Mario Piattini and
Manuel Serrano(Eds.)

Software
Audit and Metrics

Proceedings of the

1st International Workshop on
Software Audit and Metrics,
SAM 2004

In conjunction with ICEIS 2004
Porto, Portugal, April 2004

et et A i AP e T,

o A

S A S i, Al el LD e

Manuel Serrano and

Mario Piattini (Eds.)

Software Audits and Metrics

Proceedings of the

1st International Workshop on
Software Audits and Metrics,
SAM 2004

In conjunction with ICEIS 2004
Porto, Portugal, April 2004

'INSTICC PRESS
Portugal

Volume Editors

Manue] Serrano

Mario Piattini

University of Castilla-La Mancha
Spain.

Proceedings of the 1* International Workshop on Software Audits and
Metrics — (SAM 2004)

Porto, Portugal, April 2004.

Manuel Serrano and

Mario Piattini (Eds.)

Copyright © 2004
INSTICC PRESS
All rights reserved

Printed in Portugal

ISBN 972-8865-04-X

Foreword

- These proceedings include the papers accepted for the First International

Workshop on Software Audit and Metrics (SAM"2004), which was held in
Porto, Portugal, on April 13* 2004.

, Modern societies demand high quality products and services, which rely
" more and more on software. Software quality has become a key issue for

software development organizations, which try to improve software
processes and products. Audits and metrics could help to ensure that
software meets all the client requirements and needs, and -to find
anomalies as early and as inexpensively as possible. Audit and metrics also
provide visibility into the various areas in the organization, which is
necessary to understand and improve software processes.

The workshop intends to provide a forum for researchers and
practitioners working on approaches, methods, techniques, guidelines, and
tools for auditing, measuring, predicting, evaluating, controlling, assuring
and improving the quality of software processes and products.

Submission were invited, but not limited, to the following topics:
Standards and procedures for software audits, Software audit automatic
support, Quality metrics, Standards for the collection and comparison of
metrics, Validation of software metrics, Testing and inspection metrics,
Metrics and CASE tools, Assessment of software processes, Software
reliability, Estimation models for softwate development, Certification of
software processes and products, and Training and qualification in audit
and metrics.

We would like to thank all members of the Program Committee and the
reviewers for their work in reviewing the papers that appear in this
volume. We appreciated the outstanding invited talk: “Quantifying the
Unquantified: How quantification of key performance attributes can
improve project audit, process audit and project management”, by Tom
Gilb. Special thanks go to the steering and organizing committees of the
ICEIS, especially to Joaquim Filipe and Vitor Pedrosa.

- April 2004

Manuel Serrano
Matio Piattini

hop Chairs ' : _ Table of Contents

sity of Castilla-La Mancha FOLEWOTLA coeoovevrseereereeeesemestesessessssssessissasssesessssessassossonsssssassasassnsassssssaness il

TADle Of CONTENLS 1evrvrerrreririsrsresereresssasseseressssesissssesessesssssarasmsssssssassssesssssses v

Program Committee

Fernando Brito e Abreu, Universidade Nova de Lisboa (Portugal) i
Coral Calero, University of Castilla-La Mancha (Spain) Invited Speakers
Giovanni Cantone, University of Rome (Italy) :

Marcela Genero, University of Castilla-La Mancha (Spain)

Elixabete Ostolaza, European Software Institute , Quantifying the Unquantiﬁed ereseresaetseasesesastsetaa b sbes et bR e s s nanasaes 1
Geert Poels, Ghent University (Belgium) ' ‘ Tom Gilb '
Houari Sahraoui, Université de Montréal (Canada) ' :
Jeffrey Voas, Cigital (USA) |
! Papers

Additional Reviewers [Towards a Model for Managing Success Factors in Software

Yann-Gaél Guéheneuc, Université de Montréal (Canada) . Process IMPLOVEMENL c.uuueurrvessseessssssssesssisssssissssssssssssssssssssseessenss 12
Félix Garcia, University of Castilla-La Mancha (Spain) : Joseph Trienekens
j Classifying Web MetriCs ..o rmmrerereerremsmmmmmsmssmmsssissssssssssssssssssssessisssisissinses 22

Juliin Ruiz, Coral Calero and Mario Piattini

Traceability and Factorization in Class Diagrams:an
Experimentation of their Correlation wmcirenmseenesisssrninesns 38
Cam-Ngan Tran and Michel Dao

A New Suite of Metrics for Object-Oriented Softwareovveererene 49
! Cara Stein, Letha Etzkorn, Glenn Cox, Phillip Farrington,
| Sampson Gholston, Dawn Utley and Julie Fortune

' Validating Metrics for OCL Expressions Expressed within
‘ UML/OCL MOMEIS w.cvuecrrrrmsrinnirsessersssssmssmsasesssessserssssssissmassssasasssss 59
f Luis Reynoso, Marcela Genero and Mario Piattini

Analysis of Software Measures Using Mctrology Concepts
2 —ISO 19761 Case Studyccocevvcercrecnrnrneenerresessesseses e ssssssssssssens 69
" Alain Abran and Asma Sellami

“Can Fuzzy Mathematics enrich the Assessment of Software
i Maintainability?... ..ttt sa s e 85
‘ Gerardo Canfora, Luigi Cerwlo and Luigi Troiano

Design Measures for Distributed Information Systems:
an Empirical Evaluaton....... s eeeretee e nensterreratonens 95
Pablo Rossi and George Fernandeg,

Towards a Metrics Suite for Conceptual Models of

DataWarehOuSEScuuuerviviiieesereeeesiessceissssssssssssssessssesssssssssssssssens 105
Manuel Serrano, Coral Calero, Juan Trujillo, Sergio Lujin and
Mario Piattini

A Tool-based Methodology for Software Portfolio Monitoring....... 118
Tobias Kuspers and Joost Visser

AUhOL INAEX oottt ssssssss s sssessssssssssaons 129

Quantifying the Unquantified

How quantification of key performance attributes can improve project
. audit, process audit and project management.

Tom Gilb
Tom@Gilb.com

Abstract. ‘Scales of measure’ are fundamental to the definition of all scalar system
attributes; that is, to all the performance attributes (such as reliability, usability and
adaptability), and to all the resource attributes (such as financial budget and time). A
defined scale of measure, allows you to numerically quantify such attributes.

‘Scales of measure’ form a central part of Planguage, a-specification language
and set of methods, which I have developed over many years.

This paper describes how you can develop your own tailored scales of measure
for the specific system attributes, which are important to your organization or system.
You cannot rely on being 'given the answer' about how to quantify. You will lose
control over your current vital system performance concerns if you cannot, or do not,
quantify your critical attributes. Better quantification is obviously a key to better
analysis and management of project audit, process audit, and project management.

Scales of Measure and Meters

Scales of measure (Scales) are essential to quantify system attributes. The ‘system’ in
question can be a project, a development or life-cycle process, or a product. A Scale
specifies an operational definition of ‘what’ is being measured and it states the units
of measure. All estimates or measurements are made with reference to the Scale.

The practical ability to measure where you are on a Scale (that is to be able to
establish the numeric level) is also important. A Meter (sometimes known as a ‘Test”)
is a practical method for measuring, A Scale can have several Meters.

Finding and Developing Scales of Measure and Meters

The basic advice for identifying and developing scales of measure (Scales) and meters

(Meters) for scalar attributes is as follows:

1. Try to re-use previously defined Scales and Meters.
2. Try to modify previously defined Scales and Meters.

3. If no existing Scale or Meter can be reused or modified, use common sense to
develop innovative, homegrown quantification ideas. -

58

4 Conclusion

Sen.aantic metrics provide a mechanism for assessing the quality of software in the
design or implementation phases. While assessing software in the implementation
phase is important, being able to assess earlier provides added value in the ability to
correct mistakes or potential problems earlier in the software development lifecycle,
whex} changes are less expensive to make. Whereas most of the previous semantic
metrics required a conceptual graph-based knowledge base, the proposed set of
metrics can be calculated using any knowledge base that associates classes with ideas.
Thus, the proposed set of metrics can be computed using a broader range of
knowledge bases than could be used with previously existing semantic metrics.

6 Acknowledgements

The research in this paper was partially supported by NASA grants NAG5-12725 and

NCC8-200.

References

1. Etzkom, L., Delugach, H.: Towards a Semantic Metrics Suite for Object-Oriented Design.
Proceedings of the 34th International Conference on Technology of Object-Oriented
Languages and Systems (2000) 71-80.

2. Etzkom, L., Gholston, S., Hughes, W.: A Semantic Entropy Metric. Journal of Software
Maintenance and Evolution, Vol. 14, No. 4 (July/August 2002) 293-310.

3. Curtis, B., Carleton, A.: Seven + Two Software Measurement Conundrums, Proceedings of
the 2* International Metrics Symposium (1994) 96-105.

4. Park, R.: Software Size Measurement: A framework for Counting Source Statements.
Technical Report SEI-92-TR-20. Software Engineering Institute, Pittsburgh (1992) 136-137.

5. Kitchenham, B., Pfleeger, S., Fenton, N.: Towards a Framework for Software Measurement
;I:iidation. IEEE Transactions on Software Engineering, Vol. 21, No. 12 (Dec. 1995) 929-

6. Briand, L., Morasca, S., Basili, V.: Property-Based Software Engineering Measurement.
IEEE Transactions on Software Engineering, Vol. 22, No. 1 (Jan, 1996) 68-86.

Validating Metrics for OCL Expressions Expressed
within UML/OCL models

Luis Reynoso!, Marcela Genero? and Mario Piattini®

! Department of Computer Science, University of Comahue,
Buenos Aires 1400, 8300, Neuquén, Argentina.
lreynoso@uncoma.edu.ar
2 Department of Computer Science, University of Castilla-La Mancha,
Paseo de la Universidad, 4, 13071, Ciudad Real, Spain.
{Marcela.Genero,Mario.Piattini}euclm.es

Abstract. Measuring quality is the key to developing high-quality software, and it is
widely acknowledged that quality assurance of software products must be guaranteed
from the early stages of development, assessing through metrics the quality of early
models such as UML diagrams. There exists several proposals of metrics to UML
diagrams, such as class diagrams, use case diagrams, etc. But, even though the incorpo-
ration of OCL to UML diagrams improves software quality and software correctness,
there are no metrics for OCL expressions. In a previous work we have defined and
theoretically validated a set of metrics that can be applied to OCL expressions ex-
pressed within UML/OCL combined models. The main goal of this paper is to show
how we carried out a controlled experiment to ascertain the empirical validity of the
proposed metrics as early indicators of OCL expressions understandability and modifi-
ability.

1 Introduction

The huge amount of metrics existing in the literature that can be applied to Unified
Modelling Language (UML) [21] diagrams [1], [8], [15] reveals a great effort for
improving software quality from early stages of their development. Most of the exist-
ing studies are focused on the measurement of internal quality attributes of UML
diagrams, such as structural complexity, coupling, size, etc. However, none of the
proposed metrics take into account the added complexity involved when diagrams are
complemented by expressions written in the Object Constraint Language (OCL) [20],
that is a UML/OCL combined model. OCL was defined as a textual add-on to the
UML diagrams. Its main elements are OCL expressions that represent declarative and

* side effect-free textual descriptions that are associated to different features of UML

diagrams [16]. OCL expressions add precision to UML models beyond the capabili-
ties of the graphical diagrams of UML {23}, [25]. Moreover, OCL is essential in
building consistent and coherent platform-independent models (PIM) and helping to
raise the level of maturity of the software process [25].

Having in mind the importance of OCL in software development, in a previous
work we have defined and theoretically validated a set of metrics that can be applied

60

to a OCL expression within UML/OCL models. We have started our definition focus-
ing on a particular UML diagram: the class diagram, because it constitutes “the most
important diagram in the model” [25], since many other diagrams are structured and
developed around it. A new effort looking forward the improvement of class diagram
quality is our definition of OCL metrics attached to UML class diagrams we pub-
lished in [22]. In that work we have defined a set of metrics for measuring structural
properties of OCL expressions. These metrics were also theoretically validated ac-
cording to the Briand et al.’s framework [5], [6], [7]. But as many authors remarked
[2], [14], [18] the practical utility of the metrics must be demonstrated to empirical
validation in order the metrics can be accepted in the software engineering field. For
that reason, the main goal of this paper is to present a controlled experiment we car-
ried out in order to ascertain if our metrics could be used as indicators of OCL ex-
pressions understandability and modifiability. :

In relation to our aim we start in the following section describing how we have de-
fined a set of metrics for OCL expressions whilst all the proper information related to
the controlled experiment is presented in section 3. Finally, in section 4 some conclu-
sions are drawn and future work is outlined.

2. A proposal of metrics for OCL expressions

Briand and Wiist [8] have been the mentors in providing the theoretical basis for
developing quantitative models relating to structural properties and external quality
attributes [17]. Their theory hypothesizes that the structural properties of a software
component have an impact on its cognitive complexity {13]. In this work we assume
that a similar representation holds for OCL expressions. We implement the relation-
ship between the structural properties on one hand, and external quality attributes on
the other hand [17]. We hypothesize that the structural properties of an OCL expres-
sion have an impact on its cognitive complexity’. High cognitive complexity leads to

a reduction in the understandability of an artifact —in this case, the OCL expressions-,

and provokes undesirable external qualities, such as decreased maintainability.

For defining the metrics in a disciplined manner we have applied a method for
metric definition based on [9] and [12], which' will allow us to obtain valid and reli-
able metrics.

Moreover, for defining the metrics we have considered the two following issues:

- Structura] properties of OCL expressions: In order to analyze the structural proper-
ties of an OCL expression we have considered the OCL concepts described in the
OCL metamodel [20].

- Cognitive aspects. Ideally, we should also be able to explain the influence of the
values of the metrics from a cognitive point of view. Cant et al. [10]; [11] argue in
their Cognitive Complexity Model (CCM model) that measuring complexity should
affect attributes of human comprehension since complexity is relative to human
cognitive characteristics. Therefore we have considered the cognitive techniques

! By cognitive complexity we mean the mental burden of the persons who have to deal with the
artifact (e.g. modelers, designers, maintainers) [13].

ing different structural properties. For that reason we have defined a set of
each of which captures different structural properties of an OCL expressio
to the cognitive techniques of the CCM model, such as the “tracing” and “clius >
techniques. These techniques are concurrently and synergistically applied in problem
solving [19]. “Chunking” involves the recognition of a set of declaration and €Xf
ing information from them, which is remembered as a chunk, whereas “tracin
volves scanning, either forward or backwards, in order to identify relevant “ch
The whole set of metrics defined for each group can be found in [22]. "
As chunking and tracing techniques are concurrently applied, we cannot plan’
periment considering only a set of OCL metrics related to only one cognit
nique. We have selected, for the empirical validation, some metrics that are rel
those OCL concepts, which are more commonly used in simple OCL expression:
- Metrics related to “chunking”; NKW (Number of OCL Keywords), NES (Ni
ber of Explicit Self), NBO “Chunking” (Number of Boolean Operators);
(Number of Comparison Operators), NEI (Number of Explicit Iterator variab
NAS (Number of Attributes belonging to the classifier that Self represents).
- Metrics related to “tracing”: NNR (Number of Navigated Relationships);:NAN:
(Number of Attributes referred through Navigations), NNC (Number of* NaVi=:
gated Classes), WNN (Weighted Number of Navigations), DN (Depth of Nav :
tions), WNCO (Weighted Number of Collection Operations).

3. A controlled experiment

In this section we describe a controlled experiment we have carried out to empirié;illy
validate the proposed measures as early OCL expressions understandability indica-

"tors. To describe the experiment we use (with only minor changes) the format pro-

posed by Wohlin et al. [26].

3.1 Definition

Using the GQM [2], [24] template for goal definition, the goal pursued in this ex-
periment is: Analyze <<Metrics for OCL expressions within UML/OCL models>>;
for the purpose of <<Evaluating>>; with respect to <<The capability to be used as
understandability and modifiability indicators of OCL expressions >>; from the point
of view of <<QO Software modellers>>: in the context of <<Undergraduate Com-
puter Science enrolled in a course related to OCL, of the Department of Computer
Science at the National University of Comahue>>.

62

3.2 Planning

After the definition of the experiment, the planning phase took place. It prepares for
how the experiment is conducted, including the following six steps:
Context selection. The context of the experiment is a group of undergraduate
students who had agreed to take part in a course on OCL, and hence the experiment is
run off-line (not in an industrial software development environment). The: subjects
were twenty-nine students enrolled in the third and fourth-year of Computer Science
at the Department of Computer Science at the National University of Comahue in
Argentina.
The experiment is specific since it is focused on.twelve metrics for OCL expressxon
within UML/OCL combined models. The experiment addresses a real problem, i.e.,
which indicators can be used for the understandability and modifiability of OCL
expressions? With this end in view it investigates the relationship between metrics
and the time spent in understandability and modifiability tasks. v
Selection of subjects. According to [26] we have applied a probability sampling
technique: a convenience sampling. The nearest persons we could choose were
undergraduate students who had, in average, one year of experience in the
development of OO systems using UML, and by the time the experiment took place
they were taking a course of OCL.
Variable selection. The independent variable is the structural complexity of OCL
expressions. The dependent variables are the understandability and modifiability of
OCL expressions.
Instrumentation. The objects were four UML/OCL combined models, having each
of them one OCL expressions. The independent variable was measured through the
selected metrics. The dependent variables were measured according to:
- The time each subject carried out the understandability and modlﬁablhty tasks.
- The subjects ratings of understandability or modifiability.
- We have also used as indicators of understandability and modifiability the follow-
ing measures proposed in [4]
- Understandability Correctness = Number of correct answers/ Number of an-
swers., which represents the correctness of the understanding questionnaire, i.e.
the number of questions correctly answered. The number of correct answers is a
reasonable measure of the understanding since all the tests have the same de-
sign, it has the same quantity of questions.
- Modifiability correctness = Number of correct modifications/ Number of Modi-
fications applied. .
- Modifiability completeness = Number of correct Modifications /Number of
modifications required
Hypothesis formulation. We wish to test the following hypotheses (two hypotheses
for each measure for the dependent variables)
1) Hy,;: There is no significant correlation between the OCL metrics and the under-
standability and modifiability time. // H; ;: =~ Hy,;
2) Hy»: There is no significant correlation between the OCL metrics and understand-
ability/modifiability correctness/completeness. // H, ,: — Hy 5

63

3) Hyy: There is no significant correlation between the OCL metrics and the subjec-
tive understandability/modifiability. // Hy 3: — Hg3

4) Hoq: There is no significant correlation between the understandabil-
ity/modifiability time and the subjective understandability/modifiability. // Hy4: —
Hog4

Expériment design. We selected a within-subject and balanced design experiment,

ie., all the tests (experimental tasks) had to be solved by each of the subjects. The

tests were put in a different order for each subject for alleviating learning effects.

3.3 Operation

The operational phase is divided into three steps: preparation, execution and data
validation.

Preparation. We have selected as experimental subjects a group of students who
have taken a semester class on System Analysis. In this course the student had learnt
the use of UML. The students were motivated to take a course on OCL , they were
informed that OCL is an expressive language used for formally expressing additional
and necessary information about a model specified in UML. Later, the students were
asked to participate in the course, 29 subjects agreed to take part, so they are
volunteers. They were motivated to take a training session on OCL language and to
do some practical exercises as part of the session, but it was not mentioned that these
exercises are constituent of an experiment. The subjects were not aware of what
aspects we intended to study. Neither were they aware of the actual hypothesis stated.

Table 1. Metric values for each UML/OCL model

1

Test | NNR { NAN | WNN | WNCO | NAS | NEI [NCO | NBO | NES | NKW | NNC IDN{.
2
5
4
2

O [F G S
o |~ o |e

2
4
3
2

F- LV I (V.
a|un & |+
W jw fe |

2
4
2
4

W N | (W

1
0
0
2

N = TN f
w W s -

2
3
4

-~

We prepared the material handed to the subjects, consisting of four UML/OCL mod-
els. These diagrams were related to different universes of discourse that were easy
enough to be understood by each of the subjects, and some of them were obtained
from the existent OCL literature [20]. The structural complexity of each model is
different as it is revealed from the metrics values of each UCL/OCL model (se¢ Table
1). Before running the experiment we performed a pilot experiment. We asked a re-

" searcher who has experience on OCL to carry out the experimental tasks. All the

modifications she suggested were considered.

Each UML/OCL model had 4 test enclosed that included two types of tasks:

Understandability tasks:

- The subjects had to answer four questions about the meaning of the OCL expres-
sion within the UML/OCL model. These questions had the purpose to test if the
subjects had understood each expression. The first question was related to naviga-

64

tions concepts, meanwhile the last three questions were a multiple choice about the

meaning of the OCL expressions. Each question has three options, being only one

option the correct answer. They also had to note how long it took to answer the

questions. The “understandability time”, expressed in minutes and seconds, was ob-

tained from that.

- The subjects had to rate the understandability tasks using a scale consisting of five
linguistic labels (Very difficult to understand, A bit difficult to understand, Neither
difficult nor easy to understand, A bit easy to understand and Very easy to under-
stand). We called this measure “subjective understandability”.

Modifiability tasks:

- Each UML/OCL model used by the subjects in the understandability task had also
enclosed three new requirements for the OCL expression. Each subject had to mod-
ify the OCL expression according to the new requirements. The modifications to
each test were similar, including defining new navigations, attribufes referred
through navigations, etc. :

- They also had to write down the time when they started to do the modifications and
when they finished them. This time was called “modifiability time”.

- We have also used a scale consisting of five linguistic labels similar to the one used
for understandability, so that the subject could rate the modifiability tasks. We
called this measure “subjective modifiability”. ' :

Moreover, we prepared a debriefing questionnaire. This questionnaire included per-

sona] details and experience.

Execution. In the lecture before the experiment was carried out, the subjects were

asked to bring a watch in the next lecture. Those subjects who did not bring a watch

were able to use a clock rendered with a multimedia projector. The subjects were
given all the materials described in the previous paragraph. We explained to them
how to carry out the test, asking for carrying out the test alone, and using unlimited
time to solve it. There was an instructor who supervised the experiment and any
doubt could be asked to him. We collected all the data, including subjects’ rating
obtained from the responses of the experiment.

Data validation. Analyzing the debriefing questionnaire, we can corroborate that the
subjects had approximately the same degree of experience in modelling with UML,
the profile of the subject is the following: their average age is 24 years old, they have
an average of 4 years programming experience, and one year in modelling UML class
diagrams. Taking into account their profile, we consider their subjective evaluation
reliable. :

Most of the answers for the modifiability part of the four tests were not correctly
answered, only the understandability part of the four tests had an optimal rate of an-
swers. We think that the reason is that the experiment was carried out after two lec-
tures of 2 hours each, and this period of time was enough for the students to under-
stand OCL expressions but they did not have enough practice in OCL expressions
modification. We think we exposed the students prematurely to do OCL expression
modification. For that reason we consider in this paper only the understandability part
of the experiment. Regarding this part, three tests were studied as outliers and 12 tests

were separated because they have a correctness below 75%. Finally, we had 101 data
sets to be analyzed.

65
3.4 Analysis and Interpretation

We had analysed the experiment data in order to test the hypotheses formulated in
section 3.2. First we had to check the normality of the data obtained. If the data was
normal, the best option in our case was to use parametric tests because they are more
efficient than non-parametric tests. Then, we applied the Kolmogorov-Smimnov test to
ascertain if the distribution of the data collected was normal. As the data was non-
normal we decided to use a non-parametric test like Spearman’s correlation coeffi-
cient, with a level of significance o = 0.05, which means the level of conﬁdeqce is
95% (i.e. the probability that we reject Hy when Hy is false is of at least 95%, which is
statistically acceptable). Each of the metrics was correlated separately to the mean of
the subjects’ understandability time (see Table 2). For a sample size of 1.0'1 and o0 =
0.05, the Spearman cut-off for accepting Hy is 0.1956. Hence, after analyzing table 2,
we can conclude that:
- There is a significant correlation between WNN, WNCO, NEI, NCO, NBO,
NES, NKW and DN metrics and subjects’ understandability time.
- There is a significant correlation between NEI, NCO and NES metrics and cor-
rectness and completeness.
- There is a significant correlation between the NEI, NCO and DN metrics and the
subjective understandability.

Table 2. Spearman’s correlation between metrics and understandability time

NNR | NAN [WNN | WNCO | NAS | NEI | NCO [NBO | NES { NKW [NNC | DN

Und. | Scc |.162 |.020 |.207 [.223 S172 | 348 |-348 |.207 |.282 |.207 |.020 |324
Time |5 value |.105 | 840 |.038 |.025 086 1.000 |.000 |.038 |.004 |.038 |.840 |.001
Corr. | Scc |-073 [016 |-.180 |-.151 173 [-229 (229 |[-.180 |-224 [-180 {.016 |[-147
p-value | 465 | .877 | 071 | .131 084 |.021 |.021 |.071 |.025 | .07t | 877 |.43

Sub. | Scc |.093 |-026 |.084 | .108 -076 | 308 | -308 |.084 |.166 |.084 |-026 |326
Und. [p-vaie {357 [.794 | 403 [283 450 [.002 {002 |.403 [097 [403 |79 |00

Table 3. Spearman’s correlation between metrics and subjective understandability

. Correctness Subjective Und.
Understandability Time | Scc -.102 349
p-value 310 001

Moreover, after analyzing Table 3 we can conclude that there is a signiﬁ.cant corre-
lation between the understandability time and the subjective understandabiht_'y. o

Nevertheless, these encouraging findings must be considered as preliminaries.
More experimentation would be necessary in order to obtain more conclusive results.

3.5 Validity evaluation

Next we will discuss the empirical study’s various threats to validity and the way we
attempted to alleviate them: o

Threats to conclusion validity. The only issue that could affect the statistical
validity of this study is the size of the sample data which is perhaps not enough for

66

non-parametric statistic tests. We are aware of this, so we will consider the results of
the experiment only as preliminary findings.
Threats to construct validity. We proposed an objective measure for the dependent
variable, the understandability time, i.e., the time each subject spent answering the
questions related to each UML/OCL model, that it is considered the time they need to
understand it. ' We also proposed subjective metrics for them (using linguistic
variables), based on the judgment of the subjects. As the subjects involved in this
experiment have medium experience in OO system design using UML we think their
ratings could be considered significant. The construct validity of the metrics used for
the independent variables is guaranteed by Briand et al.’s framework [5], [6], [7] used
to validate them.

Threats to Internal Validity. The analysis performed here is correlational in nature.

We have demonstrated that several of the metrics investigated had a statistically and

practically significant relationship with understandability time, understandability

correctness and subjective understandability. Such statistical relationships do not
demonstrate per se a causal relationship. They only provide empirical evidence of it.

We tried to alleviate some threats: differences among subjects, Knowledge of the

universe of discourse among UML/OCL combined models, accuracy of subjects

responses, learning effects, fatigue effects, subject motivation, plagiarism, etc.

Threats to external validity. The greater the external validity, the more the results of

an empirical study can be generalized to actual software engineering practice. Two

threats of validity have been identified which limit the possibility of applying any
such generalization:

- Materials and tasks used. In the experiment we have used UML/OCL models,
which can be representative of real cases. Related to the tasks, the judgment of the
subjects is to some extent subjective, and does not represent a real task.

- Subjects. To solve the difficulty of obtaining professional subjects, we worked with
students from software engineering courses. We are aware that more experiments
with practitioners and professionals must be carried out in order to be able to gener-

.alize these results. However, in this case, the tasks to be performed do not require

high levels of industrial experience, so, experiments with students could be appro-
priate [3]. '

4. Conclusions and future work

The quality of OO software systems is highly dependent on decisions made early
in its development, so many measurement researches have been developed focusing
on the quality of artifacts produced at the initial stages of the software systems life-
cycle. Important efforts were carried out for measuring UML diagrams. But many
design decisions, constraints and essential aspects of software systems cannot be
expressed in a UML diagram using only diagrammatic notations. This implies that the
metrics defined until now will not be able to capture those design decisions that can-
not be expressed using graphical notations. The quality of UML/OCL model should
be also considered. A first work in this direction was the definition and theoretical
validation of a set of metrics for an OCL expression within UML/OCL diagrams [22].

67

Although OCL is considered [20] a formal language easy to read and write, the
misuse of the language can lead to complicated written OCL expressions. Warmer
and Kleppe [25] recognize that the way OCL expressions are defined has a large
impact on readability, maintainability and the complexity of the associated diagrams.
Since empirical validation of metrics is crucial in defining reliable metrics we have
presented in this paper a controlled experiment. ‘

The experiment reveals that there is a strong correlation between the subjective
understandability rating and the understandability time. The findings we have ob-

"tained are: (1) only the set of metrics composed by WNN (Weighted Number of

Navigations), WNCO (Weighted Number of Collection Operations), NEI (Number of
Explicit Iterator variables), NCO (Number of Comparison Operators), NBO (Number
of Boolean Operators), NES (Number of Explicit Self), NKW (Number of OCL Key-
words) and DN (Depth of Navigations) is related with the understandability time.)
A subset of this set of metrics, that is composed of NEI; NCO, NES and DN has an
impact on the subjective cognitive understandability of subjects, and, although the
rating is subjective we have also corroborated that almost the same subset of metrics
(with exception of NES although it has a low p-value) is also correlated to the com-

_ pleteness of the experimental tests, giving the second finding more significance.

These findings should be considered as preliminaries. We are aware that further
validation is necessary in order to assess if the presented metrics could be used as
early indicators of OCL expressions understandability.

Acknowledgements

This work has been partially funded by the MESSENGER project (PCC-03-003-1)
financed by “Consejeria de Ciencia y Tecnologia de la Junta de Comunidades de
Castilla - La Mancha”, the network VII-J-RITOS2 financed by CYTED, and the
UNComa 04/E048 Research Group financed by “Subsecretaria de Investigacién™ of
Comahue University. Luis Reynoso enjoys a postgraduate grant from the agreement
between the Goverment of Neuquén (Argentina) and YPF-Repsol.

References

1. J. Bansiya and C. G. Davis. A Hierarchical Model for Object-Oriented Design Quality As-
sessment, IEEE Trans. on Soft. Eng., Vol. 28 N° 1, 2002, 4-17. :

2. V. R. Basili, and H. D. Rombach. The TAME project: towards improvement-oriented soft-

. ware environments. IEEE Trans. on Soft. Eng.. Vol. 14 N° 6, 1998, 758-773.

3. V. R. Basili, F. Shull and F. Lanubile. Building knowledge through families of experiments.
IEEE Trans. on Soft, Eng., Vol. 25 N° 4, 1999, 456-473.

4.L.C. Briand L., C. Bunse and J. W. Daly. A Controlled Experiment for evaluating Quality
Guidelines on the Maintainability of Object-Oriented Designs. IEEE Trans. on Soft. Eng.,
Vol. 27 N° 6, 2001, 513-530.

5. L. C. Briand, S. Morasca, and V. R. Basili. Defining and Validating Measures for Object-
based High Level Design. IEEE Trans. on Soft. Eng. Vol. 25 N° 5, 1999, 722-743.

68

6. C. Briand, S. Morasca, and V. R. Basili. Property-based Soft. Eng. Measurement. IEEE
Trans. on Soft. Eng., Vol. 22 N° 1, January 1996, 68-86.

7. L. C. Briand, S. Morasca and V. R. Basili. Response to: Comments on ‘Property-Based Soft.
Eng. Measurement’: Refining the Additivity Properties. IEEE Trans. on Soft. Eng., Vol. 23
N° 3, March 1997, 196-197.

8. L. C. Briand. and J. Wiist. Modeling Development Effort in Object-Oriented Systems Using
Design Properties. IEEE Trans. on Soft. Eng., Vol. 27 N° 11, November 2001, 963-986.

9. C. Calero, M. Piattini, and M. Genero. Method for Obtaining Correct Metrics. Proc. of the
3rd Int. Conf. on Enterprise and Information Systems (ICEIS'2001), 2001, 779-784.

10. S. N. Cant, B. Henderson-Sellers, and D. R. Jeffery. Application of Cognitive Complexity
Metrics to Object-Oriented Programs. Journal of Object-Oriented Programming, Vol. 7 N°
4, 1994, 52-63. : ’

11. S. N. Cant, D. R. Jeffery and B. Henderson-Seller. A Conceptual Model of Cognitive
Complexity of Elements of the Programming Process. Information and Software Technol-
ogy, Vol. 37 N° 7, 1995, 351-362.

12. G. Cantone, and P. Donzelli. Production and maintenance of software measurement mod-
els. Journal of Soft. Eng. and Knowledge Engineering, Vol. 5, 2000, 605-626.

13. K. El-Eman. Object-Oriented Metrics: A Review of Theory and Practice. National Re-
search Council Canada. Institute for Information Technology. March 2001.

14. N. E. Fenton, and S. L. Pfleeger. Sofiware Metrics: A Rigorous and Practical Approach,
Chapman & Hall, London, 2nd Edition. International Thomson Publishing Inc. 1997.

15. M. Genero. Defining and Validating Metrics for Conceptual Models, PhD Thesis, Univer-
sity of Castilla-La Mancha. 2002.

16. R. Hennicker, H. Hussmann, and M. Bidoit. On the Precise Meaning of OCL Constraints.
Tony Clark and Jos Warmer (eds), Advances in Object Modelling with the OCL, Springer,
Berlin, LNCS 2263, 2001, 69-84.

17. ISOAEC 9126. Software Product Evaluation-Quality Characteristics and Guidelines for
their Use. Geneva. : ‘

18. B. Kitchenham, S. Pflegger, and N. Fenton. Towards a Framework for Software Measure-
ment Validation. IEEE Transactions of Soft. Eng., Vol. 21 N° 12, 1995, 929-944.

19. T. Klemola. A Cognitive Model for Complexity Metrics. 4th Int. ECOOP Workshop on
Quantitative Approaches in OO Soft. Eng.. France, 2000.

20. Object Management Group. UML 2.0 OCL 2nd revised submission. OMG Document
ad/2003-01-07. [On-line] Available: http://www.omg.org/cgi-bin/doc?ad/2003-01-07.

21. Object Management Group. UML Specification Version 1.5, OMG Document formal/03-
03-01. [On-line] Available: http://www.omg.org/cgi-bin/doc?formal/03-03-01.

22. L. Reynoso, M. Genero and M. Piattini. Measuring OCL Expressions: An approach based
on Cognitive Techniques. Piattini M., Genero M. and Calero C. (eds), Imperial College
Press, UK (to appear), 2004.

23. M. Richters. A Precise Approach to Validating UML Models and OCL Constraints. Biss
Monographs Vol. 14. Gogolla, M., Kreowski, H.J., Krieg-Briickner, B., Peleska, J., Schlin-
gloff, B.H. (eds.). Logos Verlag. Berlin, 2002.

24, R. Van Solingen, and E. Berghout. The Goal/Question/Metric Method: A practical guide
for quality improvement of software development. McGraw-Hill, January 1999.

25. J. Warmer and A. Kleppe. The Object Constraint Language. Second Edition. Getting Your
Models Ready for MDA. Object Technology Series. Addison-Wesley, Massachusetts, Au-
gust 2003.

26. C. Wohlin, P. Runeson, M. Host, M. Ohison, B. Regnell, and A. Wesslén. Experimentation
in Soft. Eng.: An Introduction, Kluwer Academic Publishers, March 2000.

Analysis of Software Measures Using Metrology
Concepts - ISO 19761 Case Study :

Alain Abran and Asma Sellami

Ecole de technologie supérieure — ETS
Université du Québec, Montréal, Québec, Canada
aabran@ele.etsmtl.ca
asma.sellami.l @ens.etsmtl.ca

Abstract. To help identify the strengths of proposed software measurement
methods, this paper proposes an analytical approach based on metrology con-
cepts documented in the ISO International Vocabulary of Basic and General
Terms in Metrology. This approach is illustrated with a case study using one
specific functional size measurement method recognized as an ISO standard:
COSMIC-FFP (ISO 19761). The case study documents the metrology concepts
addressed in this ISO standard, either in the design of this measurement method
or in some of its practical uses. It illustrates, for instance, that the design of
COSMIC-FFP encompasses a large number of related metrology concepts. It is
suggested that such a review using metrology criteria be used to analyze other
software functional size measurement methods, as well as other software meas-
ures suggested to industry.

1 Introduction

Hundreds of software measures have been defined in the software engineering

‘domain and proposed to industry. However, only the following have successfully

undergone the rigor of international standardization: the quality measures in the ISO
9126 series [8], and three functional size measurement methods, among them ISO
19761 — COSMIC-FFP [10]. Software functional size measures are used in particular
to compare the productivity of software projects (internally or across organizations),
for project effort estimation and for the control of functional changes over a project
life cycle. The use of such standardized measures is important to ensure comparabil-
ity of measurement results between projects and between organizations; indeed, it
would not be relevant to compare numbers based on distinct (and not standardized)

. measurement methods. Without the use of standards, ideally those officially recog-

nized internationally, software agreements between customers and suppliers are prone
to a variety of interpretations and, often, to conflicts.

A large number of software measures are defined based on the intuition of their au-
thors. When subjected to the scrutiny of researchers, they are often investigated only
from the perspective referred to as “measurement theory” (i.e. their mathematical
properties) [5, 6, 11]. However, in other science and engineering disciplines, it is the
domain of knowledge referred to as “metrology” that is the foundation for the devel-

