
ref queue waitQ.
. » input(i2) input(i2,s2)
|npyt(|1,sl) action action
action computeDelAndWrite(i2,ERR1) ~ computeDelAndWrite(i2,s2)

writeAndAdd2waitQ(i1,s1)
Fig. 5. Detailed net showing activities associated with Ext2IntInbound component.

Here the input action associated with the AcceptConnection transition is to write
out the request packet and the current simulation time into a data file that can be ex-
amined later for desired properties and behavior. If there were any external to internal
connection type translations involved, there would be added transitions to take care of
those details here. The request is then passed to the internal transport by placing the
token in the place named EI2ITIn. At the same time a token representing the request
identifier is added to the place named WaitForResp.

In a real-life scenario, each connection that is open consumes some resources. To-
kens in the place named ResAvailable represent the current number of resources
available. A token from this place is removed for each firing of the AcceptConnection
transition. This represents allocation of a resource (for example a thread from a thread
pool). The connection is required to time-out if no response arrives within some
specified time-out value. Thus, simultaneously a timed token is put in the place called
TimerOn. The time stamp of this token represents the time-out value and can be set
from a file by making use of input/output facilities of the CPN Tool.

The semantics of timestamp in CPN are that the associated token remains unavail-
able until the current simulation time becomes equal to or exceeds the timestamp
value. Thus, if the response comes in, that is, a token with the correct id value and
time-stamp smaller than that of the associated timer arrives, the transition CloseCon-
nection fires and the response is forwarded to the consumer by placing the request in
the place named RespOut. Otherwise, the transition TimeQut fires signaling expira-
tion of the timer, and an error response is forwarded. Note that both CloseConnection
and TimeOut have a guard [il=i2]. This ensures that the response or the time-out is

71

matched with the correct request id. Finally, when either a time-out occurs or a con-
nection is closed, the allocated resource is returned to the pool of resources. This is
achieved by adding a token back into the place ResAvailable.

Details of the discovery and mediation are given by the net shown in Fig. 6. We
are currently focusing on a very simple discovery and mediation. In particular, we do
not account for mobility of service providers. The function validReq : SERVICE —
BOOL is hard coded in that requests for certain services are considered unavailable.
In particular, service d is considered invalid since in the current test set there are no
providers for service d. When a request arrives in /72D Min, it is checked for validity
and forwarded to next component. This is achieved via firing the tranmsition for-
wardRequest which deposits the request in DM2ITIn.

RegPKT_T [validReq(s1)]

@-+dmbDelay() ReqPKT T
(i1,http,s1)

forwardRequest
(i1,http,s1)

(i2, http, s2)

@+dmbDelay()
[not(validReq(s2))] | rejectRequest

(i2, http, ERR2)

@+dmbDelay()

r2
forwardResponse

RespPKT_T RespPKT_T

Fig. 6. Net representing details of discovery and mediation component

Note that the facility in CPN to associate data values with tokens and manipulate
them or examine them and control actions based on them is a powerful one. Without
such a facility it would be difficult to model requirements such as validity of requests,
etc. If the incoming request is not valid, an error response is returned and this is indi-
cated by firing of transition rejectRequest, which deposits an error packet in
DM2ITOut. This component is also responsible for forwarding a response packet
which is indicated by firing of transition forwardResponse. We skip the details of
rest of the components here and discuss our verification and validation process next.

6 Quality Assurance, Verification & Validation, and CPN

From industry acceptance point of view and to have the validity of any model predic-
tions incorporated into development, we needed to put in place a well defined verifi-
cation and validation process for quality assurance. Furthermore, this verification and
validation activity was to be carried out not by the modeler but by a third party, which

72

usually is a Quality Assurance (QA) team associated with a traditional software de-
velopment process. CPN offers the following four possible analysis approaches:

Interactive and automatic simulation
Performance analysis

State space and invariant analysis

Temporal logic based analysis of state spaces

Given that a QA person may not be conversant with state space based analysis and
given that usually a combination of strategies is required for a meaningful analysis,
we decided to start with simulation and performance analysis. Furthermore, CPN
provides a full spectrum of input/output facilities and user-defined functions so that
we were able to parameterize all relevant input data and read it from data files. This
also made it possible for a third party to run simulation and gather data with different
input values. CPN Tool also provides an extensive collection of monitoring, per-
formance analysis, and data logging facilities that further simplifies this task [12].
The verification and validation process and approach to integrating modeling into
development that we have currently adopted is described in [13]. A simplified view
relating modeling, integration, verification, and validation is given in Fig. 7 below.

Problem Entity
(System) [

. r - ~
Operational (O‘GCE‘:)tlllal
Validation ‘: 1-?;1(i.

alidation
’
I .
/ ot Y
! Experimentation A““I‘.:ls“i \
an
Data Modeling

Validity

———— -

/

Computerized Computer Programming Conceptual
Model and Implementation Model
w X
S ’
~ -~ -
™~ - Computerized .
= Model -

Verification

Fig. 7. Simplified modeling, integration, verification and validation process [13].

In our case, the edge labeled Computer Programming and Implementation gets re-
alized as a CPN model. Furthermore, what this picture does not communicate is the
incremental or spiral nature of the process. Essentially, we repeat the depicted process
in each spiral. Our starting point was a base implementation. We then created a model
for it. The model was subjected to verification and validation process. The prelimi-
nary results from this exercise are presented in the next section.

73

Implementation data

30000

27518

25000 -

20000

15000 -

RTT avg

10000 -

5000 1 §%659

0 5 10 15 20 25 30
Number of concurrent users

Fig. 8. Average RTT data from system implementation

7 Preliminary Results

Following the approach outlined above we carried out the verification and validation
of the created model for quality assessment. To ascertain the validity of the model, we
compared the behavior of the model with the corresponding behavior in the real sys-
tem. For our initial validation attempt, the behavior we chose to ascertain was the
performance of the system as the number of concurrent/simultaneous requests was
increased. We developed an experiment in the run-time lab to measure the average
round-trip time (RTT) of request-response interactions as we varied the number of
simultaneous users presenting requests to the system. Performance was thus quanti-
fied as average round-trip time.

The experiment was run both on the model and on the real system. Experimental
data was used to generate two graphs — one for the model and one for the real system.
The shapes of the curves on these two graphs were compared to determine whether
the behaviors were similar or not.

The following figures represent the data we collected from our experiments where
the underlying resource pool contained 25 possible thread resources. Fig. 8 shows
the performance of the real system, while Fig. 9 represents data from the model.

74

CPN Model data

900

800 -

700 -

600 -

RTT avg

400

300 -

200 -

100 4

0 5 10 15 20 25 30

Number of Simultaneous Requests
Fig. 9. Average RTT data from model simulation.

We note the following behaviors that are visible in both the system implementation
and the model simulation:

e Performance decreases with increasing numbers of simultaneous requests.

e Performance bottleneck occurs when the size of the resource pool available to

service requests equals the number of simultaneous requests.

However, a sharp discrepancy exists in the two behaviors when the number of con-
current request reaches the maximum resource pool size. Furthermore, the system
implementation could not handle any more requests after this point was reached. The
system implementation shows a sudden spike whereas the model data shows a grad-
ual increase. This discrepancy was puzzling to us and our investigation using the
CPN model found a bug in system implementation whereby threads for de-queuing
operation were being allocated from the same pool as servlet pool creating a deadlock
situation. This deadlock situation in the system implementation was later rectified and
the results from re-verification and re-validation are given in Fig. 10 below. It is
easily seen that the two graphs show similar behavior. Ideally, these two graphs
should coincide. In order for this to happen, the model needs realistic values for each
of the parameters it has. However, we are currently limited in terms of what parame-
ter values we can measure in the run-time lab on the real system. We are currently
investigating approaches to such value measurements and estimation if real values
cannot be measured for all model parameters.

75

Implemenation vs CPN model data after deadlock removal

‘—E— System Implementation — -4 — CPN Model ‘

50000

45000 - LA
40000 - wT

35000
30000

25000 -

RTT avg

20000 -

15000 -

10000 -

5000 -

1 10 20 30 40 50 60 70 80 90 100

Number of concurrent users

Fig. 10. Avg. RTT data from implementation and model after system deadlock was removed.

8 Conclusions and Future Work

The service oriented architecture (SOA) concept offers a framework for integration of
systems and interoperability. This approach is very attractive in many business set-
tings and is especially attractive in a defense setting where the traditional “stovepipe”
approach has resulted in poor integration of systems and rendered them non-
interoperable. The US DoD has an initiative called Net-Centric Enterprise Solutions
for Interoperability (NESI) with the purpose to provide a service-oriented architecture
solution approach for defense applications. Thus, many defense operations, including
safety-critical ones, are soon to be deployed on a service oriented basis.

A model driven development based approach offers possibility of quality assess-
ment, verification and validation, and quality prediction of such deployments. We
presented a service oriented architecture and its model using Colored Petri Nets
(CPNs). We illustrated aspects of CPN and the associated modeling and analysis tool
called CPN Tool that have made it possible for us to integrate this approach as part of
a large-scale defense software development. We also have access to a reference im-
plementation that was used in our verification and validation process. Our prelimi-
nary analysis and results revealed a deadlock situation in the system implementation
showing an early benefit of model integration in system development. Our future
work includes extending the model to include other features and components of the
architecture including presence and discovery mechanisms, mobility, and load bal-
ancing. Through our modeling effort we hope to guide the current system implemen-

76

tation and show benefits of a model driven approach in quality assessment, assurance,
and prediction.

Acknowledgements: We would like to thank the Gestalt ARCES Team for their
help and support. This research was supported in part by the Air Force Materiel
Command (AFMC), Electronic Systems Group (ESC) under contract number
FA8726-05-C-0008 . The views and conclusions contained here are those of the
authors and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of USAF, AFMC, ESC, or the U.S.
Government.

References

[1] S. Anand, S. Padmanabhuni, and J. Ganesh, Perspectives on Service Oriented Architecture
(tutorial). Proceedings of the 2005 IEEE International Conference on Services Computing,
2005.

[2] N. Bieberstein, S. Bose, M. Fiammante, K. Jones, and Rawn Shah, Service-Oriented Archi-
tecture Compass: Business Value, Planning, and Enterprise Roadmap. IBM Press, 2005.

[3] W. Tsai, Y. Chen, and R. Paul, Specification-Based Verification and Validation of Web
Services and Service-Oriented Operating Systems. Proceedings of the 10" IEEE Interna-
tional Workshop on Object-oriented Real-time Dependable Systems (WORDS 05), Sedona,
2005, pp. 139-147.

[4] Net-Centric Implementation, Part 1: Overview (Version 1.1, June 3, 2005), Netcentric
Enterprise Solutions for Interoperability (NESI) project,
http://nesipublic.spawar.navy.mil/docs/part1, accessed Feb. 24, 2006.

[5] Capability Development Document for Net-Centric Enterprise Services, Draft Version
0.7.15.2, April 9, 2004.

[6] K. Jensen, Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Volume 1, Basic Concepts. Monographs in Theoretical Computer Science, Springer-Verlag,
2nd corrected printing 1997.

[7] C. Girault and R. Valk, Petri Nets for Systems Engineering, Springer-Verlag, 2003.

[8] W. Reisig, Petri Nets. EATCS Monographs in Theoretical Computer Science, Vol. 4,
Springer-Verlag, 1985.

[91 K. Jensen, An Introduction to the Theoretical Aspects of Coloured Petri Nets. In: J.W. de
Bakker, W.-P. de Roever, G. Rozenberg (eds.): A Decade of Concurrency, Lecture Notes in
Computer Science vol. 803, Springer-Verlag 1994, pp. 230-272.

[10] A. V. Ratzer, et al., CPN Tools for Editing, Simulating, and Analysing Coloured Petri
Nets. In W.v.d. Aalst and E. Best (eds.): Application and Theory of Petri Nets 2003. Pro-
ceedings of the 24th International Conference on the Application and Theory of Petri Nets
(ICATPN 2003). Lecture Notes in Computer Science, vol. 2679, Springer-Verlag, 2003, pp.
450-462.

[11] J. D. Ullman, Elements of ML Programming, Prentice-Hall, 1998.

[12] B. Lindstrem and L. Wells. Towards a monitoring framework for discrete event system
simulations. In Proceedings of the 6th International Workshop on Discrete Event Systems
(WODES’02), 2002. (Also see http://wiki.daimi.au.dk/cpntools-help/cpntools-help.wiki .)

[13] R. D. Sargent, Verification and validation of simulation models, Proceedings of the 2003
Winter Simulation Conference, S. Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice, eds.,
2003.

77

78

A Qualitative Investigation of
UML Modeling Conventions

Bart Du Bois!, Christian F.J. Lange?, Serge Demeyer! and Michel R.V.
Chaudron?

! Lab On REengineering, University of Antwerp, Belgium
{Bart.DuBois,Serge.Demeyer}Qua.ac.be
2 Dept. of Mathematics and Computer Science, Technische Universiteit Eindhoven
{C.F.J.Lange,M.R.V.Chaudron}@tue.nl

Abstract. Analogue to the more familiar notion of coding conventions,
modeling conventions attempt to ensure uniformity and prevent common
modeling defects. While it has been shown that modeling conventions can
decrease defect density, it is currently unclear whether this decreased de-
fect density results in higher model quality, i.e., whether models created
with modeling conventions exhibit higher fitness for purpose.

In a controlled experiment® with 27 master-level computer science stu-
dents, we evaluated quality differences between UML analysis and design
models created with and without modeling conventions. We were unable
to discern significant differences w.r.t. the clarity, completeness and va-
lidity of the information the model is meant to represent, nor w.r.t. the
models’ perceived suitability for implementation and testing.

We interpret our findings as an indication that modeling conventions
should guide the analyst in identifying what information to model, as
well as how to model it, lest their effectiveness be limited to optimizing
merely syntactic quality.

1 Introduction

In [6], a classification of common defects in UML analysis and design models
is discussed. These defects often remain undetected and cause misinterpreta-
tions by the reader. To prevent these defects, modeling conventions have been
composed that, similar to the concept of code conventions, ensure a uniform
manner of modeling [7]. We designed a pair of experiments to validate the ef-
fectiveness of using such modeling conventions, focusing on their effectiveness
w.r.t. respectively (i) defect prevention; and (ii) model quality. We reported on
the prevention of defects in [8]. Our study of the effect of modeling conventions
on model quality forms the subject of this paper.

In the first experiment, we evaluated how the use of modeling conventions for
preventing modeling defects affected defect density and modeling effort [8]. These
modeling conventions are enlisted in Appendix A, and have been discussed pre-
viously in [6]. This set of 23 conventions has been composed through a literature

3 A replication package is provided at http://www.lore.ua.ac.be/Research/Artefacts

79

review and through observations from industrial case studies, and concern ab-
straction, balance, completeness, consistency, design, layout and naming. These
conventions are formative, in that they focus on specifying how information
should be modeled, rather than specifying what should be modeled.

Our observations on 35 three person modeling teams demonstrated that,
while the use of these modeling conventions required more modeling effort, the
defect density of resulting UML models was reduced. However, this defect den-
sity reduction was not statistically significant, meaning that there is a (small)
possibility, albeit small, that the observed differences might be due to chance.

This paper reports on the second experiment, observing differences in repre-
sentational quality between the models created in the first experiment. We define
representational quality of a model as the clarity, completeness and validity of
the information the model is meant to represent. Typical flaws in representa-
tional quality are information loss, misinformation, ambiguity or susceptibility
to misinterpretation, and a perceived unsuitability as input for future usages, as
a.0. implementation and testing. This study investigates whether models created
using common modeling conventions exhibit higher representational quality.

The paper is structured as follows. The selected quality framework is elabo-
rated in section 2. The set-up of the experiment is explained in section 3, and
the analysis of the resulting data is discussed and interpreted in section 4. We
analyze the threats to validity in section 5. Finally, we conclude in section 6.

2 Evaluating Model Quality

Through a literature review, we identified three quality models for conceptual
models:

— Based upon semiotic theory, different quality dimensions have been distin-
guished in Lindland’s qualty framework, being (i) syntactic quality; (ii) se-
mantic quality; and (iii) pragmatic quality [9]. Empirical support for the
resulting quality framework has been established [11].

— Alternatively, [3] proposes a list of 24 quality attributes, operationalized
in metrics. The integration between the semiotic approach of [9] and the
unsystematic list approach of [3] is performed by [5].

— From design applications in computer architecture and protocol specifica-
tion, [13] derived six quality criteria for semantic and pragmatic quality.
These authors differentiate between external (completeness, inherence and
clarity) and internal quality (consistency, orthogonality and generality) cri-
teria. However, the criteria proposed are not operationalized nor have they
been validated.

As clarity, completeness and validity are central to Lindland’s framework, it

is particularly well-suited for evaluating representational quality. Thus, we select
this quality framework as a measurement instrument.

80

2.1 Lindland’s quality framework

Lindland’s framework relates different aspects of modeling to three linguistic
concepts: syntax, semantics and pragmatics [9]. These concepts are described as
follows (citing from [9]):

Syntax relates the model to the modeling language by describing relations among
language constructs without considering their meaning.

Semantics relates the model to the domain by considering not only syntaz, but
also relations among statements and their meaning.

Pragmatics relates the model to the audience’s interpretation by considering
not only syntax and semantics, but also how the audience (anyone involved
in modeling) will interpret them.

These descriptions of the concepts of syntax, semantics and pragmatics refer
to relationships. The evaluation of these relationships gives rise to the notion
of syntactic, semantic and pragmatic quality. We note that the effect of UML
modeling conventions on syntactic quality has been the target of our previous
experiment [8], and is therefore not included in this study.

In [5], Lindland’s quality framework is extended to express one additional
quality attribute. Social quality evaluates the relationship among the audience
interpretation, i.e. to which extent the audience agrees or disagrees on the state-
ments within the model.

With regard to representational quality, we are less interested in the rela-
tionship between the model and the audience’s interpretation — indicated by
pragmatic quality — than in the relationship between the domain and the audi-
ence’s interpretation, as the former is unrelated to the information the model
is meant to represent. Accordingly, we will not observe pragmatic quality, but
instead introduce an additional quality attribute, communicative quality, that
targets the evaluation of the audience’s interpretation of the domain.

2.2 Measuring model quality

Lindland’s quality framework evaluates the relationships between model, mod-
eling domain and interpretation using the elementary notion of a statement. A
statement is a sentence representing one property of a certain phenomenon [5].
Statements are extracted from a canonical form representation of the language,
which in UML, is specific to each diagram type. An example of a statement in
a use case diagram is the capability of an actor to employ a feature.

The set of statements that are relevant and valid in the domain are noted as
D, the set of statements that are explicit in the model as Mg, and the set of
statements in the interpretation of an interpreter 7 are symbolized with I;. We
say that a statement is explicit in case it can be confirmed from that sentence
without the use of inference. Using these three sets, indicators for semantic
quality (and also pragmatic quality, that we do not include in this study) have
been defined that are similar to the concepts of recall and precision:

81

Semantic Completeness (SC) is the ratio of the number of modeled domain
statements |[Mg N D| and the total number of domain statements |D|.

Semantic Validity (SV) is the ratio of the number of modeled domain state-
ments |[Mg N D| and the total number of model statements |Mg|.

Krogstie extended Lindland’s quality framework through the definition of
social quality [5]. The single proposed metric of social quality is:

Relative Agreement among Interpreters (RAI) is calculated as the num-
ber of statements in the intersection between the statements in the interpre-
tations of all n interpreters |y, jcp oy L N 1.

Similar to semantic quality, we introduce the following metrics for commu-
nicative quality:

Communicative Completeness (CC) is the ratio of the number of recognized
modeled domain statements |I; N Mg N D| and the total number of modeled
domain statements | Mg N D].

Communicative Validity (CV) is the ratio of the number of recognized mod-
eled domain statements |I; N Mg N D| and the total number of statements
in the interpretation of interpreter i |I;|.

Communicative completeness and validity respectively quantify the extent to
which information has been lost or added during modeling.

2.3 Estimating model quality

The difficulty in applying the metrics for semantic, social and communicative
quality mentioned above lies in the identification of the set of model statements
(MEg), and interpretation statements (I;). In contrast, the set of domain state-
ments (D) is uniquely defined and can reasonably be expected to have a consid-
erable intersection with the set of model and interpretation statements. Accord-
ingly, we choose to estimate the sets of domain statements, model statements
and interpretation statements, by verifying their intersection with a selected set
of domain statements (Dj):

Semantic Completeness can be estimated by taking the ratio between the
number of modeled selected domain statements |Mg N Dy| and the total
number of selected domain statements |Dy].

Relative Agreement among Interpreters can be estimated by assessing to
which extent the n interpreters agree or disagree on the selected domain
statements, some of which are modeled while others are not: |y, ; efm LN
IiND, |

Communicative Completeness can be approximated by the ratio between
the number of recognized modeled statements from the selected domain
statements |I; N Mg N D,| and the total number of modeled selected do-
main statements |Mg N D,|.

82

Communicative Validity can be estimated by dividing the number of rec-
ognized modeled domain statements from the selected domain statements
|I;NMgND;| and the total number of recognized domain statements |I;NDg|.

Semantic validity cannot be approximated in this manner, as it requires an
estimate of the set of statements that lie outside the set of domain statements
(|[Mg \ DJ). Nonetheless, the resulting set of estimates for semantic, social and
communicative quality allows to assess typical representational quality flaws as
information loss (semantic and communicative completeness estimates), misin-
formation (communicative validity estimate) and misinterpretation (social qual-
ity estimate).

2.4 Evaluation of perceived fitness for purpose

In addition to evaluating quality differences between models composed with and
without modeling conventions, we investigate the models’ perceived fitness for
purpose. Typically, UML analysis and design models are used as input for the
activities of implementation and testing. Accordingly, we employ a questionnaire
that addresses the perceived suitability of the model w.r.t. the following usages:

Comprehension — In order for UML analysis and design models to be com-
prehensible, the functional requirements of the software system, as well as
traceability between the structural entities and these requirements should
be clear.

Implementation — To support the activity of implementation, UML analysis
and design models should provide information on structural entities such
as packages, classes, methods and attributes, and the relationships between
them as containment, inheritance, invocation and reference.

Testing — To support the activity of testing, UML analysis and design models
should supply information regarding the pre- and postconditions of each
method, as well as the invariants to be respected throughout execution.

3 Experimental Set-Up

Using the classical Goal-Question-Metric template, we describe the purpose of
this study as follows:

Analyze UML models

for the purpose of evaluation of modeling conventions effectiveness
with respect to the representational quality of the resulting model
from the perspective of the analyst/designer

in the context of master-level computer science students

Using our refinement of representational model quality presented in the pre-
vious section, we define the following null hypotheses:

83

Hy seq — UML analysis and design models composed with or without modeling
conventions do not differ w.r.t. semantic quality.

Hy sog — UML analysis and design models composed with or without modeling
conventions do not differ w.r.t. social quality.

Hy.cog — UML analysis and design models composed with or without modeling
conventions do not differ w.r.t. communicative quality.

3.1 Experimental Design

In this study, we use a three-group posttest-only randomized experiment, con-
sisting of a single control group and two treatment groups:

noMC — no modeling conventions. This group of subjects, referred to as
the control group were given UML analysis and design models that were
composed without modeling conventions.

MC — modeling conventions. The subjects in this treatment group received
UML analysis and design models that were composed using the list of mod-
eling conventions enlisted in Appendix A.

MCHT - tool-supported modeling conventions. Subjects in this treatment
group received UML analysis and design models that were composed using
both a list of modeling conventions and a tool to support the detection of
their violation.

3.2 Experimental Tasks and Objects

The experiment was performed using pen and paper only. Each student was pro-
vided with (i) a hardcopy of all diagrams of a single model; (ii) a questionnaire;
and (iii) a vocabulary.

The questionnaire contained a single introduction page that described the
task. Another explanatory page displayed one example question and its solution,
elaborating on the steps to be applied. The example question, illustrated in Table
1, asks the participant to verify whether a given UML analysis and design model
confirms a given statement. As an argument for the confirmation of a statement,
the participant should be able to indicate a diagram fragment dictating that the
statement should hold. In case such a fragment can be found, the participant
annotates the fragment with the question number.

Table 1. Example question and supporting diagram fragment

Employee portal

add, edit, query,

Not remove employee 1
Nr Statement Confirmed . o — information view employee
ontirme — information
manage Ac i
The software s_ystem should Employee dﬁp:;?"::ﬂ
1 support querying employee O O

information.

84

Aside this documentation, the questionnaire consisted of three parts. A pretest
questionnaire section, asking questions about their knowledge on and experience
with UML in general and various UML models in particular. The main part of
the questionnaire asked subjects to evaluate whether a given statement was ex-
plicitly confirmed by the given model. Only two options were possible, being
either “confirmed”, or “not confirmed”. Finally, the posttest questionnaire sec-
tion asked for remarks. This experimental procedure was tested in a pilot study
with 4 researchers.

The main part of the questionnaire allows to estimate semantic, social and
communicative quality. We have identified over 60 statements that are relevant
and valid in the domain, derived from the informal requirement specification for
which the subjects of the first experiment composed the UML models. From this
set of 60 statements, a selection of 22 statements was made, comprising the set
of selected domain statementsD,.

For each experimental group (noMC, MC, MC +T), a representative set of
three UML analysis and design models was selected from the set of output models
of the first experiment. The selected models serve as experimental objects, and
were representative w.r.t. syntactic quality, defined as the density of modeling
defects present in the model. These UML models — modeling a typical application
in the insurance domain — consisted of six different types of UML diagrams used
for analysis and design. The frequency of each of the diagram types in each
model is provided in Table 2.

Table 2. Frequency of the diagram types in each model.

noMC MC MC+T

type noz noy nog MCo MCy MCs MC + Ty MC +Tg MC + Tho
Class Diagram 6 1 6 8 1 1 11 1 5
Package Diagram 1 0 0 0 0 0 0 0 1
Collaboration Diagram 0 0 0 0 0 0 0 1 0
Deployment Diagram 0 0 0 0 0 0 1 1 1
Use Case Diagram 7 1 5 0 3 5 6 5 1
Sequence Diagram 6 26 10 3 39 14 8 56 15
total 20 28 16 11 43 20 26 23 64

The set of selected domain statements D, can be categorized in instances of
the following generic categories:

Features — The software system should support feature X, e.g., converting a
quote into a real policy. The questionnaire contained nine feature statements.
Mostly, confirmations of these statements can be found in use case diagrams,
but also in class or sequence diagrams.

Concepts — Concept X has aggregated concept Y, e.g., a quote has a pre-
mium amount. The questionnaire contained eight concept statements. These
statements can be explicitly confirmed in class diagrams only.

85

Interactions — Actor X can employ feature Y, e.g. clients can request policies.
The questionnaire contained three interaction statements. These statements can
be found in use case and collaboration diagrams.

Scenarios — Scenario X should incorporate subscenario Y, e.g., results of a
client requesting quotes should contain insurance policy combinations of the in-
surance policy requested. The questionnaire contained two scenarios statements,
that can be recognized in use case and sequence diagrams.

As the different models used synonyms for some concepts, a glossary was
provided indicating which names or verbs are synonyms.

3.3 Experimental Procedure

The procedure for this experiment consisted of two major phases. First, in prepa-
ration of the experiment, the semantic quality of each selected model was as-
sessed. Second, two executions of the experimental procedure (runs) were held
to observe subjects performing the experimental task described in the previous
subsection, thereby assessing the models’ communicative and social quality.

Assessment of semantic quality. This assessment was performed by three
evaluators, and did not require the participation of experimental subjects. The
three evaluators were the first two authors of this paper, and a colleague from the
first authors’ research lab. After an individual assessment, conflicts were resolved
resulting in agreement on the recognition of each selected domain statement
in each model. This evaluation procedure provided the data to calculate the
semantic completeness and semantic validity of each of the nine selected models.

Assessment of social and communicative quality. Each experimental run was
held in a classroom, and adhered to the following procedure. Subjects were first
randomized into experimental groups, and then provided with the experimental
material. Subjects were asked to write their name on the material, to take the
time to read the instructions written on an introduction page, and finally to
complete the three parts of the questionnaire.

No time restrictions were placed on the completion of the assignment. When
subjects completed the questionnaire, their experimental task was finished and
they were allowed to leave. None of the runs lasted longer than 1.5 hours.

3.4 Experimental Variables

The independent variable subject to experimental control is entitled modeling
convention usage, indicating whether the model was composed without mod-
eling conventions (noMC), with modeling conventions (MC') or with modeling
conventions and a tool to detect their violations (M C +T). The observed depen-
dent variables are the estimators for semantic completeness (SC), communicative
completeness (CC), communicative validity (CV) and relative agreement among
interpreters (RAI), as defined in section 2.3. As these variables are all calculated
as ratios, we express them in percentage.

86

3.5 Experimental Subjects

A total of 27 computer-science students participated in the controlled exper-
iment. This experiment was performed across two universities in Belgium. 11
Final year MSc students from the university of Mons-Hainaut (Belgium) and 16
second-last-year MSc students from the University of Antwerp (Belgium) par-
ticipated in the experiment in November and December 2005, respectively.

We evaluated the subjects’ experience with the different types of UML di-
agrams using a questionnaire. All subjects had practical (although merely aca-
demic) experience with the diagrams required to answer the questions.

4 Data Analysis

Table 3 characterizes the experimental variables across the experimental groups.

Table 3. Statistics of the experimental variables

Overall
Hyp. DV mean MCU! Mean StdDev Min Max H(2) p-value

Hose@ SC 62.6% noMC 66.7% 13.9% 54.5% 81.8% 0.4786 .7872
MC 59.1% 9.1% 50.0% 68.2%
MC+T 62.1% 6.9% 54.5% 68.2%

Ho sog RAI 59.6% noMC 66.7% 15.6% 50.0% 81.8% 1.1556 .5611
MC 59.1% 20.8% 36.4% 77.3%
MC+T 53.0% 17.2% 40.1% 72.7%

Ho,cog CC 76.9% noMC 82.7% 14.1% 61.0% 100.0% 2.7298 .2554
MC 745% 16.0% 36.0% 93.0%
MC+T 72.5% 13.1% 53.0% 92.0%

CV 85.0% noMC 87.0% 7.9% 75.0% 100.0% 1.5235 .4668
MC 85.9% 10.6% 60.0% 100.0%
MC+T 81.5% 8.9% 69.0% 92.0%

I Modeling Convention Usage.

Semantic Completeness (SC) — The semantic completeness of models
composed without modeling conventions was somewhat higher, within a margin
of 10% (see top left figure in Table 4). Le., the models from group noMC' de-
scribed slightly more modeling domain statements. However, the noMC' group
also exhibits a larger standard deviation.

Relative Agreement among Interpreters (RAI) — There was consider-
able higher (about 14%) agreement among interpreters of the models composed
without modeling conventions (see top right figure in Table 4). However,we also
observed considerable standard deviations in Table 3 in all treatment groups.

87

Table 4. Variation of SC, RAI, CC and CV across experimental groups

noMC
1

|
1]
H

noMC
1

MCU
o]
I
MCU
MC
I

MC+T
I

MC+T
I

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 06 0.8 1.0

sC RAI

noMC
1

noMC
I

MC+T
I
MC+T
I

0.0 02 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0

cc cv

Communicative Completeness (CC) The communicative completeness
of models composed without modeling conventions was somewhat higher (around
10%) than that of models composed with modeling conventions.

Communicative Validity (CV) — The communicative validity is approxi-
mately equal between models composed with and without modeling conventions,
as illustrated in in the bottom right figure in Table 4).

To verify whether the differences among experimental groups are statistically
significant, Kruskal-Wallis test results are appended to Table 3. This test is a
non-parametric variant of the typical Analysis of Variance (ANOVA), and is
more robust with regard to assumptions about the distribution of the data, as
well as unequal sample sizes (#noMC=10,#MC=9,#MC + T=8). Moreover,
the assumptions of at least an ordinal measurement level, independent groups
and random sampling were also satisfied.

Table 3 indicates that the group differences concerning semantic, social and
communicative quality are not statistically significant at the 90% level. Accord-
ingly, we must accept the hypotheses stating that the UML analysis and design
models composed with or without modeling conventions do not differ w.r.t. se-
mantic, social and communicative quality.

4.1 Subjective evaluations

The questionnaire given to the experimental subjects also targeted the subjective
evaluation of the suitability of the given UML analysis and design model as an
input for future usage, as a.o. implementation and testing.

88

Questions asked concern the clarity of usage scenarios, of the design, and
finally, of method specifications (see Table 5). For each of the 13 questions,
subjects were asked to rate the model on a typical Likert scale (1=strongly
disagree, 2=disagree, 3=neither agree nor disagree, 4=agree, 5=strongly agree).
The median of each group is appended to each question. Group differences in
rating were tested using the Kruskal-Wallis test, as is common for Likert scale
data, and the resulting significance of group differences is discussed inline.

The questions regarding usage scenarios address the comprehensibility of the
model w.r.t. functional requirements. Indifferent of whether the given model
was composed with or without modeling conventions, most subjects agreed that
the given model was comprehensible. While a significant difference between the
three groups was remarked concerning (bl) using the Kruskal-Wallis test, with
H(2)=6.5787, p=.03728, Dunn’s multiple comparison post test indicated no pair
of groups that differed significantly. Accordingly, we must accept that the models
did not differ w.r.t. their perceived general comprehensibility.

The second set of questions concern the perceived suitability of the given
UML model as an input for implementation. Except regarding contained pack-
ages (il), and interactions between methods and attributes (i6), all subjects
agreed that the given model supplies sufficient information. A difference between
the three groups significant at the 90% level was remarked concerning (i4), with
H (2)=4.8325, p=.08925. Once again, however, Dunn’s multiple comparison post
test indicated no pair of groups that differed significantly. Accordingly, we can-
not state that the models differ w.r.t. the perceived suitability as an input for
testing.

Finally, the last set of questions solicits the perceived suitability of the given
model as an input for testing. While subjects that received a model composed
without modeling conventions (noMC' group) neither agreed nor disagreed with
the availability of sufficient information, subjects that received a model composed
with modeling conventions recognized that the model is insufficient for testing.
However, these group differences were not significant.

Summarizing, we were unable to discern significant group differences w.r.t.
the perceived suitability of the models as an input for implementation and test-
ing.

5 Threats to Validity

Construct Validity is the degree to which the variables used measure the concepts
they are to measure. We have decomposed representational quality, the main
concept to be measured, into semantic, social and communicative quality, as
well as perceived suitability for future usage, and have argued their proposed
approximations.

Internal Validity is the degree to which the experimental setup allows to ac-
curately attribute an observation to specific cause rather than alternative causes.
Particular threats are due to selection bias. The selection of statements from the

89

Table 5. Questions regarding the perceived fitness for purpose

lThe UML model is comprehensible. I comprehend. . .

(b1) ...which usage scenarios the system should support.
(medians: noMC=4, MC=4, MC+T=4)
(b2) ...by which actions each usage scenario is triggered, and which actor
provides the action.(medians: noMC=4, MC=4, MC+T=4)
(b3) ... which user interactions occur during each usage scenario.
(medians: noMC=4, MC=3, MC+T=4)
(b4) ... which classes and methods are involved in each usage scenario.
(medians: noMC=4, MC=4, MC+T=4)
When given the assignment to implement the system described in the UML analysis
model, I am confident that the diagrams provide sufficient information about. ..

(il) ...the packages which the system contains.
(medians: noMC=3, MC=3, MC+T=3)

(i2) ...the classes which each package contains.
(medians: noMC=4, MC=4, MC+T=3)

(i3) ...the inheritance relationships between classes.
(medians: noMC=4, MC=4, MC+T=4)

(i4) ...the attributes of each class, and their signature. An attribute’s
signature comprises its name and type. (medians: noMC=4, MC=4,
MC+T=4)

(i5) ...the methods of each class, and their signature. A method’s signature
comprises its name, return type and parameter list.

(medians: noMC=4, MC=4, MC+T=4)

(i6) ...the interactions between methods and attributes in the different
classes. Such interactions consist of initialization, method calls and at-
tribute references. (medians: noMC=4, MC=3, MC+T=3)

When given the assignment to test the system described in the UML analysis model,
I am confident that the diagrams provide sufficient information about. ..

(t1) ...the preconditions that each method require.
(medians: noMC=3, MC=2, MC+T=2)

(t2) ...the postconditions that each method guarantee.
(medians: noMC=3, MC=2, MC+T=2)

(t3) ...the invariants that each method should respect.
(medians: noMC=3, MC=2, MC+T=2)

domain D; could not have introduced systematic differences, and the selection
of model was performed as to be representative w.r.t. syntactic quality.

FExternal Validity is the degree to which research results can be generalized
outside the experimental setting or to the population under study. The UML
analysis and design models consisted of about 27 diagrams of six different types
each. Consequently, we do not consider the representativity of the UML models
a serious threat to validity. Second, as the representativity of the subjects is a
matter of discussion, we do not wish to generalize our results outside the context

90

of novice UML users. Thirdly, the set of modeling conventions was composed af-
ter a literature review of modeling conventions for UML, revealing design, syntax
and diagram conventions. Our set of modeling conventions contains instances of
these three categories.

Statistical Conclusion Validity is concerned with inferences about correlation
(covariation) between treatment and outcome [12]. The likelihood of wrongfully
concluding that cause and effect do not covary can be quantified using power
analysis, which determines the sensitivity of the experimental set-up. For group
differences of 1.25 times the standard deviation, our setup exhibits a 69.3% like-
lihood of discovering significant differences w.r.t. communicative quality and the
perceived fitness for purpose of the models, and a 27.6% likelihood of discov-
ering significant semantic and social quality differences. This means that group
differences in communicative quality of around 15% are very likely to be dis-
cerned, but also, that the statistical tests for semantic and social quality have
little power. Nonetheless, the considerable overlap as indicated in Table 4 does
not indicate clear group differences w.r.t. semantic and social quality.

6 Conclusion

Based on the results of this experiment, we conclude that UML modeling con-
ventions focusing on the prevention of common UML modeling defects (as re-
ported in [6]) are unlikely to affect representational quality. In a comparison of
groups of models composed with and without these modeling conventions, we did
not observe significant differences w.r.t. information loss (indicated by semantic
and communicative completeness), misinformation (indicated by communicative
validity) nor ambiguity or misinterpretation (indicated by social quality). More-
over, no clear indications were found regarding the suitability for future usages
as, a.o., implementation and testing.

We interpret our findings as an invitation to study the application of modeling
conventions of a different nature. Conventions are needed that clarify which types
of information are relevant to particular future model usages. Such modeling
conventions might suggest the modeling of a type of information (e.g., features,
concepts, interactions, scenarios) consistently in a particular (set of) diagram
type(s). We hypothesize that this uniform manner of modeling different types of
information is more likely to optimize semantic and communicative quality, as
these types of information are the subject of their evaluation.

In other words, we argue that the optimization of the fitness for purpose of
UML models requires modeling conventions that do not restrict themselves to
mere properties of the model (e.g., syntax, design and layout). Rather, modeling
conventions should support the modeler in identifying and consistently repre-
senting those types of information required for the model’s future usage, e.g., in
implementation and testing.

Acknowledgements — We would like to thank the subjects of the pilot study, the
subjects of the two experimental runs and Prof. dr. Tom Mens of the University

91

of Mons-Hainaut (UMH), Belgium for aiding in the organization of the second
experimental run.

References

[1] Ambler, S. W. (2005). The Elements of UML(TM) 2.0 Style. Cambridge University
Press, New York, NY, USA.

[2] Berenbach, B. (2004). The evaluation of large, complex UML analysis and design
models. In ICSE °04: Proceedings of the 26th International Conference on Software
Engineering, pages 232—241, Washington, DC, USA. IEEE Computer Society.

[3] Davis, A., Overmeyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid,
G., Ledeboer, G., Reynolds, P., Sitaram, P., Ta, A., and Theofanos, M. (1993). Iden-
tifying and measuring quality in a software requirements specification. In Proceedings
of the First International Software Metrics Symposium, pages 141-152.

[4] Genero, M., Piattini, M., and Calero, C. (2002). Empirical validation of class
diagram metrics. In ISESE ’02: Proceedings of the 2002 International Symposium on
Empirical Software Engineering (ISESE’02), page 195, Washington, DC, USA. IEEE
Computer Society.

[5] Krogstie, J. (1995). Conceptual Modeling for Computerized Information Systems
Support in Organizations. PhD thesis, University of Trondheim, Norway.

[6] Lange, C.F.J. and Chaudron, M.R.V. (2006). Effects of defects in UML models
- an experimental investigation. In ICSE ’06: Proceedings of the 28th International
Conference on Software Engineering, pages 401-411.

[7] Lange, C.F.J., Chaudron, M.R.V., and Muskens, J. (2006a). In practice: UML
software architecture and design description. IEEE Softw., 23(2):40-46.

[8] Lange, C.F.J., Du Bois, B., Chaudron, M.R.V., and Demeyer, S. (2006b). Exper-
imentally investigating the effectiveness and effort of modeling conventions for the
UML. In O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pages 27-41.

[9] Leung, F. and Bolloju, N. (2005). Analyzing the quality of domain models developed
by novice systems analysts. In HICSS ’05: Proceedings of the Proceedings of the 38th
Annual Hawait International Conference on System Sciences (HICSS’05) - Track 7,
page 188.2, Washington, DC, USA. IEEE Computer Society.

[9] Lindland, O. I., Sindre, G., and Solvberg, A. (1994). Understanding quality in
conceptual modeling. IEEE Softw., 11(2):42-49.

[10] Marinescu, R. (2002). Measurement and Quality in Object-Oriented Design. PhD
thesis, Faculty of Automatics and Computer Science of the University Politehnica of
Timisoara.

[11] Moody, D. L., Sindre, G., Brasethvik, T., and Solvberg, A. (2003). Evaluating the
quality of information models: empirical testing of a conceptual model quality frame-
work. In ICSE ’03: Proceedings of the 25th International Conference on Software
Engineering, pages 295-305, Washington, DC, USA. IEEE Computer Society.

[12] Shadish, W. R., Cook, T. D., and Campbell, D. T. (2002). Exzperimental and
Quasi-Experimental Designs for Generalized Causal Inference. Houghton Mifflin.
[13] Teeuw, B. and van den Berg, H. (1997). On the quality of conceptual models. Pro-
ceedings of the ER-97 Workshop on Behavioral Modeling and Design Transformation:

Issues and Opportunities in Conceptual Modeling.

[14] Tilley, S. and Huang, S. (2003). A qualitative assessment of the efficacy of UML
diagrams as a form of graphical documentation in aiding program understanding. In
SIGDOC ’03: Proceedings of the 21st annual international conference on Documen-
tation, pages 184-191, New York, NY, USA. ACM Press.

92

A Modeling Conventions

Table 6 enlists the modeling conventions employed in a previous experiment.
These conventions were used by two of the experimental groups (M C and MC +
T) while composing UML analysis and design models. As the resulting models
were used in this experiment, it is relevant to recapitulate these conventions.

Table 6. Modeling Conventions

Category ID Convention

Abstraction 1 Classes in the same package must be of the same abstraction
level.

2 Classes, packages and use cases must have unique names.

All use cases should cover a similar amount of functionality.
Balance 4 When you specify getters/setters/constructors for a class, spec-
ify them for all classes.

5 When you specify visibility somewhere, specify it everywhere.

6 Specify methods for the classes that have methods! Don’t make
a difference in whether you specify or don’t specify methods as
long as there is not a strong difference between the classes.

7 Idem as 6 but for attributes.

For classes with a complex internal behavior, specify the internal
behavior using a state diagram.

9 All classes that interact with other classes should be described
in a sequence diagram.

10 Each use case must be described by at least one sequence dia-
gram.

11 The type of ClassifierRoles (Objects) must be specified.

12 A method that is relevant for interaction between classes should
be called in a sequence diagram to describe how it is used for
interaction.

13 ClassifierRoles (Objects) should have a role name.

Consistency 14 Each message must correspond to a method (operation).
Design 15 Abstract classes should not be leafs.

16 Inheritance trees should not have no more than 7 levels.

17 Abstract classes should not have concrete superclasses.

18 Classes should have high cohesion. Don’t overload classes with
unrelated functionality.

19 Your classes should have low coupling.

Layout 20 Diagrams should not contain crossed lines (relations).

21 Don’t overload diagrams. Each diagram should focus on a spe-
cific concept/problem/functionality/...

Naming 22 Classes, use cases, operations, attributes, packages, etc. must
have a name.

23 Naming should use commonly accepted terminology, be non-
ambiguous and precisely express the function/role/characteristic
of an element.

w

o]

Completeness

93

94

OCL’: Using OCL in the Formal Definition of OCL
Expression Measures

Luis Reynoso!, Marcela Genero? , José Cruz-Lemuz’ and Mario Piattini2

Department of Computer Science, University of Comahue,

Buenos Aires 1400, 8300, Neuquén, Argentina
lreynoso@uncoma.edu.ar

2 Alarcos Research Group,
Department of Technologies and Information Systems,
University of Castilla-La Mancha, Ciudad Real, Spain
{Marcela.Genero, Mario.Piattini, JoseAntonio.Cruz}@uclm.es

Abstract. Within the Object Oriented software measurement a lot of measures
have proliferated during the last decades. However, most of the existent meas-
ures differ in the degree of formality used in their definition. If the measure
definition is not precise enough, for instance when natural language is used,
misinterpretations and misunderstanding of their intent can be introduced.
Therefore, this situation may flaw the interpretation of experimental findings or
even can difficult in building adequate measures extraction tools. This paper
carefully describes how a set of measures that capture the structural properties
of expressions specified with the Object Constraint Language (OCL) were pre-
cisely defined upon the OCL metamodel. So, we used OCL twice (OCL?): as a
language for defining measures and as a target to capture its core concepts
through measures. In addition, given the relevance of models in the Model
Driven Engineering (MDE) and their quality, the approach presented here
could be extended for the formal definition of measures for each of the UML
models.

Keywords. OCL, OCL metamodel, measures, formal definition

1 Introduction

A plethora of Object Oriented (OO) measures have been proposed from the nineties
till nowadays. Intrinsic to any measure is its definition and theoretical and empirical
validation. However, before addressing if the measures are theoretically or empiri-
cally valid it is important that they are “well” defined. As Baroni et al. [2] commented
many difficulties arise when the measures are defined in an unclear or imprecise way:
- experimental findings can be misunderstood due to the fact that it may be not
clear what the measure really captures,
- measures extraction tools can arrive to different results,

95

- and experiments replication is hampered.

Most of the existent measures differ in the degree of formality used in their defini-
tion. Two extreme approaches were used, informal and rigorous definitions. However
none of these approaches had been widely accepted. On one hand, measures using an
informal definition, such as measures defined in natural language, may be ambigu-
ously defined. Hence, natural language may introduce misinterpretations and misun-
derstanding. On the other extreme, in a rigorous approach, some authors have used a
combination of set theory and simple algebra to express their measures [8], [12]. This
approach was not popular due the majority of members of OO community may not
have the required background to understand the underpinning of the complex mathe-
matical formalism used.

An example of how the use of natural language introduces ambiguity in the meas-
ure definition is considered in [2], referring to the measure definition of “Number of
Times a Class is Reused”, proposed by Lorenz and Kidd [16]. This measure is de-
fined as the number of references to a class. We agree with Baroni et al. [2] that is not
clear “What references are and how the metric should be computed, and many ques-
tions arise as: Should internal and external references be counted? Should references
be considered in different modules, packages or subsystem? Does the inheritance
relationship count as a reference?”.

An important contribution to solve the problem of the formality degree in the
measure definition is to use the Object Constraint Language [18] upon a design meta-
model.

As part of our research work during the last two years, we have proposed a set of
measures for OCL expressions, trying to find indicators for the understandability and
modifiability of OCL expressions [20]. When we decided to formally define them we
considered that the use of OCL for that purpose could have two advantages:

- The first is that OCL itself is precisely defined through metamodeling facilities, as
an instance of the meta-metamodel of the OMG Meta Object Facility (MOF) [22],
and the measure definition can be suitably placed at the same level (the M2 level)
as the OCL definition.

— The second is a same language, OCL, is used as a formal language to define the
UML and OCL semantics (at M2 Level) and is used by modelers for defining con-
straints on their models (at M1 Level). In fact the OCL was claimed as a language
easy to use and easy to learn, and to be easily grasped by anybody familiar with
00 modeling [9], [15], [24], [25]. So, the familiarity of this language can make
the definition of our measures more modeler-friendly.

Thus, the approach of defining measures for OCL expressions using OCL meta-
model and OCL language as the formal language allows an unambiguous definition.
OCL was previously used by the QUASAR (QUantitative Approaches on Software
Engineering And Reengineering) Research Group [3],[4],[5] for defining measures.
However, the research group used OCL upon the UML metamodel. In our case, OCL
is used as a language for defining measures for OCL expressions upon the OCL
metamodel. This is why we called OCL? to the work presented in this paper.

In our approach when we compute the value of a specific measure an OCL expres-
sion is represented as an instantiation of OCL metaclasses. The instantiation has the
shape of a tree, an abstract syntax tree (asf). We traverse the dynamic hierarchical

96

structure (the asf) and meanwhile we visit every element in the tree, we evaluate if
each element of the tree is meaningful for the measure we want to compute. If it does,
the measure is incremented otherwise it remains as it is. Due to all the measures we
proposed in [20] are similarly defined, we will only explain in this paper the formal
definition using OCL of the measures: the Number of Attributes referred through
Navigations (NAN) and the Number of Navigated Classes (NNC).

This paper is structured as follows: Section 2 briefly introduces the measures we
proposed for measuring structural properties for OCL expressions. Section 3 briefly
explains the OCL metamodel and some of its metaclasses used to explain an instantia-
tion. Section 4 describes an ast sample for an OCL expression and Section 5 explains
the implemented strategy using a visitor pattern for traversing the ast and we show
the formal definition of NAN and NNC measures. Finally, Section 6 concludes the
paper and outlines the future work.

2 Measures for OCL Expressions

Our hypothesis is that structural properties of an OCL expression within an
UML/OCL model (artifacts) have an impact on the cognitive complexity of modelers
(subjects), and high cognitive complexity leads the OCL expression to exhibit unde-
sirable external qualities on the final software product [13], such as less understand-
ability or a reduced maintainability [7].

We thoroughly defined in [20] a suite of measures for structural properties of OCL
expressions. Table 1 only introduces some of the measures we defined for measuring
coupling.

Table 1. Measures for coupling within OCL expressions

Measure Acronym Measure Description
NNR Number of Navigated Relationships
NAN Number of Attributes referred through Navigations
NNC Number of Navigated Classes
WNCO Weighted Number of Collection Operations
DN Depth of Navigations

We defined measures for coupling within OCL expressions, because coupling is
one the most complex software attribute in object oriented systems [3] and a high
quality software design should obey the principle of low coupling [6], [7]. Further-
more, scanty information of object coupling is available in early stages of software
development which only use UML graphical notations, and many times, many cou-
pling decisions are made during implementation [25]. However, at early stages it
would be useful the availability of more information about coupling, e.g. to decide
which classes should undergo more intensive verification or validation. We believe
that a UML/OCL model reveals more coupling information than a model specified

97

using UML only, due to the fact that OCL navigation defines coupling between the
objects involved [25], and the coupled objects are usually manipulated in an OCL
expression through collections and its collection operations (to handle its elements).

3 OCL Metamodel

As we previously mentioned the concepts of OCL and their relationships have been
defined in the form of a MOF-compliant metamodel [18]. The benefit of a metamodel
for OCL is that it precisely defines the structures and syntax of all OCL concepts like
types, expressions, and values in an abstract way and by means of UML features.
Thus, all legal OCL expressions can be systematically derived and instantiated from
the metamodel.

The Expression package contains the main metaclasses of the OCL metamodel
which are essential for the formal definition of our proposed measures. Figure 1
shows the core part of the Expression package. The basic structure in the package
consists of the classes OclExpression, PropertyCallExp and VariableExp [18]. In
OCL the concept of “property” conceptualize an attribute, method or rolename ap-
plied to an object (or OCL expression who evaluates to an object).

ModelElement
(from Core)
name: String

Classifier
+body % *type | (from Core)
1 OCLExpression 1

+type 1
tsource . .
0.1 +initExpression

+appliedProperty

ZF 0..1
0..1 <> | | |
| PropertyCallExp | | LiteralExp | | IfExp | VariableExp| OCLMessageExp

1..n

+loopExpr +referredVariable

[owtr s

| ModelPropertyCallExp |
0..1

0.1 +iterators
| VariableDeclaration

VarName: String c 0..1

+result PP, .
| IteratorExpl | TterateExp IOL‘ +initializedVariable
+

baseExp

Fig. 1. Abstract syntax kernel metamodel for Expressions

This definition is consistent with the fact that: (1) each PropertyCallExp has ex-
actly one source, identified by an OCLExpression; (2) A ModelPropertyCallExp (see

98

Figure 2) —a specialization of PropertyCallExp- generalizes all property calls that

refer to Features or AssociationEnds in the UML metamodel [19], for instance:

— An AttributeCallExp is a reference to an Attribute of a Classifier defined in the
UML model.

— A NavigationCallExp is a reference to an AssociationEnd or AssociationClass
defined in the UML model.

— An OperationCallExp refers to an Operation in a Classifier.

This is shown in Figure 2 by the three different subtypes, each of which is associ-
ated with its own type of ModelElement.

Due to the fact that the OCL metamodel is composed of a set of more than thirty
metaclasses we are not able to explain each of them. Nevertheless in the following
section we will describe an OCL expression as an example of instantiating some of
the aforementioned OCL metaclasses.

ModelPropertyCallExp |

AttributeCallExp 0..1 +referredAttribute Attribute
(from Core)

1

ationCallExp

Navig

0.1

+navigationSource |

| AssociationEndCallExp | +referredAssociationEnd| AssociationEnd
'0 n (from Core)
| AssociationClassCallExp | +referredAssociationClass AssociationClass
on (from Core)
+qualifiers

Cordered} L.n OCLEXxpression

{ ordered } 1..n

0"1$ +parentOperation
| OperationCallExp | 0..1

+referredOperation

+arguments

Operation
(from Core)

Fig. 2. Abstract syntax metamodel for ModelPropertyCallExp

4 A Sample of an “Abstract Syntax Tree” for an OCL Expression

The purpose of this section is to show an example of one ast built from an OCL ex-
pression. We choose as an example the invariant OCL expression attached to the
Flight class of Figure 3. The meaning of the invariant expression is that a flight does

99

not contain more passengers than the number of seats of the airplane type associated
with the airplane of the flight.

<<invariant>> self.passenger->size() <= self.plane.planetype.numberofseats

=
-
-
_-

Flight 1 " Airplane
Id_flight: Integer * +plane[T1q plane: Integer |*

+planetype™\ 1

*| +passengers Airplane_Type
Passenger type: String
Passport: String numberofseats: Integer

Fig. 3. OCL invariant expression in a class diagram

The basic instantiation of this fragment of the model for our example is consistent
with the standard place where an invariant OCL expression occurs in the UML and
OCL metamodel (see Figure 4).

ModelElement . Constraint
(from Core) 0..n ‘eonstraint (from Core)
+constrainedEl t 1
N 0.1
1<f+bodv
Expression
Classifier (from DataType)

(from Core) Z%

OclExpression +bodyExpression ExpressionInOcl

Fig. 4. OCL expression in relation to UML models

An OCL expression always constitutes the body of a Constraint object associated
with one or more ModelElement objects. So, the instantiation includes two important
objects (see Figure 5):

— aclass object where its name is Flight (Classifier is a UML concept which repre-
sents a class, an interface, etc.)

— and a constraint object to represent an invariant constraint (see the two classes at
the left top of Figure 5).

The body of the constraint will be represented by the object diagram for the ast of
the invariant expression. The object diagram of Figure 5 basically shows an ast in the
right part.

In order to build the tree, instances of the following OCL metaclassses have been
used: OperationCallExp, AttributeCallExp, AssociationEndCallExp, Operation, Inte-
gerLiteralExp, VariableExp and VariableDeclaration OCL metaclasses. In the tree

100

there is also an instance of the A#ribute UML metaclass which constitutes the attrib-
ute referred by the AttributeCallExp, and three instances of the AssociationEnd UML
metaclass.

The root of the tree of Figure 5 is the OperationCallExp expression, which has
three branches:

— First, the source of the OperationCallExp is the subtree modeling the subexpres-
sion self.passenger->size().

— the second branch models the referred operation, and

— the third branch represents the argument, the subtree modeling the subexpression
self-plane.planetype.numberofseats.

In order to compute the value of a specific measure we must visit each of the tree
nodes (instances of OCL metaclasses) and verify if each of them belongs to the par-
ticular metaclass we are interested to measure. The implemented strategy for visiting
the elements is shown in the following section.

: Class +constraint | : Constraint
name: Flight | +constrainedElement kind : Inv

ExpressionInOcl

: OperationCallExp “bodyexpression

+referred
Operation arguments
: Operation : Attribute-

name: <=

I
: OperationCallExp

+appliedProperty|

+referredAttribute

+ .
Fsource referredOperation +source

| :Assoc1atlonEndCallExp| “;)m:T::;(;n [: AssociationEndCallExp| naAl:lt:'ll::lt;berofseats

treferredAssociationEn referredAssociationEn
+source +source

|_; VariableExp | : AssociationEnd | | :AsociationEndCallExpl : AssociationEnd
name: p name: planetype

+source

+referredVariable : VariableExp treferredAssociationEn

: VariableDeclaration| : AssociationEnd
name: self . name: plane
+referredVariable

: VariableDeclaration
name: self

Fig. 5. ast built for an OCL invariant

5 Implemented Strategy

There are many operations we must define in order to compute the measures values,
and these operations should be specified in many OCL metaclasses, but we do not

101

want to clutter the OCL metaclasses with these operations. To solve this problem we

decided to use a Visitor Pattern [21]. The operations we must define are located into a

separate object (a visitor). The visitor is sent to the tree root, eventually each element

forwards the requests to its children and also its calls activate the visitor. The Visitor

performs operations on each element. The main participants of a Visitor Pattern are:

— Visitor: declares a Visitor operation for each class of ConcreteElement in the
object structure.

— ConcreteVisitor: implements each operation declared by Visitor.

— Element: defines an Accept operation that takes a Visitor as an argument.

— ConcreteElement: implements an Accept operation.

— ObjectStructure: can enumerate its elements.

A complete explanation of this pattern can be found in [11], [21]. In our case, the
Element and ConcreteElements are represented by OCL metaclasses in the Expres-
sion package, and we will define Accept operations on them. Visitor and Concrete-
Visitor are new classes introduced in our strategy to define the measures, and the
ObjectStructure may be represented by either Constraint or ExpressionInOCL classes
of Figure 4.

Figure 6 shows the basic UML design for implementing the strategy with a visitor.
In this solution we also used an Enumeration UML class, MetricAcronym, which
includes the acronym of the proposed measures (NNR, NAN, NNC, WNCO, DN,
etc.)

This section is divided as follows: Subsection 5.1 shows how Accept operations
were defined in the OCL metaclasses of the Expression Package, Subsection 5.2
shows the Visitor Class and its operations and Subsection 5.3 describes how to obtain
the value of a measure. All the expressions used in this section were syntactically
verified using ECLIPSE [10] and the OCTUPUS component [14] (a plug-in of
ECLIPSE).

OCLEXxpression

| ExpressionlnOCL +bodyExpression

Svisitor

Visitor_ast
MetricValue: String

PropertyCallExp | | LiteralExp

<<enumeration>>
Acronym

Fig. 6. Design of the implemented strategy

5.1 Implementing Accept Operations in the Expression Package Classes

Several Accept operations were implemented in the OCL metaclasses of the Expres-
sion Package. Their definitions include many forward operations, so, it is important to

102

understand the OCL metaclasses and their relationships. We will show as an example
the Accept operations of AttributeCallExp and OperationCallExp metaclasses.

— AttributeCallExp subclass defines Accept calling the Visitor operation that corre-
sponds to the class, and it calls the Visitor operation on its source whether the
source is not empty.
context AttributeCallExp::accept new(v:Visitor, metricName: MetricAcronym)
post: v visitAttributeCallExp(self, metricName) and

(self.source->notEmpty() implies
self.source™accept new(v, metricName))

— OperationCallExp subclass defines Accept calling the Visitor operation that cor-
responds to the class, and it implements Accept by iterating over its arguments
and calling Accept on each of them. It also calls Accept operation on its source in
a similar way.
context OperationCallExp::accept new(v:Visitor, metricName: MetricAcronym)
post: v visitOperationCallExp(self, metricName) and

(arguments->size() >= 1 implies
arguments->forAll(a | a*accept_new(v, metricName)))
and
(self.source->notEmpty()
implies self.source™accept_new(v, metricName))

5.2 A Visitor Class for Obtaining the Value of OCL measures

Visitor_ast class (see Figure 7) defines the visitor attributes and operations for each
class of the OCL metaclasses.

Next, we will exemplify how the visitor operations are defined in the Attribute-
CallExp and NavigationCallExp classes. In these visitor operations we also show how
the NAN and NNC measures are computed.

NAN, the “Number of the Attributes referred through Navigations™ is equal to the
quantity of instances of A#tributeCallExp where the type of its source is an Associa-
tionEndCallExp or AssociationClassCallExp.

context Visitor::visitAttributeCallExp(o: AttributeCallExp,
metricName: MetricAcronym)
post: (metricName = MetricAcronym::NAN
and (o.source.ocllsTypeOf(AssociationEndCallExp)
or o.source.oclIsTypeOf(AssociationClassCallExp))
implies importedproperties =
importedproperties@pre ->including(o.referred Attribute.name)

The operation only load the name of an attribute used in a navigation in a set of at-
tributes called importedproperties.

103

For example the ast of Figure 5 has only one AttributeCallExp instance, having a
referredAttribute named numberofseats, and this is relevant for NAN, so after the
Visitor visits the ast for that expression, the importedproperties set will be equal to
the set {numberofseats)}.

ClassName: Visitor_ast

Attributes:

- valueMetric: Integer;

- importedproperties: Set(String);

- navigatedClasses: Set(String);
Methods:
visitOperationCallExp(o:OperationCallExp, metricName: MetricAcronym)
visitNavigationCallExp(o: NavigationCallExp, metricName: MetricAcronym)
visitAttributeCallExp(o: AttributeCallExp, metricName: MetricAcronym)
visitLetExp(o: LetExp, metricName: MetricAcronym)
visitIfExp(o: IfExp, metricName: MetricAcronym)
visitLoopExp(o: LoopExp, metricName: MetricAcronym)
visitOclMessageExp (o: OclMessageExp, metricName: MetricAcronym)
visitCollectionRange(o: CollectionRange, metricName: MetricAcronym)
visit Collectionltem(o: Collectionltem, metricName: MetricAcronym)
visitTupleLiteralPart (o: TupleLiteralPart, metricName: MetricAcronym)
visitLiteralExp(o: LiteralExp, metricName: MetricAcronym)

Fig. 7. The Visitor Class

Whenever a Visitor accesses a NavigationCallExp object, it loads in a set (called
navigatedClasses) the name of the classes used in navigations (whether the modeler
use a navigation class) or the name of the class of the AssociationEndCall type (i.e.
the name of the class to which the rolename references). The size of this set is used to
obtain the NNC value in a similar way as we did with importedproperties.

context Visitor::visitNavigationCallExp(o: NavigationCallExp, metricName: Met-
ricAcronym)
post:
metricName = MetricAcronym::NNC
implies navigatedClasses = navigatedClasses@pre->including(
if self.oclIsTypeOf(AssociationEndCallExp)
then
source.oclAsType(AssociationEndCallExp).referred AssociationEnd.type.
name
else
source.oclAsType(AssociationClassCallExp).referred Association
Class.name endif)

For example, according to Figure 5, there are three AssociationEndCallExp in-
stances, so the name of the classes to which the passenger, plane and planetype role-

104

names references are collected in the navigatedClasses attribute. So, after the visitor
visits the ast for the OCL expression the set of navigatedClasses will be equal to the
set {Passenger, Airplane, Airplane_Type}.

5.3 Explanation of How the Value of NAN and NNC Measures are Obtained

Within the ExpressionlnOCL class many operations for obtaining the value of differ-
ent measures are defined, such as the following two for obtaining the value of NAN
and NNC measures:
- In order to compute the value of NAN the following operation is defined:
context ExpressionInOCL::value of NAN() : Integer
post: self.visitor.ocllsNew()
and self.bodyExpression”accept_new(self.visitor, MetricAcronym::NAN)
and result = self.visitor.importedproperties->size()

- The size of the navigatedClasses set determines the value of NNC.
context ExpressionInOCL::value of NNC() : Integer
post: self.visitor.oclIsNew()
and self.bodyExpression”accept new(self.visitor, MetricAcronym::NNC)
and result = self.visitor.navigatedClasses->size()

These operations requests the creation of a new Visitor object, then send it to the
root of an ast in order to compute the value of a measure which is specified as a pa-
rameter. In turn, each node of the ast forwards the Visitor allowing it to act.

6 Conclusions

Within the OO software measurement community the formal definition of measures is
an important aspect that has been almost neglected. Although there is a huge amount
of OO measures, the lack of formalization constitutes a serious matter. Only natural
language or rigorous mathematical definitions were used, being none of them suitable
and widely adopted. Our belief is that the combination of metamodeling facilities and
OCL as a language for defining OCL semantics, such as in defining the UML and
OCL languages, allows also unambiguous measure definition achieving both under-
standability and formality in their specification. We claim that the formal definition of
our measures using OCL language is easy to grasp by anybody familiar with meta-
modeling.

The relevance of the proposed approach, the specification of measures using OCL
at M2 of MOF, will become more important by the proliferation of MOF-compliant
architectures and the growing field of Model Driven Engineering [17], [1], [23] para-
digm. In truly model-driven software engineering the quality of the models used is of
great importance as it will ultimately determine the quality of the software systems
produced. In particular, it is widely believed that the system quality is highly depend-
ent on many decisions made early in its development, specifically when artifacts and

105

its constraints are defined. The formal specification of measures allows the develop-
ment of precise measures extraction tools for identifying the weak points of UML
models and giving on the fly diagnostics about the model quality. We also believe
that in the future, UML and OCL measures extraction can be translated from their
formal definition to platform specific models (PSM) and from PSM to code.

Acknowledgements

This research is part of the MECENAS project (PB106-0024) financed by “Consejeria
de Ciencia y Tecnologia de la Junta de Comunidades de Castilla-La Mancha”, the
ESFINGE project (TIN2006-15175-C05-05), supported by the “Ministerio de Educa-
cion y Ciencia (Spain)” and the COMPETISOFT project (506P10287) financed by
“CYTED (Programa Iberoamericano de Ciencia y Tecnologia para el Desarrollo)”.

References

[1]. C. Atkinson and T. Kuhne. Model Driven Development: A Metamodeling Foundation.
IEEE Transactions on Software Engineering, 20(5), 36-41, 2003.

[2] A. L. Baroni. Formal Definition of Object-Oriented Design Metrics. Master of Science in
Computer Science Thesis, Vrije Universiteit Brussel, Belgium, 2002.

[3] A. L. Baroni, S. Braz, and F. Brito e Abreu. Using OCL to Formalize Object-Oriented
Design Metrics Definitions. In Proc. of QAOOSE'2002, Malaga, Spain, 2002.

[4] A. L. Baroni and F. Brito e Abreu. Formalizing Object-Oriented Design Metrics upon the
UML Meta-Model. In Proc. of the Brazilian Symposium on Software Engineering,
Gramado - RS, Brazil, 2002.

[5] A. L. Baroni and F. Brito e Abreu. A Formal Library for Aiding Metrics Extraction. Inter-
national Workshop on Object-Oriented Re-Engineering at ECOOP 2003. Darmstadt, Ger-
many, 2003.

[6] L. C. Briand, L. C. Bunse and J. W.Daly. A Controlled Experiment for Evaluating Quality
Guidelines on the Maintainability of Object-Oriented Designs. IEEE Transactions on Soft-
ware Engineering., 27(6), 513-530, 2001.

[7] L. C. Briand, J. Wiist and H. Lounis. A Comprehensive Investigation of Quality Factors in
Object-Oriented Designs: an Industrial Case Study. 21st International Conference on Soft-
ware Engineering, Los Angeles, 345-354, 1999.

[8] S. Chidamber and C. Kemerer. A Metrics Suite for Object Oriented Design. IEEE Transac-
tions on Software Engineering, 20(6), 476-493, 1994.

[9] S. Cook, A. Kleepe, R. Mitchell, B. Rumpe, J.Warmer, and A. Wills. The Amsterdam
Manifiesto on OCL. Clark T. and Warmer J., editors, Advances in Object Modelling with
the OCL, 115-149, 2001.

[10] Eclipse Foundation, Inc. Ottawa, Ontario, Canada.Available at http://www.eclipse.org.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, 1995.

[12] B. Henderson-Sellers. Object-Oriented Metrics: Measures of Complexity. Prentice-Hall,
1996.

[13] ISO/IEC 9126-1.2. Information technology- Software product quality — Part 1: Quality
model. 2001.

106

[14] Klasse Objecten. OCTUPUS: OCL Tool for Precise UML Specification. Available at
http://www klasse.nl/octopus/index.html.

[15] W. Liang. UMLObject Constraint Language in Meta-Modeling. School of Computer
Science. McGill University, 2002.

[16] M. Lorenz and J. Kidd. Object-Oriented Software Metrics: A Practical Guide. Prentice
Hall, Englewood Cliffs, NJ, EUA. 1994.

[17] Object Management Group. MDA - The OMG Model Driven Architecture. 2002.

[18] Object Management Group. Response to the UML 2.0 OCL RfP (ad/2000-09-03), revised
Submission, Version 1.6 (ad/2003-01-07). OMG document ad/2003-01-07, 2003.

[19] Object Management Group. Unified Modeling Language, V1.4, Document formal/01-09-
67, OMG document formal/01-09-67, 2001.

[20] L. Reynoso, M. Genero and M. Piattini: Measuring OCL Expressions: An approach based
on Cognitive Techniques. Chapter 7: Metrics for Software Conceptual Models. M. Genero,
M. Piattini, and M. Calero (Eds.). Imperial College Press, UK. 161-206. 2005.

[21] L. Reynoso and R. Moore. GoF Behavioural Patterns: A Formal Specification. Technical
Report Nro. 200. UNU/IIST, P.O.Box 3058, Macau, 2000.

[22] M. Richters. A Precise Approach to Validating UML Models and OCL Constraints.
Monographs of the Bremen Institute of Safe Systems, 2001.

[23] B. Selic. The Pragmatics of Model-Driven Development. IEEE Software, 20(5), 19-25,
2003.

[24] J. Warmer and A. Kleppe. The Object Constraint Language. Precise Modeling with UML.
Object Technology Series.Addison Wesley, 1999.

[25] J. Warmer and A. Kleppe. The Object Constraint Language. Second Edition. Getting Your
Models Ready for MDA. Object Technology Series. Addison-Wesley. Massachusetts.,
2003.

107

