Ia The United Nations
University

UNU/IST

International Institute for
Software Technology

A Formal Model of Object-Oriented
Design and GoF Design Patterns

Andres Flores, Luis Reynoso and Richard Moore

July 2000

UNU/IIST Report No. 200

UNU/IIST and UNU/IIST Reports

UNU/IIST (United Nations University International Institute for Software Technology) is a Research and
Training Centre of the United Nations University (UNU). It is based in Macau, and was founded in
1991. It started operations in July 1992. UNU/IIST is jointly funded by the Governor of Macau and
the governments of the People’s Republic of China and Portugal through a contribution to the UNU
Endownment Fund. As well as providing two-thirds of the endownment fund, the Macau authorities also
supply UNU/IIST with its office premises and furniture and subsidise fellow accommodation.

The mission of UNU/IIST is to assist developing countries in the application and development of software
technology.

UNU/IIST contributes through its programmatic activities:

1. Advanced development projects, in which software techniques supported by tools are applied,
2. Research projects, in which new techniques for software development are investigated,

3. Curriculum development projects, in which courses of software technology for universities in devel-
oping countries are developed,

4. University development projects, which complement the curriculum development projects by aiming
to strengthen all aspects of computer science teaching in universities in developing countries,

5. Courses, which typically teach advanced software development techniques,
6. Events, in which conferences and workshops are organised or supported by UNU/IIST, and

7. Dissemination, in which UNU/IIST regularly distributes to developing countries information on
international progress of software technology.

Fellows, who are young scientists and engineers from developing countries, are invited to actively partic-
ipate in all these projects. By doing the projects they are trained.

At present, the technical focus of UNU/IIST is on formal methods for software development. UNU/IIST
is an internationally recognised center in the area of formal methods. However, no software technique is
universally applicable. We are prepared to choose complementary techniques for our projects, if necessary.

UNU/IIST produces a report series. Reports are either Research E, Technical , Compendia, or

Administrative . They are records of UNU/IIST activities and research and development achievements.
Many of the reports are also published in conference proceedings and journals.

Please write to UNU/IIST at P.O. Box 3058, Macau or visit UNU/IIST home page: http://www iist.unu.edu,
if you would like to know more about UNU/IIST and its report series.

Zhou Chaochen, Director — 01.8.1997 — 31.7.2003

Ia The United Nations
University

UNU/IST

International Institute for
Software Technology

P.O. Box 3058
Macau

A Formal Model of Object-Oriented
Design and GoF Design Patterns

Andres Flores, Luis Reynoso and Richard Moore

Abstract

Particularly in object-oriented design methods, design patterns are becoming increasingly pop-
ular as a way of identifying and abstracting the key aspects of commonly occurring design
structures. The abstractness of the patterns means that they can be applied in many different
domains, which makes them a valuable basis for reusable object-oriented design and hence for
helping designers achieve more effective results. However, the standard literature on patterns
invariably describes them informally, generally using natural language together with some sort
of graphical notation, which makes it very difficult to give any meaningful certification that the
patterns have been applied consistently and correctly in a design. In this paper, we describe a
formal model of object-oriented design and design patterns which can be used to demonstrate
that a particular design conforms to a given pattern. Specifications of actual design patterns
based on this model and examples of using these to verify that a design matches a pattern can
be found in related reports [18, 11, 4].

Andres Flores is a Fellow of UNU/IIST (November 1999 to August 2000), on leave from Com-
ahue University, Neuquén, Argentina, where he is an Assistant Teacher. His research interests
are focused on the software engineering disciplines, mainly on those related with software anal-
ysis and design. He is currently working on the combination of formal and informal methods
and its application in a real domain.

Luis Reynoso is a Fellow of UNU/IIST (November 1999 to May 2000), on leave from Com-
ahue University, Neuquén, Argentina, where he is teaching assistant. His research interests are
focused on the combination of formal and informal methods and software engineering. He also
works in the Cadastral Provincial Direction of the Public Administration of the government of
the province of Neuquén.

Richard Moore is a Research Fellow on the staff of UNU/IIST, a position he took up on October
1st 1995. He has an M.A. in mathematics from the University of Cambridge and a Ph.D. in
physics from the University of Manchester. He has been engaged in computing science research
in the field of formal methods since 1985, a large part of which was carried out in the formal
methods group at Manchester University. He has written several papers on formal methods and
is co-author of two books on formal methods — mural: a Formal Development Support System:;
and Proof in VDM: A Practitioner’s Guide. He has also worked for the Defence Research Agency
in Malvern, UK, on various formal methods projects, both as a consultant and as a full-time
member of staff.

Copyright © 2002 by UNU/IIST, Andres Flores, Luis Reynoso and Richard Moore

Contents

Contents

1

2

Introduction
Object-Oriented Design and GoF Design Patterns

A Formal Model of Object-Oriented Design

3.1 Some general definitions (G)
3.2 Methods (M)
33 Classes (C)
3.4 Relations(R)
3.5 Design Structure (DS)

Linking Designs to Patterns

Specifying Properties of Patterns

5.1 Specifying Properties of Classes in Patterns
5.2 Specifying Properties of State Variables in Patterns
5.3 Specifying Properties of Relations in Patterns . . .
5.4 Specifying Properties of Methods in Patterns . . .

Conclusions

© ot

................. 20
................. 22
................. 31

50

59
................. 60
................. 65
................. 66
................. 74

99

Report No. 200, July 2000

UNU/IIST, P.O. Box 3058, Macau

Introduction 1

1 Introduction

The term pattern was originally used by architect Christopher Alexander [1] to describe and
capture recurring themes that he found in architecture, though the same concept is common
to many different fields: music, literature, psychology, archaeology, architecture, and so on [8].
More recently, the term was adopted by software engineers to represent key aspects of commonly
occurring structures in software systems.

One area of software engineering in which the use of patterns is popular is software design.
Software design patterns are generic and abstract and embody “best practice” solutions to design
problems which recur in a range of different contexts [2], although the solutions represented by
the patterns are not necessarily the simplest or most efficient solutions for any given problem [14].
In this way, design patterns offer designers a way of reusing proven solutions to particular aspects
of design rather than having to start each new design from scratch. Patterns are also useful
because they provide designers with an effective “shorthand” for communicating with each
other about complex concepts [5]: the name of the pattern serves as a precise and concise way
of referring to a design technique which is well-documented and which is known to work well.

One specific and popular set of software design patterns, which are independent of any specific
application domain, are the so-called “GoF”! patterns which are described in the catalogue of
Gamma et al. [12]. The GoF catalogue is thus a description of the know-how of expert designers
in problems appearing in various different domains.

The patterns in the GoF catalogue are described using a consistent format which has in fact
effectively been adopted as the standard way of presenting software design patterns. This uses a
graphical notation based on an extension of OMT (Object Modelling Technique [19]) to represent
the main constituents of the pattern — classes, methods, and relationships between classes — and
supplements this with natural language descriptions of the intent and motivation of the pattern
and the roles and responsibilities of its constituents. In addition, examples of the use of the
patterns, in the form of both designs and sample code, are included.

This form of presentation gives a very good intuitive picture of the patterns, but it is not
sufficiently precise to allow a designer to demonstrate conclusively that a particular problem
matches a particular pattern or that a proposed solution is consistent with a particular pattern.
Moreover, it also makes it difficult to be certain that the patterns themselves are meaningful and
contain no inconsistencies. Indeed, in some cases the descriptions of the patterns are intentionally
left loose and incomplete to ensure that they are applicable in as wide a range of applications
as possible, which can make it difficult for designers to be sure that they have interpreted and
understood the patterns correctly.

A more precise notation can help to alleviate these problems and can also improve understanding
of the patterns in general. One approach to this [9] represents patterns as formulae in LePUS,
a language defined as a fragment of higher order monadic logic [10]. A second [16] formalises

!Gang of Four.

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Object-Oriented Design and GoF Design Patterns 2

the temporal behaviour of patterns using the DisCo specification method, which is based on the
Temporal Logic of Actions [15].

Our approach is based on that of [7, 6], which uses the RAISE Specification Language (RSL; [17])
to formally specify properties of the patterns, in particular the responsibilities and collaborations
of the pattern participants. However, we significantly extend the scope of the model used
therein. First, we include in our model specifications of the behavioural properties of the design,
specifically the actions that are to be performed by the methods, which could not be specified
in the model used in [7, 6]. Second, we generalise the model so that it can describe an arbitrary
object-oriented design and not just the patterns. And third, we formally specify how to match
the design against a pattern. This allows us to formally specify the patterns in such a way that
their consistency and completeness can be checked, and we are also able to formally verify that
a given subset of a design corresponds to a given pattern.

There is also an important difference between the two models in the way the dynamic aspects
of the patterns are specified. In the model of [7, 6] the structural aspects are specified statically
while the collaborations are specified in terms of sequences of interactions. In our model, both the
structural properties and the collaborations are represented statically, the collaborations being
modelled partly by the relations between the classes and partly by the requests the operations
make to other classes. This latter is incorporated by specifically modelling the bodies of the
methods.

We begin by describing the essential elements that constitute a general object-oriented design
in Section 2, then we go on to describe our formal model of this, which we have also written in
RSL, in Section 3. Section 4 then explains how a design can be formally linked to a pattern,
and Section 5 identifies and specifies a number of generic functions which represent properties
of specific patterns. We conclude with a summary of our work and an indication of how it has
already been applied and how we plan to extend it in the future.

2 Object-Oriented Design and GoF Design Patterns

There are many different techniques and notations for describing object-oriented designs, though
they generally share the same basic elements and ideas. However, since we are primarily in-
terested in using our formal model to specify properties of object-oriented design patterns, in
particular the GoF patterns [12], we base it on the extended OMT [19] notation which is used
in [12] to describe the structure of GoF patterns and which has to a large extent been used as
a standard notation for describing patterns. An example of this notation is shown in Figure 1,
which represents the structure of the Command pattern.

A design consists essentially of a collection of classes and a collection of relations linking the
classes, where the classes represent the kinds of objects that make up the system and the
relationships represent connections or communications between those objects. In the extended
OMT notation, each class is depicted as a rectangle containing the name of the class in bold

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Object-Oriented Design and GoF Design Patterns 3

I nvoker Command
Execute()
Client
|
! Receiver ConcreteCommand
! - receiver
! Action() Execute() O~~~ receiver -> Action() H
I
o | sae

Figure 1: Command Pattern Structure

face type at the top. Below this, the signatures (i.e. names and appropriate parameters) of the
operations or methods which objects of the class can perform appear in normal type, and finally
the state variables or instance variables which represent the internal data stored by instances of
the class appear. Every class in a design has a unique name.

Classes and methods are designated as abstract or concrete by writing their name in italic or
upright script respectively in the OMT diagram. No instances (objects) may be created from an
abstract class, and an abstract method cannot be executed (often because the method is only
completely defined in subclasses).

Concrete methods, which can be executed, may additionally have annotations in the OMT dia-
gram which indicate what actions the method should perform. These annotations appear within
rectangles with a “folded” corner which are attached to a method within the class description
rectangle by a dashed line ending in a small circle.

Thus, for example, the structure in Figure 1 indicates that the class ConcreteCommand in the
Command pattern is a concrete class which contains a concrete method called Execute and a
state variable called state, while the class Command is an abstract class in which the method
called Execute is abstract. In addition, the annotation attached to the Execute method in the
ConcreteCommand class indicates that the action of this method is to invoke the Action method
on the variable called receiver.

Relations specify connections or communications between classes and are represented as lines
linking classes in the OMT diagram. Four different types of relations are used — inheritance,
instantiation, aggregation and association — and these are distinguished in the diagram using
different types of lines.

Inheritance relations are drawn as solid lines with a triangle in the middle, the point and base
of the triangle indicating respectively the superclass and subclasses in the relation. Thus, in the
Command pattern the Command class is a superclass of the ConcreteCommand class.

Instantiation relations, which indicate that one class creates objects belonging to another class,
are shown as dashed lines with an arrowhead on one end, the arrowhead pointing to the class

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 4

being instantiated. The instantiation relation between the Client class and the ConcreteCommand
class in the Command pattern thus indicates that the Client class creates ConcreteCommand
objects.

Aggregation relations, which signify that one object is a constituent part or a sub-object of
another, are drawn as solid lines with a diamond on one end and an arrowhead on the other,
the arrowhead pointing towards the class of the sub-object. The relation between the Invoker
class and the Command class in Figure 1 is thus an aggregation relation which indicates that
the Invoker class consists of a sub-object of the Command class.

Association relations are also shown as solid lines with an arrowhead on one end but they are
unmarked at the other end. An association relation indicates that one class communicates
with another, the arrowhead indicating the direction of the communication. The Command
pattern has association relations between the Client and the Receiver classes and between the
ConcreteCommand and the Receiver classes.

Association and aggregation relations also have an associated arity and may additionally have
an associated name. The arity indicates the number of objects participating in the relation, and
may be either one or many according to whether each object of one class communicates with or
is composed of a single object or a collection of objects of the other class. Relations of arity
many are indicated by adding a solid black circle to the front of the arrowhead, as shown in the
aggregation relation between the MacroCommand and the Command classes in the extension to
the Command pattern depicted in Figure 2. Names of relations, which generally correspond to
state variables (although the state variables are not explicitly shown as such), are written above
the line representing the relation as in the name commands of the same aggregation relation.

Command

Execute() r

MacroCommand

[& N foral cin commands
Execute() c.Execute();

Figure 2: The Structure of the Macro Command

commands

3 A Formal Model of Object-Oriented Design

The formal specification of the model is quite long so we divide the presentation into five sections.
Each section deals with a particular element of the model and introduces the RSL type definitions
which are used to describe that particular element as well as functions representing the well-
formedness conditions that these types must satisfy and more general auxiliary functions which

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 5

are used in later sections. In fact each section also corresponds to an RSL module in the formal
specification, and the name of the RSL object representing that module is given in parentheses
after the title of the section. This name is used in later sections (modules) to refer to definitions
in earlier sections (modules) in the standard RAISE fashion.

3.1 Some general definitions (G)

We begin by introducing a few basic types and constants which correspond to the most funda-
mental entities in an object-oriented design and which are used throughout the other modules.
We also define some simple functions which describe their properties.

First, as explained in Section 2 above, a design essentially consists of a set of classes and a set of
relations, with each class consisting in turn of a set of methods and a set of state variables. These
four elements therefore constitute the basic building blocks of a design and they are uniquely
distinguished by their names, though the names of (association and aggregation) relations are
in fact the names of the variables with which they are associated. We therefore introduce three
sort types to represent the three basic kinds of names appearing in the design: class names,
method names, and variable names:

type
Class_Name, Method_Name, Variable_Name

Each class has an associated type, which may be abstract or concrete, and each aggregation and
association relation has an associated cardinality, which may be one or many. We model these
possibilities using the variant types ‘Class_Type’ and ‘Card’ respectively, each of which simply
consists of the appropriate two possible values.

type
Class_Type == abstract | concrete,
Card == one | many

Annotations to methods can be used to indicate the actions performed by the method, including
invocations of other methods as in the annotation to the Execute method in the ConcreteCom-
mand class in the Command pattern illustrated in Figure 1. Such invocations in general involve
a variable which represents the receiver of the invocation and which is usually also the name
of a corresponding association or aggregation relation, together with the name of the method
the receiver should execute (in the Execute method the receiver is represented by the variable
receiver, which is also the name of the association relation between the ConcreteCommand class
and the Receiver class, and Action is the method it should execute). However, in some cases a
method needs to invoke another method in the same class or in a superclass of its own class, and

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 6

in general relations between a class and itself are not shown in the extended OMT diagrams,
which means that in these cases there is no association or aggregation relation, and hence no
corresponding variable name to use in the invocation. To model these situations, we introduce
two reserved variable names ‘self’ and ‘super’, which respectively represent the receivers of in-
vocations to the same class and to a superclass of the current class (cf. the variables of the same
name in Smalltalk). The fact that ‘self’ and ‘super’ are different values is enforced by an axiom.

value
self, super : Variable_ Name

axiom
self # super

The state (instance) variables of a class can simply be described as a set of variables, except that
the set cannot include the two reserved variables ‘self’ and ‘super’. We therefore introduce a
subtype ‘Wf_Vble Name’ of ‘Variable Name’ whose defining predicate ‘not_self super’ excludes
these two values, and we use this type to define the type ‘State’ which represents the state
variables of a class.

type
Wi{_Vble_Name = {| v : Variable_Name ¢ not_self super(v) |},
State = W{_Vble_Name-set

value
not_self_super : Variable_ZName — Bool
not_self super(v) = v # self A v # super

Similarly, the parameters passed as arguments to an invocation of a method are basically a list
of variables which cannot include the variable ‘super’, though ‘self’ is allowed since an object can
legitimately pass itself as an argument to a method call to another object. The defining predicate
‘wf vble name’ of the subtype ‘Wf Variable Name’ thus only excludes the value ‘super’, and this
subtype is used to define the type ‘Actual Parameters’ which represents the parameters of an
invocation.

type
Wi_Variable_ Name = {| v : Variable_Name * wf_vble_name(v) |},
Actual_Parameters = Wf_Variable_ Name*

value
wi_vble_name : Variable_Name — Bool
wi_vble name(v) = v # super

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 7

A method definition can also include parameters, which we refer to as its formal parameters to
distinguish them from the actual parameters used in invocations. The extended OMT notation
in fact allows two kinds of formal parameters: ones in which only the name of the variable is
given, and ones in which the variable name is accompanied by a class name which indicates the
class of the object the variable represents. Formal parameters may not include the values ‘self’
or ‘super’ since they represent generic “placeholders” for actual variables, and all variable names
used in the formal parameters must be different so that the variables can be distinguished in
the body of the method.

We use the variant type ‘Parameter’ to represent the two different kinds of formal parameters,
the variable names in both variants being represented by the type ‘Wf_Vble_ Name’ which au-
tomatically excludes the unwanted values ‘self’ and ‘super’. Then the formal parameters of a
method are described by the subtype ‘Wf_Formal Parameters’, which is a list of parameters in
which no two parameters have the same variable name.

The defining predicate ‘is_wf_formal_parameters’ of the subtype, which represents the above
consistency condition, is written in terms of the auxiliary function ‘type_parameter’ which simply
extracts the variable name from a parameter.

type
Parameter ==
var(Wf_Vble_Name) |
paramTyped(paramName : Wf_Vble_Name, className : Class_Name),
Wf_Formal Parameters =
{| p : Parameter* « is_wf formal parameters(p) |}

value
is_wf_formal_parameters : Parameter* — Bool
is_wf_formal parameters(p) =
(
Vi, j: Nat e
{i,j} Cinds p A
type_parameter(p(i)) = type_parameter(p(j)) =
1=
)’
type_parameter : Parameter — Variable_Name

type_parameter(p) =
case p of var(v) — v, paramTyped(v, ¢c) — v end

We conclude this section by introducing some constants and auxiliary functions which will be
used in later sections.

First, several GoF patterns involve interactions with collections of objects, though these in-

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 8

teractions are always implicit in the names of the methods (for example the methods Attach
and Detach in the Observer pattern) and are not otherwise specified. We choose to make these
interactions at least partially explicit in our model by introducing reserved method names ‘col-
lectionadd’, ‘collectionremove’ and ‘collectionelement’ to represent general operations on some
form of collection, though the exact form of the collection (set, list, or whatever) is left unspeci-
fied. Thus, the methods ‘collectionadd’ and ‘collectionremove’ represent methods for adding an
element to a collection or removing an element from a collection respectively, while the method
‘collectionelement’ returns one element from a collection. Each of the methods requires a single
parameter, which in the case of ‘collectionadd’ and ‘collectionremove’ represents the object to
be added to/removed from the collection and in the case of ‘collectionelement’ indicates some-
how the element required (for example if the collection is a list of objects the parameter to
‘collectionelement’ might indicate the position in the list).

At this level we only define the names of the methods, together with the auxiliary function
‘is_collection_method’ which checks whether a given method name is one of these reserved names.
Other properties of these methods are defined in later sections.

value
collectionadd, collectionremove, collectionelement : Method_Name,

is_collection_method : Method_Name — Bool
is_collection_method(m) =
m = collectionadd V m = collectionremove V m = collectionelement

Finally, we define five auxiliary functions relating to parameters of methods. The first, ‘param-
eter_in_set’, checks whether a given variable name corresponds to one of the formal parameters
of a method. This is used as the precondition to the second function, ‘position_of’, which re-
turns the position of a given variable in the list of formal parameters — this is uniquely defined
because of the property that no two formal parameters can have the same variable name. The
third function ‘match_params’ checks that the actual parameters of a method are consistent with
its formal parameters — there must simply be the same number of each. The fourth function
‘set_f_params’ gives the set of variables in the formal parameters of a method (i.e. ignoring any
types). And the fifth function ‘rol_of_parameter’ returns the declared type of a given parameter,
the precondition of the function ensuring that the parameter actually has a type.

value
parameter_in_set : Variable_ Name x Wf_Formal Parameters — Bool
parameter_in_set(v, f) =
(3 p : Parameter « p € elems f A type_parameter(p) = v),

position_of : Variable_ Name x Wf_Formal Parameters — Nat
position_of(v, 1) as i
post i € inds | A type_parameter(l(i)) = v

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 9

pre parameter_in_set(v, 1),

match_params : Actual Parameters x Wf Formal Parameters — Bool
match_params(a, f) = len a = len f,

set_f_params : Wf_Formal_Parameters — Variable_Name-set
set_f_params(fp) =
{ type_parameter(p) | p : Parameter * p € elems fp },

rol_of_parameter : Variable_ZName x Wf Formal Parameters — Class_Name
rol_of_parameter(v, f) as c

post paramTyped(v, c) € elems f

pre var(v) ¢ elems f A parameter_in_set(v, f)

3.2 Methods (M)

As explained in Section 2, annotations to methods indicate the actions that the methods per-
form. In fact there are essentially only two different kinds of interactions that appear in these
annotations: invocations and instantiations.

An invocation represents an interaction which corresponds to an association or aggregation
relation: objects of one class request objects of another class to perform some action by executing
some method. Some variable (generally the “name” of the relation) in the first class represents
the object that receives the request, while the request itself consists of the name of the method
which should be executed together with appropriate parameters for that method.

We model a request as the record type ‘Actual Signature’, which comprises the name of the
method together with its actual parameters (see Section 3.1), and the type ‘Invocation’ then
models the whole of this kind of interaction, consisting of the name of the variable representing
the receiver of the request plus the appropriate signature.

type
Actual Signature ::
meth name : G.Method Name a_params : G.Actual Parameters,
Invocation ::
call vble : G.Variable Name call sig : Actual Signature

An instantiation of course represents an interaction which corresponds to an instantiation re-
lation: one class requests another class to create a new object. In most object-oriented pro-
gramming languages there are essentially two ways in which this sort of object creation can be
performed. First, the class might create a “default” instance of itself (for example in Smalltalk

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 10

by using the basic creation method new which is available in every class) and then set the state
variables of this instance appropriately using other methods. Or second, the class may have
other local creation methods which create customised instances directly using parameters to the
methods (as, for example, in the parameterised method new: in Smalltalk which uses its param-
eter to additionally set the state of the instance it creates). We cover both of these situations
in our model by representing an instantiation as the type ‘Instantiation’ which consists of the
name of the class to be instantiated together with a possibly empty list of actual parameters to
be used by the instantiation method.

type
Instantiation ::
class_name : G.Class Name a_params : G.Actual Parameters

In some cases, however, an annotation can indicate that a particular method should carry out
different actions under different conditions, for example like if-then-else expressions in standard
programming languages. We model these annotations using the type ‘Alternative’, which con-
sists of two alternative “blocks” of actions. Each block, which is modelled by the type ‘Block’,
consists of a list of requests, and each request is either an invocation, an instantiation, an
alternative, or is just treated as plain text (the type ‘Dots’).

type
Alternative = Block x Block,
Block = Request*,
Request = Invocation | Instantiation | Alternative | Dots,
Dots = Text

Annotations may also indicate the results returned by methods and assignments to variables
within the bodies of the methods, including assignments to both state variables and local (dummy)
variables.

In actual code, the result of a method is likely to be a tuple or a list of variables, but we model
this abstractly and use simply a set of variables since this is sufficient to capture the properties
of a high-level design. However, the result set cannot include the variable ‘super’, so we use the
type ‘Wf_Variable Name’ to define the type ‘Result’.

type
Variables = G.Wf{_Variable_Name-set,
Result = Variables

For the assignments, two forms are used: one where the results of some request (instantiation,
invocation or alternative) are assigned to variables, generally for use as parameters or receivers

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 11

in later requests, and the second where the parameters of the method are assigned to variables,
generally state variables. We model the assignment of the results of a request as a mapping from
sets of variables to the requests themselves, and the assignment to other variables, including
parameters, as a mapping from sets of variables to sets of variables. In both cases the domain
value of the mapping should not include the variables ‘self’ or ‘super’, and in the second case the
range value of the mapping should not include the variable ‘super’ but it may include the variable
‘self’. These two possibilities are combined in the type ‘Variable_Change’, which maps sets of
variables to either requests or sets of variables and which additionally has a well-formedness
constraint ‘is_-wf vchange’ which requires that we do not make an assignment to the empty set
of variables. Additional constraints on the variable change map are defined below as part of the
well-formedness condition on a method as a whole.

type
Request_or_Var = Request | Variables,
Variable_Change =
{| m : G.Wf_Vble_ Name-set # Request_or_Var * is_wf_vchange(m) |}

value
is_wf_vchange : (G.Wf_Vble_Name-set Request_or_Var) — Bool
is.wf_vchange(m) = {} ¢ dom m

The extended OMT notation distinguishes between abstract methods and concrete methods.
Abstract methods correspond in general to methods in which only the signature is defined and
are unexecutable, while concrete methods are defined completely and can be executed. However,
in some cases it is useful to define some methods abstractly in a superclass even if they should
not be executable or even do not make sense in all subclasses. (See for example the Composite
pattern in [13] and the corresponding discussion thereof in [11]: the child management operations
Add, Remove, and GetChild do not make sense at all in the Leaf classes although they are in
principle available because they are inherited from the Component class.) In this case, the
method should be concrete in all concrete subclasses but it is not executable. We therefore
subdivide the classification of a concrete method into error and implemented methods, and in
our model we therefore use a classification which distinguishes these three kinds of method.

Neither an abstract method nor an error method can be executed, so performs no actions and
therefore does not have a body (i.e. it is defined entirely by its signature and possibly its result).
We therefore represent the bodies of these methods simply by the constants ‘defined’ and ‘error’
respectively. An implemented method, on the other hand, must actually perform some action
and so does have a body, though this could be empty since the actions of the method might not
be specified in the design. In this case, the body consists of the requests and assignments noted
in the annotation to the method, and we therefore model it using the variable change mapping
defined above together with a list of requests which represents the actions performed by the
method and the order in which they are performed. The body of the three kinds of methods is
thus modelled using the variant type ‘Method_Body’.

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 12

type
Method _Body ==
defined |
error |
implemented(variable_change : Variable_Change, request_list : Request*)

Then a method consists of a body, a result, and some formal parameters.

type
Method ::
f params : G.W{ Formal Parameters
meth_res : Result
body : Method_Body

Of course there are a number of consistency conditions that the various elements in the above
record type must satisfy in order for the definition to be reasonable.

First, any request which appears in the range of the variable change mapping of an imple-
mented method must appear in the list of requests comprising the body of that method. This
is represented by the function ‘receiver_in_call_vble’, which is defined in terms of three auxiliary
functions ‘variable_change_body’, ‘request_list_body’ and ‘requests’. The first two of these have
a precondition which requires that the method is implemented (the function ‘is_implemented’)
and return respectively the variable change mapping and the list of requests in the body of an
implemented method. The third calculates the set of requests appearing in the range of the
variable change mapping.

value
variable_change_body : Method = Variable_Change
variable_change body(b) =
let implemented(s, _) = body(b) in s end
pre is_implemented(b),

request_list_body : Method = Request*
request_list_body(b) =
let implemented(_, i) = body(b) in i end
pre is_implemented(b),

is_implemented : Method — Bool
is_implemented(m) = body(m) # defined A body(m) # error,

requests : Request_or_Var-set — Request-set

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 13

requests(s) =
{ m | m: Request * Request_or_Var_from _Request(m) € s },

receiver_in_call_vble : Method — Bool
receiver_in_call vble(m) =
is_implemented (m) =

requests(rng variable_change_body(m)) C elems request_list_body(m)

The second constraint is that the result of every instantiation in the body of an implemented
method must be assigned to a variable in the variable change mapping and therefore must appear
in the range of that mapping. This condition is in fact not strictly necessary but corresponds
to a sort of “no waste” condition — the instantiation must return a new object and if this is not
assigned to a variable it is just lost and there was therefore no point in creating it. This property
is embodied in the function ‘correct_list_ins’, which is defined in terms of two more auxiliary
functions ‘instantiation_in request_list’ and ‘instantiation_in_vble_change’. These check whether
a given instantiation occurs in the range of the variable change mapping, respectively the list
of requests in the body of an implemented method and their definitions again use the functions
‘variable_change_body’ and ‘request_list_body’ introduced immediately above.

value
instantiation_in_request_list : Instantiation X Method — Bool
instantiation_in request_list(ins, m) =
is_implemented(m) A
Request_from Instantiation(ins) € elems request_list_body(m),

instantiation_in_vble_change : Instantiation x Method — Bool
instantiation_in_vble_change(ins, m) =

is_implemented(m) A

Request_from Instantiation(ins) € rng variable_change_body(m),

correct_list_ins : Method — Bool
correct_list_ins(m) =
is_implemented(m) =
(
Vi: Instantiation e
instantiation_in_request_list(i, m) = instantiation_in vble_change(i, m)

The third property requires that the variable change mapping does not make assignments to
formal parameters of an implemented method and is defined by the function ‘is_correct_fparams’.
This is in turn defined using the new auxiliary function ‘changed_variables’, which simply returns
the set of all variables which appear on the left-hand side of assignments in the variable change
mapping, and the auxiliary function ‘set_f_params’ defined in Section 3.1.

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 14

value
changed_variables : Method = G.Wf_Vble_Name-set

changed_variables(m) =
{vl
v : G.Wf_Vble Name, vs : G.Wf_Vble_ Name-set «
vs € dom variable_change_body(m) A v € vs
}

pre is_implemented(m),

is_correct_fparams : Method — Bool
is_correct_fparams(m) =
is_implemented(m) = changed_variables(m) N G.set_f_params(f_params(m)) = {}

The fourth constraint is that an error method does not return a result, so its result is the empty
set of variables. It is defined by the function ‘is_error_method’.

value
is_error_method : Method — Bool
is_error_method(m) = body(m) = error = meth res(m) = {}

The remaining three constraints basically ensure that every assignment in the variable change
mapping is consistent in the sense that the number of variables on the two sides of the assignment
must be the same. The first function ‘correct_inst_assig’ deals with instantiations, the result
of which is always a single variable representing the single object created. This object must
therefore be assigned to a single variable.

value
correct_inst_assig : Method — Bool
correct_inst_assig(m) =
is_implemented(m) =
let vim = variable_change_body(m) in
(
V ins : Instantiation, vs : G.Variable_ Name-set ¢
vs € dom vin A vin(vs) = ins = card vs = 1

end

The second function ‘correct_vble_assig’ deals with sets of variables, in which case the two sets of
variables (i.e. the domain value and the range value) must contain the same number of variables.

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 15

value
correct_vble_assig : Method — Bool
correct_vble_assig(m) =
is_implemented(m) =
let vin = variable_change body(m) in
(
V vd, vr : Variables ¢
vd € dom vmm A vin(vd) = vr = card vd = card vr

end

Finally, the third function ‘correct_collel_assig’ deals with invocations of the reserved method
‘collectionelement’. This method always returns a single object as its result, so as in the case of
instantiations we again constrain the corresponding domain value in the variable change mapping
to contain only one variable.

value
correct_collel assig : Method — Bool
correct_collel _assig(m) =
is_implemented(m) =
let vim = variable_change_body(m) in
(
Y inv : Invocation, vs : G.Variable_Name-set ¢
vs € dom vm A
vm(vs) = inv A
meth_name(call sig(inv)) = G.collectionelement
=

card vs = 1

end

These seven constraints are combined together in the function ‘is_wf method’, which is then used
as the defining predicate for the subtype ‘Wf_Method’ which represents well-formed methods.

value

is_-wf_method : Method — Bool

is_-wf_method(m) =
receiver_in_call_vble(m) A
correct_list_ins(m) A
is_correct_fparams(m) A
is_error_method(m) A
correct_inst_assig(m) A

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 16

correct_vble_assig(m) A correct_collel_assig(m)

type
Wif_Method = {| m : Method ¢ is_-wf_method(m) |}

The collection of all methods in a class is then modelled by the type ‘Map_Methods’, which
associates the name of each method with its definition. Using a map here automatically ensures
that no two methods in the same class have the same name. At this level there is only one
constraint, namely that the reserved method names ‘collectionadd’, ‘collectionremove’ and ‘col-
lectionelement’ cannot be used as the names of methods in the design. This is expressed using
the function ‘is_wf class_method’ and this is in turn used as the defining predicate of the subtype
‘Class_Method’ which then represents the well-formed collection of all methods in a class.

type
Map_Methods = G.Method_Name 7 Wf_Method,
Class_-Method = {| m : Map_Methods * is_wf_class_method(m) |}

value
is_wf_class_method : Map_Methods — Bool
is_wf_class_method(m) =
G.collectionadd ¢ dom m A
G.collectionremove ¢ dom m A G.collectionelement ¢ dom m

We again finish by defining some auxiliary functions which will be useful in later sections.

First the function ‘is_defined’ is analogous to the function ‘is_implemented’ defined above except
that it checks whether a method is abstract.

value
is_defined : Wf_Method — Bool
is_defined(m) = body(m) = defined

Next we define analogues of the functions ‘instantiation_in_request_list’ and ‘instantiation_in -
vble_change’ which check the corresponding properties for invocations instead of instantiations.
The functions ‘invocation_in request_list’ and ‘invocation_in_vble_change’ thus check whether a
given invocation occurs in the range of the variable change mapping, respectively the list of
requests in the body of an implemented method.

value
invocation_in request_list : Invocation x Method — Bool

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 17

invocation_in_request_list(inv, m) =
is_implemented(m) A
Request_from Invocation(inv) € elems request_list_body(m),

invocation_in_vble_change : Invocation x Wf Method — Bool
invocation_in_vble_change(inv, m) =

is_implemented(m) A

Request_from Invocation(inv) € rng variable_change_body(m)

The function ‘method _cut’ is used to generate a new implemented method from an existing
implemented method by removing from the body of the method all requests which occur before
a given instantiation. This is in fact done using the function ‘less’ which simply iterates through
a list of requests discarding elements until the required instantiation is found.

Note that there is no check that the instantiation actually occurs in the body of the method,
in which case the body of the resulting method would be empty. Note also that the function
‘method_cut’ is under-specified — the variable change mapping in the new method could in
principle be changed to any value provided of course that value satisfied all the consistency
conditions. This is in fact not a problem since the method is only used as an auxiliary function
within the function ‘client_comment’ (see Section 5.4) to check that requests occur in the correct
order in the body and this is determined solely by the list of requests.

value
method _cut : Method x Instantiation = Method
method_cut(m, ins) as mp
post
is_implemented(mp) A f params(mp) = f params(m) A
request_list_body(mp) = less(request_list_body(m), ins)
pre is_implemented(m),

less : Request* x Instantiation — Request*
less(m, i) = if hd (m) = i then tl (m) else less(tl (m), i) end

The function ‘order’ is also related to the order of requests in the body of a method. Specifically
it checks whether the list of requests in the body of a method contain two given requests with the
first request preceding the second. Note however that it takes no account of multiple occurrences
of the same request in the request list so that, for example, if the second request occurs twice in
the request list, once before the first request and once after, the function will still return true.

value
order : Request x Request x Request* — Bool
order(iny, ing, mlist) =

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 18

(
J1i,j: Nat
{i, j} C inds mlist A
mlist(i) = in; A mlist(j) =ing A1 < j

The function ‘is_one_one’ checks if a variable change mapping is one-one, that is does not assign
the same range value to different domain values.

value
is_one_one : Variable_Change — Bool

is_one_one(m) =

(

VY x, vy : G.Variable Name-set ¢
{x,y} Cdomm A m(x) =m(y) =x=y

The function ‘has_invocation_param’ checks whether a given method (m) is implemented and
has in its request list an invocation to a given variable (v) of a given method (mn) with a given

single actual parameter (p).

value
has_invocation_param :
Method x G.Variable_Name x G.Method_Name x G.Variable Name — Bool
has_invocation_param(m, v, mn, p) =
let s = mk_Actual Signature(mn, (p)), i = mk_Invocation(v, s) in
invocation_in request_list(i, m)
end

The function ‘has_assignment’ checks that a given method (m) is implemented and that its
variable change map contains an assignment to a given single variable (tov) of the result of an
invocation to another given variable (iv) of a given method (mn) with no parameters.

value
has_assignment :
Method x G.Variable_Name
has_assignment (m, tov, iv, mn)
is_implemented(m) A
let
vn = variable_change body(m), s = mk_Actual Signature(mn, ())

G.Variable_Name x G.Method_Name — Bool

I x

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 19

in
{tov} € dom vn A vn({tov}) = mk_Invocation(iv, s)
end

The function ‘has_assignment_invocation_param’ checks whether a given method (m) is imple-
mented and has two specific invocations in its body in the given order. The first of these
invocations invokes one given method (mj) on a given variable (v9) with no actual parameters
and assigns the result to a (dummy) variable (vi1) in the variable change map. The second
invokes a second given method (ms) on the same variable vo, using the variable v; as the sole
parameter of the invocation.

value
has_assignment_invocation_param :
Method x G.Variable_Name x G.Variable Name x G.Method_Name X
G.Method Name
%
Bool
has_assignment_invocation_param(m, vy, vo, mj, my) =
is_implemented(m) A
let
v = variable_change_body(m),
s1 = mk_Actual_Signature(mj, ()),
so = mk_Actual_Signature(ms, (v1)),
inv; = mk Invocation(vs, s1),
inve = mk _Invocation(vs, s2),
r1 = Request_from Invocation(invy),
ry = Request_from_Invocation(invs),
rlb = request_list_body(m)
in
{vi} € dom vm A
vin({vi1}) = inv; A inve € elems rlb A order(ri, ro, rlb)
end

Finally, the function ‘a_params_from_set’ checks that the actual parameters of some method is
some permutation of some given set of variables with no duplicates.

value
a_params_from set : G.Actual Parameters X G.Variable Name-set — Bool

a_params_from set(ap, vs) = len ap = card vs A elems ap = vs

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 20

3.3 Classes (C)

All the various elements which comprise a class — state variables, methods, and class type — have
already been defined in Sections 3.1 and 3.2 above, so we simply combine these appropriately
in the record type ‘Design_Class’ to obtain the formal specification of a class.

type
Design_Class ::
class_state : G.State
class_methods : M.Class_Method
class_type : G.Class_Type

However, state variables cannot be used as formal parameters of methods since this would lead to
ambiguity, so we define the function ‘is_wf_class’ to capture this property and use this as the defin-
ing predicate for the subtype ‘Wf_Class’ of well-formed classes. The function ‘method_in_class’
used in the definition of ‘is_wf_class’ simply checks that a given method belongs to a given class.

value
is_wf_class : Design_Class — Bool
is_wf_class(c) =
(
V m : M.Wf_Method
method_in_class(m, ¢) =
class_state(c) N G.set_f_params(M.f_params(m)) = {}

)’

method_in_class : M.Wf_Method x Design_Class — Bool
method_in_class(m, ¢) = m € rng class_methods(c)

type
Wi_Class = {| ¢ : Design_Class * is_wf_class(c) |}

The collection of all classes in a design is then modelled by the type ‘Classes’, which associates
the name of each class with its definition. Again, using a map here automatically ensures that
no two classes in the design have the same name. Other constraints on classes are defined in
later sections.

type
Classes = G.Class_Name WI_Class

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 21

Again we finish by defining some auxiliary functions which will be useful in later sections. The
first, ‘method_name_in_class’, is very similar to the function ‘method_in_class’ defined above
except it checks whether a class contains a method with a given name instead of with a given
definition.

value
method_name_in_class : G.Method_Name x Design_Class — Bool
method_name_in_class(m, ¢) = m € dom class_methods(c)

The functions ‘is_abstract_class’ and ‘is_concrete_class’ check respectively whether the stated
type of a class is abstract or concrete.

value
is_abstract_class : Design_Class — Bool
is_abstract_class(c) = class_type(c) = G.abstract,

is_concrete_class : Design_Class — Bool
is_concrete_class(c) = class_type(c) = G.concrete

Finally, the functions ‘sig-invok_in_class’ and ‘sig-has_result’ both check that the method name
appearing in a given signature represents one of the methods in a given class. In addition, the
function ‘sig-invok_in_class’ checks that the number of parameters in the signature is the same as
the number expected by the method, while the function ‘sig_has_result’ checks that the method
returns a result.

value
sig-invok_in_class : Design_Class x M.Actual_Signature — Bool
sig_invok_in_class(c, s) =
let M.mk_Actual_Signature(n, p) = s, cm = class_methods(c) in
n € dom cm A G.match_params(p, M.f_params(cm(n)))
end,

sig_has_result : Design_Class x M.Actual_Signature — Bool
sig_has_result(c, s) =
let M.mk_Actual _Signature(n, p) = s, cm = class_methods(c) in
n € dom cm A M.meth_res(cm(n)) # {}
end

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 22

3.4 Relations(R)

A relation is basically determined by the classes it links and its type, which may be inheritance,
association, aggregation, or instantiation. All relations except inheritance relations are binary,
linking a single source class to a single sink class. We in fact also model inheritance relations
as binary relations by considering the case in which a class has several subclasses as many
inheritance relations, one linking the superclass to each individual subclass.

In the case of instantiation and inheritance relations, there can be at most one such relation
between any pair of classes. The relation type together with the source and sink classes is
thus sufficient to identify the relation uniquely. However, it is possible to have more than
one association or aggregation relation between the same two classes, different relations being
distinguished by their names, which are essentially variable names except the names ‘self’ and
‘super’ may not be used. Association and aggregation relations also have associated source and
sink cardinalities, which may be one or many.

We use the type ‘Ref’ to record the name and cardinalities of association and aggregation
relations, the name being modelled using the type ‘Wf_Vble_Name’ in order to exclude the
unwanted values and the cardinality by the type ‘Card’ (see Section 3.1). Then the variant type
‘Relation_Type’ models the type of a relation: for inheritance and instantiation relations it is
just a constant of the appropriate name, while for aggregation and association relations it is a
function of the appropriate name applied to a value of type ‘Ref’. A relation as a whole is then
modelled by the record type ‘Design_Relation’, which comprises the type of the relation and the
names of its source and sink classes as explained above.

type
Ref :
relation name : G.Wf_Vble_Name
sink_card : G.Card
source_card : G.Card,
Relation_Type ==
inheritance | association(as_ref : Ref) | aggregation(ag-ref : Ref) | instantiation,
Design_Relation ::
relation_type : Relation_Type
source_class : G.Class_Name
sink class : G.Class_Name

The well-formedness condition ‘wf relation’ on a relation states that instantiation relations are
not explicitly shown between a class and itself in the extended OMT diagram (every class is
generally assumed to be able to instantiate itself) and that there cannot be inheritance relations
between a class and itself since this would lead to essentially infinite inheritance structures. The
auxiliary function ‘is_assoc_or_aggr’ simply checks whether a relation is either an association or
an aggregation relation.

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 23

value
wf_relation : Design_Relation — Bool
wi_relation(r) =
~ is_assoc_or_aggr(r) = source_class(r) # sink_class(r),

is_assoc_or_aggr : Design_Relation — Bool
is_assoc_or_aggr(r) =
relation_type(r) # inheritance A relation_type(r) # instantiation

type
Wi _Relation = {| r : Design_Relation * wf_relation(r) |}

The set of all relations in a design must satisfy a number of consistency conditions.

The first of these extends the constraint that a class cannot have an inheritance relation with
itself to rule out more complex transitive relationships which correspond to similarly infinite
or otherwise meaningless structures. One obvious extension of this is that there cannot be any
“loop” of inheritance relations in a design, that is a collection of classes c; to ¢, such that c;y;
is a subclass of ¢; for all i and c¢; is a subclass of c¢,. However, a similar loop of aggregation
relations also does not make sense because an aggregation relation indicates that one object is a
sub-object of another object so a loop of this form would mean that an object would effectively
be a sub-object of itself and so would also correspond to an infinite structure. Similarly a loop
in which one relation is an instantiation relation and all other relations are aggregation relations
does not make sense because it implies that a sub-object (the source of the instantiation relation)
is responsible for creating the object which contains it (the sink of the instantiation relation).

We define the auxiliary function ‘exists_loop’ to check whether a given set of relations contains
some loop of relations (i.e. taking no account of the types of the relations so allowing mixed
types of relation in the loop). This is in turn written in terms of the function ‘exists_loop_from’
which checks whether there is a chain of relations linking two given classes.

value
exists_loop : Wf Relation-set — Bool
exists_loop(s) =
(
V e : Wi Relation °
e € s = exists_loop_from(source_class(e), source_class(e), s)

)’

exists_loop_from :
G.Class_Name x G.Class_Name x W Relation-set — Bool
exists_loop_from(cy, cg, 8) =

(
dr: WL Relation

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 24

resA
source_class(r) = ¢; A
(sink_class(r) = ¢y V exists_loop_from(sink_class(r), cg, s))

We also define auxiliary functions to check whether a given set of relations corresponds to one of
the sets we wish to rule out — all aggregations (the function ‘all_aggr’ which is written in terms
of another auxiliary function ‘is_aggregation’ which simply checks whether some given relation is
an aggregation relation), all inheritance relations (the function ‘all_inh’), and one instantiation
relation together with a set of aggregation relations (the function ‘inst_aggr_loop’). Note that
in this last case the earlier constraint that instantiation relations between a class and itself are
not shown implies that the loop must contain at least one aggregation relation.

value
all_aggr : Wf_Relation-set — Bool
all_aggr(s) =
(V e : Wi Relation » e € s = is_aggregation(e)),

is_aggregation : Design_Relation — Bool

is_aggregation(r) =
(3 a : Ref « relation_type(r) = aggregation(a)),

all_inh : Wf_Relation-set — Bool
all.inh(s) =
(

)7

inst_aggr_loop : Wf_Relation-set — Bool
inst_aggr loop(s) =

(

V e : Wi Relation ¢ e € s = relation_type(e) = inheritance

d! e; : Wf_Relation
e €s A
relation_type(e;) = instantiation A all_aggr(s \ {ei})

The function ‘no_circularity’ then captures the required property that a set of relations doesn’t
contain meaningless infinite loops — any non-empty subset s of relations which forms a loop
cannot correspond to any of the unwanted loops described above.

value
no_circularity : Wf_Relation-set — Bool

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 25

no_circularity(rs) =
(
V s : Wi_Relation-set *
s # {} As C rs A exists_loop(s) =
~ inst_aggr_loop(s) A ~ all_inh(s) A ~ all_aggr(s)

The second consistency condition on the set of relations is that if two classes are related by an
inheritance relation then there cannot be any other relation between the same two classes and
in the same direction (though relations in the opposite direction are of course possible). We
define three auxiliary functions to specify this property. The functions ‘have_equal_sources’ and
‘have_equal_sinks’ check whether two given relations have the same source class, respectively
the same sink class, and the function ‘is_.compatible_relation’ then uses these to check that two
relations are compatible, that is if one of them is an inheritance relation and the other is some
other kind of relation then they must have either different source classes or different sink classes
(or both).

value
is_compatible_relation : Wf Relation x Wf_Relation — Bool
is_compatible relation(e;, eg) =
relation_type(e;) = inheritance A relation_type(es) # inheritance =
~ have_equal sources(e1, e2) V ~ have_equal sinks(eq, e3),

have_equal_sources : Wf_Relation x Wf_Relation — Bool
have_equal_sources((r, r2)) = source_class(r;) = source_class(rs),

have_equal sinks : Wf_Relation x Wf Relation — Bool
have_equal_sinks((r1, r2)) = sink_class(r;) = sink_class(rs)

The third consistency constraint requires that association and aggregation relations in the design
must be uniquely identified by their name. This property is again specified in terms of three aux-
iliary functions. The function ‘is_association’ is exactly analogous to the function ‘is_aggregation’
introduced above except that it checks whether some given relation is an association relation
instead of an aggregation relation. The function ‘vble_of_assoc_aggr’ simply returns the name
of the association or aggregation relation, which is a variable name. Finally, the function ‘dif-
ferent_variable name’ checks that two different association or aggregation relations must have
different names.

value
different_variable_name : Wf_Relation x Wf Relation — Bool
different_variable_name(e;, e3) =
is_assoc_or_aggr(ei) A is_assoc_or_aggr(ez) A (e1 # e2) =

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 26

vble_of_assoc_aggr(e1) # vble_of_assoc_aggr(es),

vble_of_assoc_aggr : Design_Relation = G.Variable_Name
vble_of_assoc_aggr(r) =
if is_association(r) then
relation_name(as_ref(relation_type(r)))
else
relation_name(ag_ref(relation_type(r)))
end
pre is_assoc_or_aggr(r),

is_association : Design Relation — Bool

is_association(r) =
(3 a: Ref « relation_type(r) = association(a))

The function ‘is_valid_relation’ combines these last two constraints, and ‘is_correct_relation’ ex-
tends them from two relations to an arbitrary set of relations.

value
is_valid_relation : Wf_Relation x Wf_Relation — Bool
is_valid relation(e;, e2) =
is_compatible_relation(e;, e3) A different_variable name(e;, ez),

is_correct_relation : Wf_Relation-set — Bool
is_correct_relation(rs) =
(
Y e1, es : Wf_Relation °
e € 1s A ey € rs = is_valid relation(e;, e3)

Finally, we combine all three constraints in the function ‘wf_relations’ and use this as the defining
predicate for the subtype ‘Wf Relations’ of well-formed sets of relations.

value
wf_relations : Wf_Relation-set — Bool
wi_relations(rs) = no_circularity(rs) A is_correct_relation(rs)

type
Wi _Relations = {| rs : Wf_Relation-set * wf_relations(rs) |}

As usual we complete this section by defining some auxiliary functions that will be useful in
later sections.

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 27

The function ‘sink_card’ returns the sink cardinality of an association or aggregation relation.

value
sink card : Wf Relation = G.Card
sink_card(r) =
if is_association(r) then
sink_card(as_ref(relation_type(r)))
else
sink_card(ag_ref(relation_type(r)))
end
pre is_assoc_or_aggr(r)

The function ‘is_parent’ checks whether a given class c¢; is an immediate superclass of the class
co with respect to some set of relations: the set of relations must contain an inheritance relation
whose source class is ¢; and whose sink class is cs.

value
is_parent : G.Class_Name x G.Class_Name x Wf_Relations — Bool
is_parent(cy, co, 18) =
(
3 d : Wf Relation *
dersA
relation_type(d) = inheritance A
source_class(d) = c¢; A sink_class(d) = co

This function is then used in the function ‘is_superclass’ to check the more general property that
the class c; is a superclass of the class co with respect to some set of relations: ¢ should be the
parent of cy or a superclass of the parent of cs.

value
is_superclass : G.Class_Name x G.Class_Name x Wf{_Relations — Bool
is_superclass(cy, cg, 18) =
is_parent(cy, co, 18) V

(
)

3 ¢ : G.Class_Name ¢ is_parent(cs, co, rs) A is_superclass(ci, c3, rs)

A class co is a leaf in a hierarchy of classes starting from the class cy if ¢1 is a superclass of ¢y
and co has no subclasses (i.e. there is no class c3 whose parent is c).

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 28

value
is_leaf : G.Class_Name x G.Class_Name x Wf_Relations — Bool
is_leaf(cy, cg, 18) =
is_superclass(cy, co, r8) A
(
3 c3 : G.Class_Name ¢ is_superclass(ci, c3, rs) A is_parent(cs, c3, rs)

)

The function ‘is_assoc_aggr_between’ checks whether a relation r is an association or aggregation
relation whose name, source class and sink class are v, ¢; and ¢y respectively.

value
is_assoc_aggr_between :
G.Variable_Name x G.Class_ Name x G.Class_Name x W{f_Relation — Bool
is_assoc_aggr_between(v, c1, ¢g, 1) =
source_class(r) = ¢; A
sink class(r) = ca A
is_assoc_or_aggr(r) A vble_of_assoc_aggr(r) = v

The function ‘have_direct_assoc_aggr_rel’ extends the same property to a set of relations, checking
if there is some relation in the set which satisfies the function ‘is_assoc_aggr_between’.

value
have_direct_assoc_aggr rel :
G.Variable_Name x G.Class_Name x G.Class_Name x Wf Relations — Bool
have_direct_assoc_aggr_rel(v, c1, c2, 18) =

(
)

Jr: Wi Relation * r € s A is_assoc_aggr_between(v, c1, co, 1)

The function ‘exists_assoc_aggr_relation_in_superclass’ extends the same property to superclasses
of the given class, that is it checks if there is an association or aggregation relation with the
given name linking some superclass of ¢; to ca.

value
exists_assoc_aggr relation_in_superclass :
G.Variable_Name x G.Class_Name x G.Class_Name x W{_Relations — Bool
exists_assoc_aggr relation_in_superclass(v, c1, cg, rs) =

(

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 29

dc3 : G.Class_Name, r; : Wf_Relation *
is_superclass(cs, c1, rs) A r1 € 18 A is_assoc_aggr_between(v, c3, c2, I1)

The two properties above are combined in the function ‘exists_assoc_aggr relation’ which checks
whether there is an association or aggregation relation linking the two classes directly or through
a superclass.

value
exists_assoc_aggr_relation :
G.Variable_ Name x G.Class_Name x G.Class_Name x Wf{ Relations — Bool
exists_assoc_aggr_relation(v, cq, co, r8) =
have_direct_assoc_aggr rel(v, c1, co, 18) V
exists_assoc_aggr_relation_in_superclass(v, ci, ca, rs)

The function ‘is_assoc_aggr_relation_in_superclass’ is similar to ‘is_assoc_aggr_between’ except
that it checks whether a relation r is an association or aggregation relation whose name, sink
class and source class are v, co and some superclass of ¢; respectively.

value

is_assoc_aggr_relation_in_superclass :
G.Class_Name x G.Class_Name X G.Variable Name x Wf_ Relations x W{_Relation
N

Bool

is_assoc_aggr relation_in _superclass(ci, ¢, v, 18, r) =
rersA
is_superclass(source_class(r), c1, rs) A
sink_class(r) = c2 A
is_assoc_or_aggr(r) A vble_of_assoc_aggr(r) = v

The actual association or aggregation relation with a given name linking two given classes either
directly or through a superclass of the first is then given by the function ‘assoc_aggr_relation’.
The precondition ensures that the relation exists.

value
assoc_aggr_relation :
G.Class_Name x G.Class_Name x G.Variable_ Name x Wf Relations = Wf_Relation
assoc_aggr_relation(cy, co, v, rs) as rp
post
TT €18 A

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 30

if have_direct_assoc_aggr_rel(v, c1, c2, rs) then
is_assoc_aggr_between(v, c1, co, 1)
else
is_assoc_aggr_relation_in_superclass(ci, ¢, v, 18, r1)
end
pre exists_assoc_aggr_relation(v, ¢, cg, rs)

The function ‘no_relation’ requires that there should be no relation in a given set of relations
which links classes ¢; and co, that is whose source is ¢; and whose sink is co.

value
no_relation : G.Class_Name x G.Class_Name x W{_Relations — Bool

no_relation(cy, co, rs) =

~ (
)

Jr: WfRelation * r € rs A source_class(r) = c¢; A sink class(r) = co

The function ‘exists_inst_relation’ checks whether there is an instantiation relation in a given set
of relations whose sink class is co and whose source class is ¢; or some superclass of c;.

value
exists_inst_relation :
G.Class_Name x G.Class_Name x Wf Relations — Bool
exists_inst_relation(cy, cg, r8) =
(
3 r: W{_Relation *
rersA
relation_type(r) = instantiation A
sink class(r) = cg2 A
(
source_class(r) = ¢y V
(
dc3 : G.Class_Name ¢
is_superclass(cs, c1, rs) A source_class(r) = c3

The final function in this section, ‘vble_many_in rel’, checks whether a given set of relations
contains an association or aggregation relation with given name and source class and with

cardinality many.

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 31

value
vble_many_in rel : G.Variable_Name X G.Class_Name x Wf Relations — Bool
vble_many_in rel(vd, ¢, dr) =
(
3 r: Wf Relation °
r € dr A is_assoc_or_aggr(r) A vble_of_assoc_aggr(r) = vd A
source_class(r) = ¢ A sink_card(r) = G.many

3.5 Design Structure (DS)

A design as a whole then simply consists of a collection of classes and a collection of relations,
the collection of classes being represented by the type ‘Classes’ defined in Section 3.3 and the
collection of relations by the type ‘Wf _Relations’ defined in Section 3.4. A design is therefore
modelled as a simple Cartesian product of these two types.

type
Design_Structure = C.Classes x R.W{f_Relations

There are of course many constraints that must apply to this combination of classes and relations
in order for it to correctly model an object-oriented design.

The first constraint requires that both the source and the sink class of every relation in the
collection of relations must be in the collection of classes. It is captured by the function
‘is_defined class’.

value
is_defined_class : Design_Structure — Bool
is_defined class(c, r) =
(
Y e : R.Wf Relation *
e € r = R.source_class(e) € dom ¢ A R.sink_class(e) € dom ¢

The second constraint relates to the inheritance of state variables: if a state variable v is declared
locally in a class ¢ then it cannot be declared in or inherited by any parent class of c. The
function ‘has_state_var’ checks whether a given state variable is defined (i.e. either declared
locally or inherited) in a given class, and the constraint as a whole is embodied in the function
‘correct_state_hierarchy’.

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 32

value
correct_state_hierarchy : Design_Structure — Bool
correct_state_hierarchy(dsc, dsr) =
(
Y ¢, cp : G.Class_ Name, v : G.Variable Name ¢
¢ € dom dsc A
v € C.class_state(dsc(c)) A R.is_parent(cp, c, dsr) =
~ has_state_var(v, cp, (dsc, dsr))

)’

has_state_var :
G.Variable_Name x G.Class_Name X Design_Structure — Bool
has_state_var(v, c, (dsc, dsr)) =
¢ € dom dsc A v € C.class_state(dsc(c)) V
(
d ¢y : G.Class_Name ¢
R.is_parent(co, ¢, dsr) A has_state_var(v, cg, (dsc, dsr))

The third constraint extends the above to the case of multiple inheritance, when we must
additionally rule out the possibility that a class inherits the same state variable from two su-
perclasses which are not themselves related by inheritance. This is expressed using the function
‘correct_state_hierarchy_multiple’ which requires that any given state variable is defined in at
most one parent of any class.

value
correct_state_hierarchy_multiple : Design_Structure — Bool
correct_state_hierarchy_multiple(dsc, dsr) =
(
V ¢, cp1, cpe : G.Class_Name, v : G.Variable_Name ¢
R.is_parent(cp1, ¢, dsr) A
R.is_parent(cps, ¢, dsr) A
cp1 # cp2 A has_state_var(v, cpy, (dsc, dsr)) =
~ has_state_var(v, cpo, (dsc, dsr))

In fact a similar property applies to methods: any given method can also be defined in at
most one parent of any class. (But note that we do not rule out the case in which a method
is defined both in a superclass and a subclass because this situation is allowed and indeed is
common in object-oriented systems: the method in the subclass simply overrides the method in
the superclass.) The function ‘has_method’ determines whether a given method, identified by
its name, is defined in a given class, where again this includes not only the possibility that the

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 33

method is declared locally but also that it is inherited from a superclass. The constraint is then
captured by the function ‘correct_method_hierarchy_multiple’ which is essentially analogous to
the function ‘correct_state_hierarchy multiple’ defined immediately above.

value
correct_method_hierarchy_multiple : Design_Structure — Bool
correct_method_hierarchy _multiple(dsc, dsr) =
(
VY ¢, cp1, cpe : G.Class_Name, m : G.Method_Name ¢
R.is_parent(cp1, ¢, dsr) A
R.is_parent(cpg, ¢, dsr) A
cp1 # cp2 A has_method(m, cpy, (dsc, dsr)) =
~ has_method(m, cps, (dsc, dsr))

)’

has_method : G.Method_Name x G.Class_Name x Design_Structure — Bool
has_method(m, c, (dsc, dsr)) =
¢ € dom dsc A C.method_name_in_class(m, dsc(c)) V
(
J ¢g : G.Class_Name *
R.is_parent(cg, ¢, dsr) A has_method(m, cy, (dsc, dsr))

The function ‘correct_multiple_inheritance’ simply combines the two previous constraints.

value
correct_multiple_inheritance : Design_Structure — Bool
correct_multiple_inheritance(ds) =
correct_state_hierarchy_multiple(ds) A correct_method_hierarchy_multiple(ds)

The next two constraints also apply to the inheritance of methods. The first, which is repre-
sented by the function ‘not_allowed’, states that if a method is implemented in some class it
cannot be abstract in any subclass of that class, while the second is captured by the function
‘is_impl_error_interf_inherited’ and states that if a given method is declared locally both in a
superclass and in a subclass and the superclass declares it as an error method then the subclass
must also declare it as an error method.

value
not_allowed : Design_Structure — Bool
not_allowed(c, r) =

(

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 34

VY c¢1 : G.Class_Name, m : G.Method_Name ¢
¢1 € dom ¢ A
C.method_name_in_class(m, c(c;)) A
M.is_implemented(C.class_methods(c(c;))(m)) =
(
Jcg : G.Class_Name o
co €dom c A
R.is_superclass(ci, c2, r) A

C.method_name_in_class(m, c(cz)) A
M.body(C.class_methods(c(cy))(m)) = M.defined

)’

is_impl_error_interf_inherited : Design_Structure — Bool
is_impl_error_interf_inherited(c, r) =
(
Y ¢1, co : G.Class_Name, m : G.Method_Name °
c1 € dom c A
co € dom c A
C.method name_in_class(m, c(c
C.method _name_in_class(m, c(c
M.body(C.class_methods(c(c1))
R.is_superclass(ci, cg, 1) =
M.body(C.class_methods(c(c2))(m)) = M.error

) A
) A
)

1
2
(m)) = M.error A

The next constraint requires that the sink of an instantiation relation cannot be an abstract
class. This is because it is not allowed to build objects belonging to abstract classes. The
function ‘no_abstract_class_instantiated’ captures this constraint.

value
no_abstract_class_instantiated : Design_Structure — Bool
no_abstract_class_instantiated(c, r) =

(

Ve : G.Class_Name °
e € dom c A C.is_abstract_class(c(e)) =
(
3 d : R.Wf_Relation

derA
R.relation_type(d) = R.instantiation A R.sink_class(d) = e

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 35

For the same reason, an abstract class must have at least one subclass. Alternatively, it must be
the source of at least one inheritance relation in the design. This is expressed by the function
‘exist_inheritance’. Note that this property effectively implies that all leaf classes must be
concrete since otherwise they would have to have at least one subclass and therefore would not
be leaf classes.

value
exist_inheritance : Design_Structure — Bool
exist_inheritance(c, r) =
(
Ve : G.Class_Name °
e € dom c A C.is_abstract_class(c(e)) =
(
3d: R.Wf Relation
derA
R.relation_type(d) = R.inheritance A R.source_class(d) = e

A class that is declared as concrete must actually be concrete and therefore no methods in
the class, including inherited methods, can be abstract — if a class has an abstract method
the class must also be abstract. We define the auxiliary function ‘inherits_defined_method’ to
check whether a class inherits an abstract method — it does if there is some method which is
not declared locally but there is some parent class in which the method is declared as abstract
or which inherits the abstract method. Then a class has no abstract methods (the function
‘is_concrete_class’) if no local methods are abstract and if no abstract methods are inherited.
The constraint, ‘verifying_concreteness’, then states that every class whose type is concrete must
satisfy this property ‘is_concrete_class’.

value
verifying_concreteness : Design_Structure — Bool
verifying_concreteness(c, r) =
(
Y c¢1 : G.Class_Name »
c1 € dom c A C.class_type(c(cy)) = G.concrete =
is_concrete_class(ci, (c, 1))

)’

is_concrete_class : G.Class_Name x Design_Structure — Bool
is_concrete_class(cy, (c, r)) =
¢ €Edomc A

(
V m : M.Method ¢ C.method_in_class(m, c(c1)) = ~ M.is_defined(m)

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 36

) A
~ inherits_defined_method(cy, (c, 1)),

inherits_defined _method : G.Class_Name Xx Design_Structure — Bool
inherits_defined_method(c, (dsc, dsr)) =
¢ € dom dsc A
(
Jcp : G.Class_Name, m : G.Method Name *
~ C.method_name_in_class(m, dsc(c)) A
R.is_parent(cp, c, dsr) A
(
cp € dom dsc A
C.method_name_in_class(m, dsc(cp)) A
M.is_defined(C.class_methods(dsc(cp))(m)) V
inherits_defined_method(cp, (dsc, dsr))

The next constraint ‘valid_vble_used’ states that every variable used in the body of an imple-
mented method as a parameter of an instantiation or invocation or on the right-hand side of an
assignment in the variable change map must be a state variable, a parameter of the method or
a local variable. A variable is local (the auxiliary function ‘is_local_variable’) if it appears on
the left-hand side of an assignment in the variable change map and it is not a state variable or
a formal parameter.

value
valid_vble_used : Design_Structure — Bool
valid_vble_used(dsc, dsr) =
(
VY ¢ : G.Class Name, m : M.Method, v : G.Variable Name *
¢ € dom dsc A
C.method_in_class(m, dsc(c)) A
M.is_implemented(m) A
(
(
d vs : M.Variables ¢
M.Request_or_Var_from_Variables(vs) € rng
M.variable_change_body(m) A
VvV € VS
)V
(
Jinv : M.Invocation *
M.invocation_in_request_list(inv, m) A
v € elems M.a_params(M.call sig(inv))

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design

37

)V
(
3 ins : M.Instantiation e

M.instantiation_in_request_list(ins, m) A
v € elems M.a_params(ins)

)

) =

has_state_var(v, ¢, (dsc, dsr)) V

G.parameter_in_set(v, M.f_params(m)) V

is_local variable(v, m, c, (dsc, dsr))

)’

is_local_variable :
G.Variable Name x M.Method x G.Class_Name x Design_Structure — Bool
is_local_variable(v, m, c, ds) =
M.is_implemented(m) A
v € M.changed_variables(m) A
~ has_state_var(v, c, ds) A

~ G.parameter_in_set(v, M.f_params(m))

The function ‘is_correct_design_class’ simply combines the preceding four constraints.

value
is_correct_design_class : Design_Structure — Bool
is_correct_design_class(ds) =
no_abstract_class_instantiated(ds) A
exist_inheritance(ds) A

verifying_concreteness(ds) A valid_vble_used(ds)

The next constraint ‘is_implemented_signature’ requires that every method in the design which
is declared as abstract in some class ¢; must eventually have a concrete (i.e. error or im-
plemented) version in all lower branches of the class hierarchy. The existence of the con-
crete version of the method in the subclass hierarchies is specified using the auxiliary function
‘is_implemented __signature_in_subclass’. Note that the constraint ‘verifying_concreteness’ implies
that the class containing the abstract method must be abstract, from which it follows by the
constraint ‘exist_inheritance’ that the class must have at least one subclass. The method must
therefore be defined concretely in all leaf classes in the class hierarchy, though it may additionally

have concrete definitions in intermediate classes in the hierarchy.

value
is_implemented_signature : Design_Structure — Bool
is_implemented_signature(c, r) =

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 38

(
V ¢1 : G.Class_Name, m : G.Method_Name

c1 € dom c A

C.method _name_in_class(m, c(cq)) A

M.is_defined(C.class_methods(c(c1))(m)) =
is_implemented signature_in_subclass(m, c, (c, 1))

)’

is_implemented signature_in_subclass :
G.Method_Name x G.Class_ Name Xx Design_Structure — Bool
is_implemented signature_in_subclass(m, sup, (c, r)) =
(
V d : R.W{_Relation ¢
derA
R.relation_type(d) = R.inheritance A R.source_class(d) = sup =
(
C.method _name_in_class(m, ¢(R.sink_class(d))) A
~ M.is_defined(C.class_methods(c(R.sink_class(d)))(m))
)V
is_implemented_signature_in_subclass(m, R.sink_class(d), (c, r))

The next set of constraints deal with the consistency of invocations. We first introduce some
auxiliary functions which help with their formulation.

First, the function ‘is_impl method’ checks whether the method invoked in a signature is im-
plemented in a given class, where the method could be implemented locally or inherited from a
superclass in which it is implemented. The related function ‘is_impl_method_in_superclass’ deals
with the case of inheritance from a superclass — there must be some parent class in which the
method is implemented.

value

is_impl_method :
G.Class_Name x M.Actual_Signature x Design_Structure — Bool

is_impl method(e, a, (c, r)) =
e € dom c A
C.sig_invok_in_class(c(e), a) A
M.is_implemented(C.class_methods(c(e))(M.meth_name(a))) V
is_impl_method_in_superclass(e, a, (c, r)),

is_impl_method_in_superclass :
G.Class_Name x M.Actual_Signature x Design_Structure — Bool
is_impl method_in_superclass(e, a, (c, 1)) =

(

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 39

Jecd : G.Class_Name *
R.is_parent(cd, e, r) A is.impl method(cd, a, (c, r))

The next pair of auxiliary functions ‘exist_method’ and ‘exist_method_in_subclass’ effectively
check whether a particular class will be able to respond to the receipt of a particular signature,
that is the method belongs to the implemented interface of the class so the class will be able to
execute it. The method should either be implemented locally or it can be implemented in the
subclasses of the class if the class is abstract (because in this case no objects belonging to the
class itself can be created and all instances will in fact be instances of concrete subclasses).

value
exist_method :
G.Class_Name x M.Actual_Signature x Design_Structure — Bool
exist_method(e, a, (c, 1)) =
e €dom c A
(
is_impl_method(e, a, (c, r)) V
C.is_abstract_class(c(e)) A exist_method_in_subclass(e, a, (c, r))

)’

exist_method_in_subclass :
G.Class_Name x M.Actual_Signature x Design_Structure — Bool
exist_method_in_subclass(e, a, (c, r)) =
(
V d : R.W{_Relation *
let s = R.sink_class(d), n = M.meth _name(a) in
derA
s € dom ¢ A
R.relation_type(d) = R.inheritance A R.source_class(d) = e =
C.sig_invok_in_class(c(s), a) A
M.is_implemented(C.class_methods(c(s))(n)) V
exist_method_in_subclass(s, a, (c, r)
end

The function ‘exist_method_with_res’ checks whether the response by a class to the invocation
of a particular signature will generate a result. The method invoked by the signature could be
declared locally and return a result directly, or it could be inherited from a superclass, or the
local class could be abstract and the method with the method being declared in all subclasses
as returning a result.

value

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 40

exist_method_with res :
G.Class_Name x M.Actual_Signature x Design_Structure — Bool
exist_method_with res(e, a, (c, r)) =
e € dom c A C.sig-has_result(c(e), a) V
(
J¢1 : G.Class_Name *
¢1 € dom ¢ A
C.sig_has_result(c(c1), a) A
(
R.is_superclass(cy, e, r) V
(
C.is_abstract_class(c(e)) A
exist_method_in_subclass(e, a, (c, r)) A
(
J ¢y : G.Class_Name »
R.is_superclass(e, co, r) A
~ C.sig-has_result(c(cz), a)

In the case where a particular method is defined in a particular class c, either locally or via
inheritance from a superclass, the function ‘class_of method’ returns the class which contains
the definition of the method as seen by the class c. Of course if the method is declared locally
in the class ¢ then the result of this function is the class c. Otherwise, an arbitrary parent of
¢ in which the method is also defined is chosen and the function recurses. Note that the well-
formedness constraint ‘correct_method_hierarchy _multiple’ on multiple inheritance of methods
ensures that in fact there is only one parent class in which the method can be defined, so the
result of the function is in fact unique.

value
class_of_method :
G.Method_Name x G.Class Name x Design_Structure = G.Class_Name
class_of_method(m, c, (dsc, dsr)) =
if ¢ € dom dsc A C.method name_in_class(m, dsc(c)) then
c
else
let
co : G.Class_Name ¢
R.is_parent(co, ¢, dsr) A has_method(m, co, (dsc, dsr))
in

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 41

class_of_method(m, cz, (dsc, dsr))
end
end
pre has method(m, ¢, (dsc, dsr))

Allied to the above, the function ‘method_of’ returns the actual definition of the method as seen
by the class c. It uses the above function to determine the class in which the method is actually
declared, then simply returns the definition of the method which is local to that class.

value
method_of :
G.Class_Name x G.Method_Name x Design_Structure — M.Method
method_of(c, m, (dsc, dsr)) =
let cd = class_of_method(m, ¢, (dsc, dsr)) in
C.class_methods(dsc(cd))(m)
end
pre has_method(m, c, (dsc, dsr))

The first constraint on invocations is that all self invocations must be well-defined, that is if
the body of one method in some class contains an invocation of another method in the same
class this second method must belong to the implemented interface of the class. This property
is captured by the function ‘is_correct_self_invocation’.

value
is_correct_self_invocation : Design_Structure — Bool
is_correct_self_invocation(c, r) =
(
VY ¢1 : G.Class_Name, m : M.Method, inv : M.Invocation ¢
c1 € dom c A
C.method_in_class(m, c(c1)) A
M.invocation_in_request_list(inv, m) A
M.call_vble(inv) = G.self =
exist_method(c;, M.call_sig(inv), (c, r))

A similar property holds for super invocations, where the local method contains an invoca-
tion of a method in the interface of a parent class. In this case the second method must be
implemented in a superclass of the current class. This property is captured by the function
‘is_correct_super_invocation’.

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 42

value
is_correct_super_invocation : Design_Structure — Bool
is_correct_super_invocation(c, r) =
(
YV c¢; : G.Class_Name, m : M.Method, inv : M.Invocation *
c1 € dom c A
C.method_in_class(m, c(c1)) A
M.invocation_in_request_list(inv, m) A
M.call_vble(inv) = G.super =
is_impl.method_in_superclass(c;, M.call sig(inv), (c, r))

The next two functions ‘signature_in_receiver’ and ‘signature_in_receiver_parameter’ deal with an
invocation to a method in another class, addressing the cases in which the variable representing
the receiver of the invocation (the call variable) respectively is not and is a formal parameter
of the method containing the invocation. In ‘signature_in_receiver’, there should be either an
association or an aggregation relation with the same name as the call variable, and the method
invoked must exist in the sink class of this relation. Note that we do not consider the case in
which the invoked method is one of the reserved methods for manipulating collections since the
classes to which these methods belong are unspecified. In ‘signature_in_receiver_parameter’ we
can only impose a constraint if the type of the parameter (i.e. the class to which the object it
represents belongs) which forms the call variable is defined in the signature of the method. Then
the constraint requires that the method invoked must exist in that class.

value
signature_in_receiver : Design_Structure — Bool
signature_in_receiver(c, r) =
(
Y m : M.Method, e : G.Class_Name, inv : M.Invocation *
e € domc A
C.method_in_class(m, c(e)) A
M.invocation_in_request_list(inv, m) A
G.not _self super(M.call_vble(inv)) A
~ G.is_collection_method(M.meth_name(M.call_sig(inv))) A
~ G.parameter_in_set(M.call_vble(inv), M.f_params(m)) =
(
der : G.Class_Name °
e; € domc A
R.exists_assoc_aggr relation(M.call_vble(inv), e, €1, r) A
exist_method(e;, M.call_sig(inv), (c, r))

)’

signature_in_receiver_parameter : Design_Structure — Bool

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 43

signature_in_receiver_parameter(c, r) =
(
YV m : M.Method, e : G.Class_Name, inv : M.Invocation *
e € dom c A
C.method_in_class(m, c(e)) A
M.invocation_in_request_list(inv, m) A
G.parameter_in_set(M.call_vble(inv), M.f_params(m)) A
G.var(M.call_vble(inv)) ¢ elems M.f params(m) =
let e; = G.rol_of_parameter(M.call_vble(inv), M.f_params(m)) in
exist_method(e;, M.call sig(inv), (c, r))
end

The next constraint deals with invocations of the collection manipulation methods. Here the
invocation must have one actual parameter and the call variable must represent an aggregation
or association relation whose source class is the local class and whose cardinality is many.

value
correct_inv_collection : Design_Structure — Bool

correct_inv_collection(c, r) =
(
Y m : M.Method, ¢; : G.Class_Name, inv : M.Invocation ¢
c1 € dom c A
C.method_in_class(m, c(c1)) A
M.invocation_in_request_list(inv, m) A
G.is_collection_method(M.meth_name(M.call sig(inv))) =
R.vble_many_in rel(M.call_vble(inv), c1, r) A
len M.a_params(M.call sig(inv)) = 1

Next, every invocation that appears on the right-hand side of some assignment in the variable
change map must return a result. Again we consider the two cases in which the call variable
of the invocation is not, respectively is a formal parameter of the containing method. In the
first case, which is represented by the function ‘signature_with_result’, we again require that the
call variable represents an association or aggregation relation and the method invoked returns a
result in the sink class of that relation, and in the second, which is represented by the function
‘signature_with _result_param’, the type (class) of the parameter must again be declared in the
signature and the method invoked must return a result in that class.

value
signature_with_result : Design_Structure — Bool
signature_with_result(c, r) =

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 44

(

Y m : M.Method, ¢; : G.Class_Name, inv : M.Invocation *
c1 € dom c A
C.method_in_class(m, c(c1)) A
M.invocation_in_vble_change(inv, m) A
~ G.is_collection_method(M.meth_name(M.call_sig(inv))) A
~ G.parameter_in_set(M.call_vble(inv), M.f_params(m)) =
(
J ¢y : G.Class_Name o
co € domc A
R.exists_assoc_aggr_relation(M.call_vble(inv), c1, ¢, T) A
exist_method_with res(cy, M.call_sig(inv), (c, r))

);

signature_with _result_param : Design_Structure — Bool
signature_with_result_param(c, r) =
(
Y m : M.Method, ¢; : G.Class_Name, inv : M.Invocation ¢
c1 € dom c A
C.method_in_class(m, c(c1)) A
M.invocation_in_vble_change(inv, m) A
G.parameter_in_set(M.call_vble(inv), M.f_params(m)) A
G.var(M.call_vble(inv)) ¢ elems M.f_params(m) =
let co = G.rol_of parameter(M.call_vble(inv), M.f_params(m)) in
exist_method_with_res(cq, M.call_sig(inv), (c, r))

end

The last constraint on invocations is basically the converse of the above, namely that any
invocation in the body of the method that returns a result must appear on the right-hand side
of some assignment in the variable change map. This constraint is not strictly necessary but is
included since otherwise the results of the invocations are lost and the invocations are then to a
large extent redundant. Again, we consider separately the two cases in which the call variable
of the invocation is not, respectively is a formal parameter of the containing method, these
being represented by the two functions ‘correct_inv_res’ and ‘correct_inv_res_param’. Note that
the first case includes invocations to the method ‘collectionelement’ and both cases additionally
check that assignment is to the correct number of variables.

value
correct_inv_res : Design_Structure — Bool
correct_inv_res(c, r) =

(

Y m : M.Method, ¢1, c2 : G.Class_Name, inv : M.Invocation °

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design

45

let M.mk _Invocation(v, s) = inv, mn = M.meth_name(s) in
¢1 € domc A
co € dom c A
C.method_in_class(m, c(c1)) A
M.invocation_in request_list(inv, m) A

(

mn = G.collectionelement V
(
~ G.parameter_in_set(v, M.f_params(m)) A
R.exists_assoc_aggr_relation(v, c1, ¢,) A
exist_method_with_res(cs, s, (c, r))
)
) =
let
my = method_of(ce, mn, (c, r)),
n = card M.meth_res(msy),
vmm = M.variable_change_body(m)
in
(
3 vs : G.Variable_ Name-set °
vs € dom vm A card vs = n A vin(vs) = inv

end
end

)7

correct_inv_res_param : Design_Structure — Bool
correct_inv_res_param(c, r) =
(
VY m : M.Method, c; : G.Class_Name, inv : M.Invocation ¢
let M.mk _Invocation(v, s) = inv, mn = M.meth_name(s) in
c1 €domc A
C.method_in_class(m, c(c1)) A
M.invocation_in request_list(inv, m) A
G.parameter_in_set(M.call_vble(inv), M.f_params(m)) A
G.var(M.call_vble(inv)) ¢ elems M.f_params(m) =
let
co = G.rol_of parameter(v, M.f_params(m)),
my = method_of(ce, mn, (c, r)),
n = card M.meth res(ms),
vin = M.variable_change_body(m)
in
exist_method_with res(cg, s, (c, r)) =

(

J vs : G.Variable_Name-set ¢

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 46

vs € dom vin A card vs = n A vm(vs) = inv

end
end

All these constraints on invocations are then combined into the function ‘is_correct_invocation’.

value

is_correct_invocation : Design_Structure — Bool

is_correct_invocation(ds) =
is_correct_self_invocation(ds) A
is_correct_super_invocation(ds) A
signature_in_receiver(ds) A
signature_in_receiver_parameter(ds) A
correct_inv_collection(ds) A
signature_with _result(ds) A
signature_with_result_param(ds) A
correct_inv_res(ds) A correct_inv_res_param(ds)

The next constraints deal with properties of relations. First, for every instantiation in the body
of some method in a class, there must be an instantiation relation linking that class to the
class in the instantiation unless the two classes are the same. This property is captured by the
function ‘is_rgst_instantiation’.

value
is_rgst_instantiation : Design_Structure — Bool
is_rgst_instantiation(c, r) =
(
VY e: G.Class_Name, m : M.Method, inst : M.Instantiation
e € dom c A
C.method_in_class(m, c(e)) A
M.instantiation_in_request_list(inst, m) A
M.class_name(inst) # e =
R.exists_inst_relation(e, M.class_name(inst), r)

Next, the name of an association or aggregation relation cannot be the same as the name of any
formal parameter of any method in the source class of the relation or in any of its subclasses.
The source class itself is dealt with in the function ‘is_correct_name_relation’ and the subclasses
in ‘is_correct_name_rel_in_subclass’.

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 47

value
is_correct_name_relation : Design_Structure — Bool
is_correct_name relation(c, r) =
(
YV d : R.Wf Relation, m : M.Method «
derAn
R.is_assoc_or_aggr(d) A
R.source_class(d) € dom ¢ A
C.method_in_class(m, c(R.source_class(d))) =
~ G.parameter_in_set(R.vble_of_assoc_aggr(d), M.f_params(m))

)’

is_correct_name_rel_in_subclass : Design_Structure — Bool
is_correct_name rel in subclass(c, r) =
(
V d : R.Wf_Relation, m : M.Method, ¢y : G.Class_Name °

derA

R.is_assoc_or_aggr(d) A

R.source_class(d) € dom c A

R.is_superclass(R.source_class(d), co, r) A

C.method_in_class(m, c(cq)) =

~ G.parameter_in_set(R.vble_of_assoc_aggr(d), M.f_params(m))

Finally, there are some constraints on the results and formal parameters of methods. The first
of these, which is captured by the function ‘is_consistent_result’, requires that if a method is
declared in a superclass and in a subclass then the result of the method according to the two
declarations must be the same except that it is possible for the declaration in the superclass to
return a result and the declaration in the subclass to be error.

value
is_consistent_result : Design_Structure — Bool
is_consistent_result(c, r) =
(
V m : G.Method_Name, c1, co : G.Class_Name
¢1 € dom ¢ A
c2 € dom c A
R.is_superclass(ci, c2, T) A
C.method_name_in_class(m, c(c1)) A
C.method _name_in_class(m, c(cz)) =
let
m; = C.class_methods(c(c1))(m), me = C.class_methods(c(cz))(m)
in
(M.meth_res(mi) = {} A M.meth_res(ms) = {}) V

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 48

(M.meth_res(mi) # {} A M.meth_res(ms) # {}) V
(M.meth_res(m;) # {} A M.body(msy) = M.error)
end

A similar constraint requires that if a method is declared in a superclass and in a subclass then
the formal parameters of the method according to the two declarations must be the same.

value
is_consistent_f_params : Design_Structure — Bool
is_consistent_f_params(c, r) =
(
V m : G.Method_Name, c1, co : G.Class_Name ¢
¢1 € dom ¢ A
co € dom c A
R.is_superclass(ci, c2, T) A
C.method _name_in_class(m, c(c1)) A
C.method _name_in_class(m, c(cz)) =
M.f_params(C.class_methods(c(c1))(m)) =
M.f _params(C.class_methods(c(cz))(m))

Finally, the function ‘correct_paramTyped_in_f param’ requires that the name of any class which
is used to denote the type of any formal parameter in some method in the design must be one
of the classes in the design.

value
correct_paramTyped_in_f_ param : Design_Structure — Bool
correct_paramTyped_in_f param(c, r) =
(
Y c1, ¢ : G.Class_Name, m : M.Method, v : G.Variable_Name ¢
c1 € dom c A
C.method_in_class(m, c(c1)) A
G.paramTyped(v, c2) € elems M.f params(m) =
co € dom ¢

These last three constraints are combined in the function ‘is_correct_res_f_param’, and all con-
straints on the design are combined in the function ‘is_wf_design_structure’. This is then used to
construct the subtype ‘Wf_Design_Structure’ representing well-formed designs in the standard
way.

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

A Formal Model of Object-Oriented Design 49

value
is_correct_res_f_param : Design_Structure — Bool
is_correct_res_f_param(ds) =
is_consistent_result(ds) A
is_consistent_f params(ds) A correct_paramTyped_in_f param(ds),

is_wf_design_structure : Design_Structure — Bool

is_wf_design_structure(ds) =
is_defined _class(ds) A
correct_state_hierarchy(ds) A
correct_multiple_inheritance(ds) A
not_allowed(ds) A
is_impl_error_interf_inherited(ds) A
is_correct_design_class(ds) A
is_implemented _signature(ds) A
is_correct_invocation(ds) A
is_rgst_instantiation(ds) A
is_correct_name_relation(ds) A
is_correct_name_rel_in_subclass(ds) A
is_correct_res_f_param(ds)

type
Wi _Design_Structure = {| ds : Design_Structure ¢ is_wf _design_structure(ds) |}

We conclude this section by defining a single auxiliary function ‘invokes’ which represents a
generalisation of the possibly indirect invocation as seen, for example, in the invocation of the
StoreCommand method by the Client class in the Command pattern (see [13] and the discussion
of the Command pattern in [18]). In fact this function checks if a method m in a particular
class (called client in the specification) invokes a method mn from a class cs on a given variable
(called acommand in the specification) which is in fact the nth parameter of the invocation.

The function is defined recursively. In the base case, the invocation is direct, so there is an
invocation inv; in the body of the method m whose call variable represents an association or
aggregation directly linking the two classes concerned and which invokes mn with the correct
actual parameter. In the recursive case, there is a method mgz in an intermediate class cj
contains a direct invocation of the method mn in the class cs and which is itself invoked,
possibly indirectly, by the method m. We also take account of the fact that the position of the
parameter representing the acommand variable might not be the same in the two invocations:
it is the nth parameter of the second (direct) invocation from c3 to c2, and we find the position
of the variable in the first invocation using the function ‘position_of’ defined in Section 3.1.

value
invokes :

M.Method x G.Method_Name x Nat x G.Variable Name x

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Linking Designs to Patterns 50

G.Class_Name x G.Class_Name x Wf Design_Structure
%
Bool
invokes(m, mn, n, acommand, client, co, (dsc, dsr)) =
(
d invy : M.Invocation *
M.invocation_in_request_list(invy, m) A
R.exists_assoc_aggr_relation(M.call_vble(invy), client, ca, dsr) A
M.a_params(M.call_sig(inv))(n) = acommand A
M.meth_name(M.call sig(inv;)) = mn
)V
(
dc3 : G.Class_Name, mg : G.Method_Name, inv : M.Invocation, p : G.Parameter ¢
R.exists_assoc_aggr_relation(M.call_vble(inv), c3, cg, dsr) A
has_method(mgs, c3, (dsc, dsr)) A
let mp = method_of(c3, ms, (dsc, dsr)) in
M.invocation_in_request_list(inv, mp) A
M.meth_name(M.call_sig(inv)) = mn A
p € elems M.f params(mp) A
M.a_params(M.call_sig(inv))(n) = G.type_parameter(p) A
let
var = M.a_params(M.call _sig(inv))(n),
pos = G.position_of(var, M.f params(mp))
in
invokes(m, mg3, pos, acommand, client, c3, (dsc, dsr))
end
end

4 Linking Designs to Patterns

A pattern represents an abstract “outline” or “skeleton” of a design, and in order to check
whether a design matches a particular pattern we need to link the model of a design described
and specified above to the design patterns.

We make this link using a renaming map, which associates the names of entities (classes, meth-
ods, state variables and parameters) in the design with the names of corresponding entities in
the pattern. A typical example of this is shown in Figure 3.

Both the correspondence between state variables and that between parameters involves only a
variable renaming, which simply links names of variables in the design to those in the pattern.
We model this using the type ‘VariableRenaming’.

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Linking Designs to Patterns 51

Command
Pattern Level

‘ Receiver)

i Action() receiver ConcreteCommand
777 Execute() O- - - - - - -|- - - - | receiver -> Action()

Design Level
M |
enultem Command

. O_T ‘ command->Execute() ‘
Application N\

Add(document) %dm ‘ ‘ o
3 3 Open() document PasteCommand OpenCommand
X Pese) ‘ document -> Peste() ‘ Execute() Execute) O
N application Ceeeeeo-- b Vo

application-> Open()

Figure 3: Linking the Design with the Pattern

type
VariableRenaming = G.Variable Name # G.Variable Name

The renaming for methods involves two parts, the first of which defines the correspondence be-
tween the names of the methods and the second of which relates their parameters. We define the
type ‘Method_Renaming’ to consist of the method name in the pattern together with the variable
renaming for the method’s parameters. Then the type ‘Method_and_Parameter_Renaming’ links
methods in the design to methods in the pattern by associating a method name with a value
of the type ‘Method_Renaming’. Note that the nested structure of the renaming is necessary
because two different methods may have parameters with the same name.

type
Method_Renaming ::
method_name : G.Method_Name parameterRenaming : VariableRenaming,
Method _and Parameter_ Renaming = G.Method Name Method Renaming

The renaming of a class has a similarly nested structure, the type ‘ClassRenaming’ consisting
of the name of the class in the pattern together with one renaming map for the methods in
the class and another for the state variables. However, in this case it is possible for a single

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Linking Designs to Patterns 52

class in the design to play several roles in the pattern (for instance, in the example illustrating
the Command pattern in [12] the class Application in the design plays both the Client and the
Receiver roles in the pattern). We therefore map each design class to a set of class renamings in
the renaming map, and the full renaming map is represented by the type ‘Renaming’.

type
ClassRenaming :
classname : G.Class_Name
methodRenaming : Method_and_Parameter_Renaming
varRenaming : VariableRenaming,
Renaming = G.Class_Name 7 ClassRenaming-set

In order for the renaming map to be well-formed, no class in the design can have an empty
set of renamings (we model the fact that a class in the design plays no role in the pattern by
simply omitting it from the domain of the renaming map) and the renamings of any one design
class must all refer to different pattern classes (otherwise a single design class can have two
contradictory renamings).

We specify these two properties using the functions ‘images not_empty’ and ‘different_images -
class_name’ respectively, and these are combined in the function ‘is_wf Renaming’, which then
forms the defining predicate of the subtype ‘Wf Renaming’.

value
images_not_empty : Renaming — Bool
images_not_empty(r) = {} Z rngr,

different_images_class_name : Renaming — Bool
different_images_class_name(r) =
(
VY ¢ : G.Class_Name, crq, cry : ClassRenaming ¢
cedomr Acr; # crg Acrp € r(c) Acrg € r(c) =
classname(cri) # classname(crs)

)’

is_-wf Renaming : Renaming — Bool
is_wf_Renaming(r) =
different_images_class name(r) A images_not_empty(r)

type
Wf_Renaming = {| r : Renaming ¢ is_wf_Renaming(r) |}

Then a design together with a renaming map which defines its correspondences to a given pattern
is described by the simple Cartesian product type ‘Design_Renaming’.

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Linking Designs to Patterns 53

type
Design_Renaming = DS.W{_Design_Structure x Wf_Renaming

There are again several consistency conditions that must be satisfied, but before considering
those we introduce some useful auxiliary functions on the renaming alone.

The first of these, ‘renaming_class name’, checks whether a class cd plays a given role cp un-
der some renaming, and if so the second, ‘class_renaming’, returns the whole class renaming
associated with that role.

value
renaming class name : G.Class_Name x G.Class_ Name x Wf Renaming — Bool
renaming_class_ name(cd, cp, r) =
cd €edomr A

(3 ¢ : ClassRenaming * ¢ € r(cd) A classname(c) = cp),

class_renaming : G.Class_Name x G.Class_ Name x Wf Renaming — ClassRenaming
class_renaming(cd, cp, r) as ¢

post ¢ € r(cd) A classname(c) = cp

pre renaming class_name(cd, cp, r)

Next, the two functions ‘method_renames_to’ and ‘state_var_renames_to’ check respectively whether
a method or a state variable plays a given role in a particular class renaming, and the function
‘parameter_renames_to’ checks whether a parameter plays a given role in a given method in a
particular class renaming.

value
method_renames_to : G.Method_Name x ClassRenaming x G.Method_Name — Bool
method_renames_to(md, ¢, mp) =
let mr = methodRenaming(c) in
md € dom mr A method_name(mr(md)) = mp
end,

state_var_renames_to : G.Variable_Name x ClassRenaming x G.Variable_ Name — Bool
state_var_renames_to(vd, ¢, vp) =
let vr = varRenaming(c) in vd € dom vr A vr(vd) = vp end,

parameter_renames_to :
G.Variable_Name x G.Variable Name x G.Method_Name x ClassRenaming — Bool
parameter_renames_to(vd, vp, md, ¢) =
let mr = methodRenaming(c) in
md € dom mr A

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Linking Designs to Patterns 54

let pr = parameterRenaming(mr(md)) in
vd € dom pr A pr(vd) = vp
end
end

Using these functions we define a range of other functions which check that different entities
play particular roles in the renaming as a whole. Thus, ‘renaming_class_method’ checks whether
a class plays a particular role under the renaming and some method plays a given role within
that class, and ‘renaming_class_state’ checks whether a class plays a particular role under the
renaming and some state variable plays a given role within that class. Similar properties for
other combinations of entities (two methods, one method and one state variable, and one method
and one parameter of that method) are checked by the other three functions.

value
renaming class_method :
G.Class_Name x G.Class_ Name x G.Method_Name x G.Method Name %
Wi{_Renaming
_)
Bool
renaming_class_method(cd, cp, md, mp, r) =
renaming_class_name(cd, cp, r) A
let cr = class_renaming(cd, cp, r) in
method_renames_to(md, cr, mp)
end,

renaming_class_state :
G.Class_Name x G.Class_Name x G.Variable Name x
G.Variable_Name x Wf_Renaming
_)
Bool
renaming_class_state(cd, cp, vd, vp, r) =
renaming_class_name(cd, cp, r) A
let cr = class_renaming(cd, cp, r) in
state_var_renames_to(vd, cr, vp)
end,

renaming_class_method, :

G.Class_Name x G.Class_ Name x G.Method_Name x G.Method Name %
G.Method_Name x G.Method_Name x W{_Renaming

_)
Bool

renaming_class_methods(cd, cp, md;, mpy, mdy, mpg, r) =
renaming_class_method(cd, cp, md;, mpy, r) A
renaming_class_method(cd, cp, mdg, mpo, r),

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Linking Designs to Patterns 55

renaming class_method_state :
G.Class_Name x G.Class_ Name x G.Method Name x G.Method Name x
G.Variable_Name x G.Variable_ Name x W{ Renaming
N
Bool
renaming_class_method_state(cd, cp, md, mp, vd, vp, r) =
renaming_class_name(cd, cp, r) A
let cr = class_renaming(cd, cp, r) in
method_renames_to(md, cr, mp) A state_var_renames_to(vd, cr, vp)
end,

renaming_class_method_param :
G.Class_Name x G.Class Name x G.Method Name x G.Method Name x
G.Variable_Name x G.Variable_ Name x W{ Renaming
s
Bool
renaming_class_method_param(cd, cp, md, mp, vd, vp, r) =
renaming_class name(cd, cp, r) A
let cr = class_renaming(cd, cp, r) in
method _renames_to(md, cr, mp) A
parameter_renames_to(vd, vp, md, cr)
end

The next set of functions deal with the collection of all entities in a design which play given roles
under some renaming: ‘method_renaming to’ returns the set of all methods playing a particular
role in some class playing a given role, while ‘state_vars renaming to’ similarly returns the set
of all state variables playing a particular role in some class playing a given role.

value
method_renaming_to :
G.Class_Name x G.Class_Name X G.Method Name x Wf_Renaming
— G.Method Name-set
method_renaming_to(cd, cp, mp, r) =
{ md | md : G.Method_Name ¢ renaming_class_method(cd, cp, md, mp, r) },

state_vars_renaming to :
G.Class_Name x G.Class_Name x G.Variable Name x W{ Renaming
— G.Variable_Name-set
state_vars_renaming_to(cd, cp, vp, r) =
{ vd | vd : G.Variable_ Name * renaming_class_state(cd, cp, vd, vp, r) }

We next define functions which return the number of entities in a design which play given roles

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Linking Designs to Patterns 56

under some renaming: the three functions below deal with classes, methods and state variables
respectively.

value
quantity_of_classes : G.Class_Name x Wf_Renaming — Nat
quantity_of _classes(cp, r) =
card { cd | cd : G.Class_Name ¢ renaming_class_name(cd, cp, r) },

quantity_of_method : G.Class_Name X G.Method Name x Wf Renaming — Nat

quantity of method(cp, mp, r) =

card { md | cd : G.Class_Name, md : G.Method Name ¢
renaming_class_method(cd, cp, md, mp, r) },

quantity_of_vble :
G.Class_Name x G.Class_Name x G.Variable Name x W{ Renaming — Nat
quantity_of_vble(cd, cp, vp, r) = card state_vars_renaming_to(cd, cp, vp, r)

The function ‘quantities_of variables’ checks whether two classes playing two different roles under
the renaming have the same number of state variables playing a given role.

value
quantities_of_variables :
G.Class_Name x G.Class_Name x G.Variable Name x W{ Renaming — Bool
quantities_of_variables(cp1, cpg, vp, 1) =
(
Y cdq, cdo : G.Class_Name
renaming_class_name(cdy, cp1, r) A renaming_class_name(cds, cpa, 1)
=
quantity_of_vble(cdy, cp1, vp, r) = quantity_of_vble(cds, cpe, vp, 1)

The functions ‘has_role_in’ and ‘exists_method’ check respectively whether a class plays some
role in a given set of roles and whether a class has some method playing a given role, while the
function ‘share_role_in’ checks whether there is some role in a given set of roles which is played
by two given classes.

value
has_role_in : G.Class_Name x G.Class_Name-set x Wf Renaming — Bool
has_role_in(cd, cps, r) =

(

Jcp : G.Class_Name ¢ cp € cps A renaming class_name(cd, cp, r)

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Linking Designs to Patterns 57

)7

exists_method : G.Class_Name x G.Method Name x Wf Renaming — Bool
exists_method(cp, mp, r) =
(
YV cd : G.Class_Name °
renaming_class_name(cd, cp, r) =
let cr = class_renaming(cd, cp, r) in
3 md : G.Method_Name * method renames_to(md, cr, mp)
end

)’

share_role_in :
G.Class_Name x G.Class_Name x G.Class_Name-set x Wf_Renaming — Bool
share_role_in(cdy, cdo, cps, 1) =
(
Jcp : G.Class_Name
cp € cps A renaming_class_name(cd;, cp, r) A renaming_class_name(cds, cp, 1)

We now return to the constraints on the type ‘Design_Renaming’ which represents the combi-
nation of a design with a renaming.

The first constraints simply require that every entity which has a renaming under the re-
naming map must be in the design. This is captured by the function ‘is_correct_domain’,
which is in turn written in terms of the three auxiliary functions ‘domain_class_name’, ‘do-
main_method_parameter_name’ and ‘domain_variable name’ which respectively check that the
constraint is satisfied by the classes, the methods and their parameters, and the state variables.

value
is_correct_domain : Design_Renaming — Bool
is_correct_domain(dr) =
domain class_name(dr) A domain method_parameter_name(dr) A
domain_variable_name(dr),

domain_class_ name : Design_Renaming — Bool
domain_class_name((dsc, dsr), r) = dom r C dom dsc,

domain_method_parameter_name : Design_Renaming — Bool
domain method_parameter name(ds, r) =
(
VY ¢ : G.Class_Name, cr : ClassRenaming, md : G.Method_Name ¢
c€domr Acr € r(c) A md € dom methodRenaming(cr) =
DS.has_method(md, c, ds) A

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Linking Designs to Patterns 58

let m = DS.method_of(c, md, ds) in
dom parameterRenaming(methodRenaming(cr)(md)) C
G.set_f_params(M.f_params(m))

end

)7

domain_variable_name : Design_Renaming — Bool

domain_variable name(ds, r) =
(
VY ¢ : G.Class_Name, cr : ClassRenaming, vd : G.Variable Name *
c €domr A cr € r(c) A vd € dom varRenaming(cr) =
DS.has_state_var(vd, c, ds)

The next constraints relate to the consistency of renamings of methods within a class hierarchy.
The first states that if a method plays some role in a superclass and also some role in a subclass
then the two roles must be the same, and the second says that if a method plays some role in a
superclass and the subclass inherits a different version of the method (i.e. the method is redefined
locally or in an intermediate class) then the method must also play a role in the subclass.

value
equal_meth _ren_in hierarchy : Design Renaming — Bool
equal_meth_ren_in_hierarchy((dsc, dsr), r) =
(
Y ¢, ¢ : G.Class_Name, md : G.Method_Name, cry, cry : ClassRenaming °
cp €Edomr A
co €domr A
R.is_superclass(cy, cg, dsr) A
cr; € r(cy) A
md € dom methodRenaming(cri) A
crg € r(ce) A md € dom methodRenaming(crs) =
methodRenaming(cr;)(md) = methodRenaming(crz)(md)

);

meth_ren_in_hierarchy : Design_Renaming — Bool

meth_ren_in_hierarchy((dsc, dsr), r) =
(
Y ¢1, ¢cg @ G.Class_Name, md : G.Method_Name, cry, cry : ClassRenaming °
cpi Edomr A
cog €Edomr A
R.is_superclass(c, cg, dsr) A
cr; € r(cy) A
crg € r(co) A
md € dom methodRenaming(cri) A

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 59

DS.class_of_method(md, ca, (dsc, dsr)) # ¢1 =
md € dom methodRenaming(crs)

The final constraint applies only to matching designs against GoF patterns and derives from
the fact that no method in the GoF patterns has more than one parameter. This constraint,
which could be omitted if we wanted to generalise the matching to other forms of patterns, is
described by the function ‘card_images_of_parameters’.

value
card_images_of_parameters : Design Renaming — Bool
card_images_of_parameters((dsc, dsr), r) =
(
Y ¢ : G.Class_Name, m : G.Method_Name, cr : ClassRenaming ¢
c€domr Acr € r(c) A m € dom methodRenaming(cr) =
card rng parameterRenaming(methodRenaming(cr)(m)) < 1

Finally, the constraints are combined together into the function ‘is_wf_design_renaming’ and this
is used to define the subtype ‘Wf_Design_Renaming’ of ‘Design_Renaming’ in the usual way.

value
is_-wf_design_renaming : Design_Renaming — Bool
is_wf_design_renaming(dr) =
card_images_of_parameters(dr) A
is_correct_domain(dr) A
equal meth_ren_in_hierarchy(dr) A meth_ren_in_hierarchy(dr)

type
Wi _Design_Renaming = {| pr : Design Renaming * is_wf_design_renaming(pr) |}

5 Specifying Properties of Patterns

We conclude by defining a range of functions which capture properties of the GoF patterns in
our model. Each basically defines a property that an entity in the design must satisfy if it is
to be consistent with the corresponding entity (i.e. the role it plays) in the pattern. Since the
section is rather long we divide it into subsections dealing with classes, state variables, methods
and relations.

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 60

5.1 Specifying Properties of Classes in Patterns

The function ‘exists_one’ checks that there is a single class in the design which plays a given role
in the pattern.

value
exists_one : G.Class_ Name x Wf Design Renaming — Bool
exists_one(cp, (ds, r)) =
(3! cd : G.Class_Name * renaming class_name(cd, cp, r))

Similarly, the function ‘exists_role’ checks that there is at least one class in the design which
plays a given role in the pattern.

value
exists role : G.Class_ Name x Wf Design Renaming — Bool
exists_role(cp, (ds, r)) =
(3 cd : G.Class_Name * renaming_class name(cd, cp, r))

The functions ‘is_abstract_class’ and ‘is_concrete_class’ check that all classes in the design which
play a given role are abstract, respectively concrete.

value
is_abstract_class : G.Class_ Name x Wf Design Renaming — Bool
is_abstract_class(cp, ((dsc, dsr), r)) =
(
YV cd : G.Class_Name °
renaming_class_ name(cd, cp, r) = C.is_abstract_class(dsc(cd))

)’

is_concrete_class : G.Class_Name x W{f_Design_Renaming — Bool
is_concrete_class(cp, ((dsc, dsr), r)) =

(
VY cd : G.Class_Name ¢

renaming_class_name(cd, cp, r) = C.is_concrete_class(dsc(cd))

The function ‘is_concrete’ checks that every class in the design which plays the role cps is a
concrete subclass of every class which plays the role cp;. It is mainly useful in cases where there
is a unique class playing the role cp; so it is generally used in conjunction with the function
‘exists_one’.

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 61

value

is_concrete : G.Class_Name X G.Class_Name X Wf Design_Renaming — Bool
is_concrete(cpy, cp2, ((dsc, dsr), r)) =
(
Y cdy, cdy : G.Class_Name °
renaming_class_name(cd;, cp1, r) A renaming_class_name(cds, cpg, 1) =
R.is_superclass(cdy, cdg, dsr) A DS.is_concrete_class(cda, (dsc, dsr))

The function ‘has_parent_direct’ checks that every class in the design which plays the role cp;
is a direct subclass of some class which plays the role cps.

value

has_parent_direct : G.Class_Name x G.Class_Name x W{_Design_Renaming — Bool
has_parent_direct(cp1, cp2, ((dsc, dsr), r)) =
(
YV cd : G.Class_Name ¢
renaming_class name(cd, cpy, r) =
(
Jedy @ G.Class_Name

renaming_class_name(cds, cpa, r) A R.is_parent(cds, cd, dsr)

The function ‘single_role_in_subclasses’ requires that every class in the design which is a subclass
of the class cd plays at most one of the roles in the set of roles cps.

value
single_role_in_subclasses :
G.Class_Name x G.Class_Name-set x W{_Design_Renaming — Bool
single_role_in_subclasses(cd, cps, ((dsc, dsr), r)) =
(
Y cp1, cp2, cd; : G.Class_Name ¢
cp1 € cps A
Cp2 € cps A
cp1 # cp2 A
R.is_superclass(cd, cdy, dsr) A
renaming_class_ name(cd;, cpy, r) =
~ renaming_class name(cd;, cpe, r)

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 62

The function ‘hierarchy’ checks that there is exactly one class (cd;) in the design which plays
the role cpy; that this class does not play any of the roles in the set of roles cpsy; that every
subclass of cd; plays at most one of the roles in the set of roles cpsi, none of the roles in the
set of roles cpsy, and at least one of the roles in cps; if the subclass is a leaf class; and that if
some subclass of cd; plays some role in cps; and some subclass of that subclass also plays some
role in cps; then the two subclasses must share the same role from cps;. This property in fact
describes most of the hierarchies of classes found in the GoF patterns.

value
hierarchy :
G.Class_Name x G.Class_Name-set x G.Class_Name-set x Wf Design_Renaming
— Bool
hierarchy(cpi, cpsi, cpsz, ((dsc, dsr), r)) =
exists_one(cpi, ((dsc, dsr), r)) A
let c¢d; : G.Class_Name * renaming class_name(cd;, cpy, r) in
~ has_role_in(cdq, cpsg, 1) A
single_role_in_subclasses(cd, cpsi, ((dsc, dsr), r)) A
(
Y cdy : G.Class_Name ¢
R.is_superclass(cdi, cdg, dsr) =
(R.is_leaf(cd;, cdg, dsr) = has_role_in(cdg, cpsi, 1)) A
(cdg € dom r = ~ has_role_in(cdg, cpsa, 1)) A
(
V cds : G.Class_Name °
R.is_superclass(cds, cds, dsr) A
has_role_in(cdg, cpsy, r) A
has_role_in(cds, cpsi, r) =
share_role_in(cds, cds, cpsi, r)

end

The function ‘only_one_hierarchy’ states that among all the classes in a design that play the
role cp there is one class which is a superclass of all the others. It is used in particular in the
specification of the Proxy pattern in [11] to describe the properties of the hierarchy of classes
playing the RealSubject role.

value
only_one_hierarchy : G.Class_ Name x Wf Design_Renaming — Bool
only_one_hierarchy(cp, ((dsc, dsr), 1)) =
let
s ={ cd | cd: G.Class_Name ¢ renaming_class_name(cd, cp, r) }
in

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 63

(
3! r : G.Class_Name °

resA
(
V1’ : G.Class_Name »
' € s\ {r} = R.is_superclass(r, 1, dsr)

end

The function ‘extends_interface’ says that classes playing the role cps extend the interface of
classes playing the role cp; in some way, either by adding new state variables or new methods
or by making abstract methods concrete. It is of course only really useful in situations in which
the role cpe represents a subclass of the role c¢py, and also makes most sense when there is
additionally a unique class playing the role cp;.

value
extends_interface : G.Class Name x G.Class_ Name x Wf Design Renaming — Bool
extends_interface(cpy, cpe, ((dsc, dsr), r)) =
(
V cdy, cdy : G.Class_Name *
renaming_class name(cd;, cpi, r) A renaming_class_name(cds, cpe, r) =
C.class_state(dsc(cda)) # {} V
(
d md : G.Method_Name *
C.method_name_in_class(md, dsc(cds)) A
(
DS.has_method(md, cdy, (dsc, dsr)) =
let m = DS.method_of(cd;, md, (dsc, dsr)) in
M.is_defined(m)
end

The function ‘has_private_interface_by_inh’ requires that no method in any class playing the role
cp2 is invoked in any class playing the role cpy. It is written in terms of the auxiliary function
‘exists_class_invoking method’ which checks whether there is some method mds in some class
cds in the design which invokes the given method md in the class cd;. This invocation may be
through the body of the method mds, in which case there should be an aggregation or association
relation which corresponds to the variable of the invocation and which links the class cds either
to the class cd; or to one of its superclasses. Alternatively, the variable of the invocation could

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 64

be one of the typed parameters of the method mds, in which case this class should be either the
class cdy or one of its superclasses.

value
has_private_interface_by_inh : G.Class_Name x G.Class_Name x Wf Design_Renaming
— Bool
has_private_interface_by_inh(cp1, cpe, ((dsc, dsr), r)) =
(
V cdy, cdo : G.Class_Name, md : G.Method_Name ¢
renaming_class name(cd;, cpy, r) A
renaming_class_name(cds, cp2, r) A
DS.has_method(ind, cdy, (dsc, dsr)) =
~ exists_class_invoking_method(cd;, md, (dsc, dsr))

)’

exists_class_invoking _method :
G.Class_Name x G.Method_Name x DS.W{_Design_Structure — Bool

exists_class_invoking_method(cd;, md, (dsc, dsr)) =
(
dcdy : G.Class_Name, mdy : G.Method_Name, vd : G.Variable_Name,
inv : M.Invocation *
DS.has_method(mds, cds, (dsc, dsr)) A
let m = DS.method_of(cds, mds, (dsc, dsr)) in
M.invocation_in_request_list(inv, m) A
M.meth_name(M.call_sig(inv)) = md A
M.call_vble(inv) = vd A

(
(

J ¢y : G.Class_Name *
R.exists_assoc_aggr relation(vd, cds, c1, dsr) A
(cd; = c¢1 V R.is_superclass(ci, cdy, dsr))
)V
vd € G.set_f_params(M.f_params(m)) A
G.var(vd) ¢ elems M.f params(m) A
let
¢ = G.rol_of_parameter(vd, M.f_params(m))
in
(¢ = cd; V R.is_superclass(c, cdy, dsr))
end

end

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 65

5.2 Specifying Properties of State Variables in Patterns

The function ‘store_unique_vble’ checks whether every class in the design playing a given role
has a single state variable playing a given role.

value
store_unique_vble : G.Class_Name x G.Variable Name x Wf_Design Renaming — Bool

store_unique_vble(cp, vp, (ds, r)) =

(
VY cd : G.Class_Name *

renaming_class_name(cd, cp, r) =

(
)

3! vd : G.Variable_Name ¢ renaming_class_state(cd, cp, vd, vp, r)

Similarly, the function ‘store_vble’ checks that every class in the design playing a given role has
at least one state variable playing a given role.

value
store_vble : G.Class_Name x G.Variable Name x Wf_Design_Renaming — Bool

store_vble(cp, vp, (ds, r)) =

(
YV cd : G.Class_Name *

renaming_class_name(cd, cp, r) =

(
)

3 vd : G.Variable_Name * renaming_class_state(cd, cp, vd, vp, r)

Finally, the function ‘less_quantities_of_variables’ requires that the number of state variables
playing the role vp; in every class in the design playing the role cp; is not greater than the
number of state variables playing the role vpy in any class in the design playing the role cps.

value
less_quantities_of_variables :
G.Class_Name x G.Variable_ Name x G.Class_Name x G.Variable_Name X
Wi _Design_Renaming
_>
Bool

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 66

less_quantities_of_variables(cpi, vpi, cp2, vpe, ((dsc, dsr), r)) =
(
Y cdy, cdy : G.Class_Name, var : G.Variable_Name ¢
renaming_class_ name(cd;, cpy, r) A
R.exists_assoc_aggr relation(var, cdy, cdg, dsr) A
renaming_class_name(cds, cpa, r) =
quantity_of_vble(cdy, cp1, vp1, r) < quantity_of_vble(cds, cpa, vpa, 1)

5.3 Specifying Properties of Relations in Patterns

The extended OMT notation distinguishes association and aggregation relations, and when these
relations are drawn in the OMT diagrams representing the structures of the patterns in the GoF
catalogue [13] either one or the other is shown. However, in some cases it is possible to use
an aggregation relation in the design where the GoF catalogue shows an association relation
and vice versa. For example, the structure of the Command pattern (see Figure 1) shows an
association relation between the Client and the Receiver classes whereas the sample design used
in the motivation of the pattern in [13] has an aggregation relation between the classes playing
these roles. In our model, therefore, we have three possible “implementations” for a relation
that is shown in the GoF catalogue as an association or an aggregation: either it must be an
association, or it must be an aggregation, or it could be either. The three values of the variant
type ‘Rel_Type’ describe these three cases.

type
Rel_Type == Association | Aggregation | AssAggr

The above type is used as the parameter t in the function ‘has_assoc_aggr_reltype’, which checks
whether every class playing the role cp; is linked to every class playing the role cps by an
association or aggregation relation of cardinality ap and specific type t.

value
has_assoc_aggr reltype :
G.Class_Name x G.Class_Name x Rel Type x G.Card x W{_ Design Renaming
— Bool
has_assoc_aggr_reltype(cps, cpe, t, ap, ((dsc, dsr), r)) =
(
Y cdq, cdy : G.Class_Name
renaming_class_name(cd;, cpy, r) A
renaming_class_name(cds, cpa, r) =

(

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 67

3 vd : G.Variable_ Name *
R.exists_assoc_aggr _relation(vd, cdy, cdg, dsr) A
let r; = R.assoc_aggr_relation(cd;, cdg, vd, dsr) in
R.sink_card(r;) = ap A
(t = Aggregation = R.is_aggregation(r1)) A
(t = Association = R.is_association(r;))
end

The function ‘has_assoc_aggr_var_ren’ checks the same property and also checks that the relation
corresponds to a state variable playing the role vp in the class cp;.

value
has_assoc_aggr_var_ren :
G.Class_Name x G.Class_Name x Rel_Type x G.Variable_ Name x G.Card x
Wi{_Design_Renaming
%
Bool
has_assoc_aggr_var ren(cp1, cpe, t, vp, ap, ((dsc, dsr), r)) =
(
Y cdq, cdy : G.Class_Name
renaming_class_name(cd;, cpy, r) A
renaming_class_name(cds, cpa, r) =
let cr; = class_renaming(cd;, cp1, r) in
3 vd : G.Variable_Name ¢
state_var_renames_to(vd, cry, vp) A
R.exists_assoc_aggr _relation(vd, cdy, cdg, dsr) A
let r; = R.assoc_aggr_relation(cd;, cdg, vd, dsr) in
R.sink_card(r;) = ap A
(t = Aggregation = R.is_aggregation(ry)) A
(t = Association = R.is_association(r;))
end
end

The function ‘has_assoc_aggr’ checks that every class playing the role cp; is linked to at least one
class playing the role cps by either an association or an aggregation relation of given cardinality.

value
has_assoc_aggr :
G.Class_Name x G.Class_Name x G.Card x Wf Design Renaming — Bool

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 68

has_assoc_aggr(cp1, cp2, ap, ((dsc, dsr), r)) =
(
VY cd; : G.Class_Name
renaming_class name(cd;, cpy, r) =
(
dcdy : G.Class_Name, vd : G.Variable_Name ¢
renaming_class_name(cds, cpo, r) A
R.exists_assoc_aggr_relation(vd, cda, cdy, dsr) A
let r; = R.assoc_aggr_relation(cds, cdy, vd, dsr) in
R.sink_card(r;) = ap

end

The function ‘has_assoc_aggr com’ checks that there is an association or aggregation relation
between every class playing the role ¢p; and every class playing the role cpo, except that in the
case when a single class plays both roles no relation between that class and itself is required.
This function is used specifically in the specification of the properties of the Command pattern
in [18].

value
has_assoc_aggr_com : G.Class_Name x G.Class_Name x Wf Design Renaming — Bool
has_assoc_aggr_com(cp1, cpe, ((dsc, dsr), r)) =
(
Y cdi, cdo : G.Class_Name *
renaming_class_name(cd;, cpy, r) A
renaming_class name(cdy, cpe, r) A cd; # cdy =
(
3 vd : G.Variable Name ¢
R.exists_assoc_aggr_relation(vd, cdy, cdy, dsr)

The function ‘has_assoc_var_ren’ requires that every class playing the role cp1 has one association
relation of given cardinality with a class playing the role cpy corresponding to each of its state
variables playing the role vp.

value
has_assoc_var_ren :
G.Class_Name x G.Class_Name x G.Variable_ Name x G.Card x Wf_Design_Renaming
_)
Bool

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 69

has_assoc_var_ren(cp1, cp2, vp, ap, ((dsc, dsr), r)) =
(
Y cd; : G.Class Name, vd : G.Variable_ Name
renaming_class_state(cdy, cpy, vd, vp, r) =
(

3! cdsy : G.Class_Name ¢
renaming_class_name(cds, cpo, r) A
R.exists_assoc_aggr_relation(vd, cdi, cda, dsr) A
let r; = R.assoc_aggr_relation(cd;, cdg, vd, dsr) in

R.is_association(r;) A R.sink_card(r;) = ap
end

The function ‘has_unique_assoc_aggr_relation’ checks that there is precisely one association or
aggregation relation between any class playing the role cp; and any class playing the role cps.
This is mainly useful in situations where there is a single class playing the role cpo, in which
case it states that every class playing the role c¢p; has precisely one association or aggregation
relation which links it to that class, and indeed the function is used in just this way in the
specification of the Command pattern in [18].

value
has_unique_assoc_aggr_relation :
G.Class_Name x G.Class_Name x Wf Design_Renaming — Bool
has_unique_assoc_aggr_relation(cp1, cp2, ((dsc, dsr), r)) =
(
Y cdy, cdy : G.Class_Name *
renaming_class_ name(cd;, cpy, r) A
renaming_class name(cdy, cpe, r) =
(
3! vd : G.Variable_Name ¢
R.exists_assoc_aggr_relation(vd, cdy, cdy, dsr)

The function ‘has_at_least_two_assoc_aggr’ requires that every class playing the role cp; is linked
by association or aggregation relations of given cardinality to at least two distinct classes playing
the role cps.

value
has_at_least_two_assoc_aggr :
G.Class_Name x G.Class_Name x G.Card x Wf Design Renaming — Bool

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 70

has_at_least_two_assoc_aggr(cp1, cp2, ap, ((dsc, dsr), r)) =
(
Y cdy : G.Class_Name
renaming_class name(cd;, cpy, r) =
(

3 cdg, cdg : G.Class_Name, vdy, vdy : G.Variable_Name ¢
renaming_class_name(cds, cpo, r) A
renaming_class_name(cds, cpa, r) A
Cd2 7é Cd3 A
R.exists_assoc_aggr_relation(vd;, cdy, cdg, dsr) A
R.exists_assoc_aggr_relation(vds, cdy, cds, dsr) A
let

r; = R.assoc_aggr _relation(cd;, cdg, vdy, dsr),

ro = R.assoc_aggr relation(cd;, cds, vdg, dsr)
in

R.sink_card(r;) = ap A R.sink_card(ry) = ap
end

The next function, ‘has_instantiation’, checks that every class playing the role cps is the sink
of an instantiation relation whose source is some class playing the role cp;. Thus every class
playing the role cps is instantiated by at least one class playing the role cp;.

value
has_instantiation : G.Class_Name X G.Class_Name X Wf_ Design_Renaming — Bool

has_instantiation(cpi, cpe, ((dsc, dsr), r)) =

(
Y cdy : G.Class_Name

renaming_class_name(cds, cpa, r) =

(
Jcdy : G.Class_Name *

renaming_class name(cd;, cp1, r) A
R.exists_inst_relation(cdy, cdg, dsr)

On the other hand, the function ‘has_no_instantiation’ says that there should be no instantiation
relation in a design whose source and sink are classes playing the roles cp; and cps respectively.

value
has_no_instantiation : G.Class_ Name x G.Class_Name x W{_ Design_Renaming — Bool

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 71

has_no_instantiation(cp1, cpe, ((dsc, dsr), r)) =
(

Y cdy, cdy : G.Class_Name °
renaming_class_ name(cd;, cpy, r) A
renaming_class name(cdy, cpe, r) =

~ R.exists_inst_relation(cd;, cdg, dsr)

The function ‘has_unique_assoc_aggr’ combines the above with the function ‘has unique_assoc_-
aggr_relation’ to check that there is precisely one association or aggregation relation between
any class playing the role cp; and any class playing the role cps and no instantiation relation
between the two classes. Again this is mainly useful in situations where there is a single class
playing the role cps.

value
has_unique_assoc_aggr : G.Class_Name x G.Class_Name x Wf_Design Renaming — Bool
has_unique_assoc_aggr(cp1, cpa, dr) =
has_unique_assoc_aggr_relation(cpy, cpg, dr) A
has_no_instantiation(cpi, cpg, dr)

The function ‘class_connected’ checks that for every class playing the role cp; there is at least
one class playing the role cps to which it is linked by an association or aggregation relation, the
relation being either direct or through a superclass of the class playing the role cp;.

value
class_connected : G.Class_Name x G.Class_ Name x W{ Design Renaming — Bool
class_connected(cpi, cpo, ((dsc, dsr), 1)) =
(
V cd; : G.Class_Name °
renaming_class_name(cdy, cpy, r) =
(
Jcdy : G.Class_Name, vd : G.Variable Name *
renaming_class_name(cdsg, cpg, r) A
R.exists_assoc_aggr relation(vd, cdsy, cd;, dsr)

The function ‘equal_inst_asso’ checks that there is an instantiation relation from a class playing
the role cp; to another playing the role cpo if and only if the same two classes are linked in
the opposite direction by an association or an aggregation relation, either directly or through a
superclass of the class playing the role cps.

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 72

value
equal_inst_asso : G.Class_ Name X G.Class_Name x W{f_Design_Renaming — Bool

equal_inst_asso(cp1, cpe, ((dsc, dsr), r)) =
(
Y cdy, cdy : G.Class_Name °
renaming_class_name(cd;, cpy, r) A
renaming_class_name(cds, cpa, r) =
R.exists_inst_relation(cdy, cda, dsr) =
(
d vd : G.Variable_Name ¢
R.exists_assoc_aggr_relation(vd, cds, cdy, dsr)

The function ‘nro_inst_asso’ states that every class playing the role cp; has the same number
of instantiation relations linking it to classes playing the role cps as it has methods playing the

role mp.

value
nro_inst_asso :
G.Class_Name x G.Class_Name x G.Method_Name x Wf_ Design Renaming — Bool

nro_inst_asso(cpi, cp2, mp, ((dsc, dsr), r)) =
(
Y cdy : G.Class_Name
renaming_class name(cd;, cpi, r) =
card
{ci|ci: G.Class_Name °
R.exists_inst_relation(cdy, ci, dsr) A renaming_class_name(ci, cpg, 1)
} =
card
{ md | md : G.Method_Name ¢
renaming_class_method(cd;, cp1, md, mp, r)

}

The function ‘classes_not_related’ says that there are no relations between two different classes
playing the same given role cp, and the function ‘not_related _classes’ generalises this to say that
there are no relations between any class playing the role cp; and any different class playing the

role cpo.

value
classes_not_related : G.Class_ Name x W{_ Design_Renaming — Bool

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 73

classes_not _related(cp, ((dsc, dsr), r)) =
(

Y cdy, cdy : G.Class_Name °
renaming_class_name(cdy, cp, r) A
renaming_class name(cdy, cp, r) A cd; # cde =

R.no_relation(cd;, cdg, dsr)

)’

not_related_classes : G.Class_Name X G.Class_Name x W{f_Design_Renaming — Bool

not_related_classes(cpi, cpe, ((dsc, dsr), r)) =
(

Y cdy, cdy : G.Class_Name °
renaming_class name(cd;, cpi, r) A
renaming_class name(cds, cpe, r) A
cd; 7é cdy =

R.no_relation(cd;, cda, dsr)

The function ‘has_ass_agg var ren one sink’ states that every class playing the role cp; has a
state variable playing the role vp which represents an association or aggregation relation of
given type (t) and cardinality (ap) with a class c¢ playing the role cps, all other classes playing
the role cpy being subclasses of this class ¢. The function is used specifically to describe the
relationship between the Proxy class and the hierarchy of RealSubject classes in the Proxy
pattern (see [11]).

value
has_ass_agg_var_ren_one_sink :
G.Class_Name x G.Class_Name x Rel_Type x G.Variable_Name x G.Card x
Wi{_Design_Renaming
— Bool
has_ass_agg_var_ren_one_sink(cp1, cps, t, vp, ap, ((dsc, dsr), r)) =
(
V cdy : G.Class_Name »
renaming_class_name(cdy, cpy, r) =
(
3 vd : G.Variable_Name °
renaming_class_state(cdi, cp1, vd, vp, 1) A
let
s ={ cd | cd: G.Class_Name * renaming_class_name(cd, cpy, r) }
in
(
3! ¢ : G.Class_Name *
ceEsAN

(

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 74

V ¢’ : G.Class_Name °
¢ € s\ {c} = R.is_superclass(c, ¢/, dsr)
) A
R.exists_assoc_aggr relation(vd, cdy, ¢, dsr) A
let r; = R.assoc_aggr relation(cd;, c, vd, dsr) in
R.sink_card(r;) = ap A
(t = Aggregation = R.is_aggregation(r;)) A
(t = Association = R.is_association(r;))
end

end

5.4 Specifying Properties of Methods in Patterns

The function ‘unique_method’ checks whether every class in the design playing a given role has
a single method playing a given role. Note that this additionally checks that no superclass
can have more than one method playing the given role, which would in fact have to be the
same method because of the consistency conditions on the renaming of inherited methods (see
Section 4).

value
unique_method : G.Class_Name x G.Method_Name x Wf_Design_Renaming — Bool
unique_method(cp, mp, ((dsc, dsr), r)) =
(
V cd : G.Class_Name
renaming_class name(cd, cp, r) =
(
3! md : G.Method_Name
renaming_class method(cd, cp, md, mp, r)
) A
(
V cdy @ G.Class_Name, cro : ClassRenaming e
R.is_superclass(cd, cd;, dsr) A
cd; € domr A cry € r(ed;) =
card method _renaming to(cd;, classname(crg), mp, r) < 1

The functions ‘has_def_method’, ‘has_error_method’ and ‘has_impl.method’ check that every
class in the design playing a given role has at least one method which plays a given role and

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 75

which is abstract, error or implemented respectively.

value
has_def_method : G.Class_Name x G.Method_Name x Wf_Design_Renaming — Bool
has_def_method(cp, mp, ((dsc, dsr), r)) =
(
Y cd : G.Class_Name »
renaming_class name(cd, cp, r) =
(
Jd md : G.Method_Name -
renaming_class_method(cd, cp, md, mp, r) A
let ¢ = DS.class_of_method(md, cd, (dsc, dsr)) in
M.is_defined(C.class_methods(dsc(c))(md))
end

)’

has_error_method : G.Class_ Name x G.Method Name x Wf Design_Renaming — Bool
has_error_method(cp, mp, ((dsc, dsr), r)) =
(
YV cd : G.Class_Name *
renaming_class_name(cd, cp, r) =
(
dmd : G.Method_Name
renaming_class_method(cd, cp, md, mp, r) A
let ¢ = DS.class_of_method(md, cd, (dsc, dsr)) in
M.body(C.class_methods(dsc(c))(md)) = M.error

end

);

has_impl method : G.Class_Name x G.Method_Name x Wf_Design_Renaming — Bool
has_impl_method(cp, mp, ((dsc, dsr), r)) =
(
VY cd : G.Class_Name °
renaming_class_name(cd, cp, r) =
(
Jmd : G.Method Name ¢
renaming_class_method(cd, cp, md, mp, r) A
let ¢ = DS.class_of_method(md, cd, (dsc, dsr)) in
M.is_implemented(C.class_methods(dsc(c))(md))

end

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 76

The functions ‘has_all_def method’ and ‘has_all_impl method’ are similar except that they check
that in every class in the design playing a given role all methods which play a given role are
abstract or implemented respectively.

value
has_all_def_method : G.Class_Name x G.Method_Name x Wf{_Design_Renaming — Bool
has_all_def_method(cp, mp, ((dsc, dsr), r)) =
(
VY cd : G.Class_Name, md : G.Method_Name
renaming_class_method(cd, cp, md, mp, r) =
let ¢ = DS.class_of_method(md, cd, (dsc, dsr)) in
M.is_defined(C.class_methods(dsc(c))(md))
end

)’

has_all_impl_method : G.Class_Name x G.Method_Name x Wf Design Renaming — Bool
has_all_impl method(cp, mp, ((dsc, dsr), r)) =
(
VY cd : G.Class_ Name, md : G.Method Name
renaming_class_method(cd, cp, md, mp, r) =
let ¢ = DS.class_of_method(md, cd, (dsc, dsr)) in
M.is_implemented(C.class_methods(dsc(c))(md))
end

The function ‘has_method_without_res’ checks that all methods playing the role mp in a class
playing the role cp do not return a result.

value

has_method_without_res :

G.Class_Name x G.Method Name x Wf Design Renaming — Bool
has_method_without_res(cp, mp, (ds, r)) =

(

VY cd : G.Class_Name, md : G.Method_Name
renaming_class_method(cd, cp, md, mp, r) =
let m = DS.method_of(cd, md, ds) in M.meth_res(m) = {} end

The function ‘has method_with res’ checks the converse, namely that all methods playing the role
mp in a class playing the role c¢p do return a result. The functions ‘has_method_with_res_with_ren’
and ‘has_method _with_result_class’ represent specialisations of this property. The first says that
the result is a state variable playing the role vp in the class playing the role cp, while the second

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 77

says that the result is a variable within the body of the method playing the role mp (provided
the method is implemented, of course) which represents the result of an instantiation of a class
playing the role cpo.

value
has_ method with res : G.Class_ Name x G.Method Name x Wf Design Renaming — Bool

has_method_with_res(cp, mp, (ds, r)) =
(
VY cd : G.Class_Name, md : G.Method_Name
renaming_class_ method(cd, cp, md, mp, r) =
let m = DS.method_of(cd, md, ds) in M.meth_res(m) # {} end

)7

has_method_with_res_with_ren :
G.Class_Name x G.Method_Name x G.Variable_Name x Wf Design Renaming — Bool
has_method_with_res_with_ren(cp, mp, vp, (ds, r)) =
(
VY cd : G.Class_Name, md : G.Method_Name
renaming_class_ method(cd, cp, md, mp, r) =
(

3 vd : G.Variable_Name ¢
renaming_class_state(cd, cp, vd, vp, r) A
let m = DS.method_of(cd, md, ds) in

M.meth_res(m) = {vd}
end

)’

has_method_with_result_class :
G.Class_Name x G.Method_Name x G.Class_Name x Wf_Design_Renaming — Bool
has_method_with_result_class(cp, mp, cp2, ((dsc, dsr), r)) =
(
V cd : G.Class_Name, md : G.Method_Name
renaming_class_ method(cd, cp, md, mp, r) =
let m = DS.method_of(cd, md, (dsc, dsr)) in
M.is_implemented(m) =
(
3 cde : G.Class_Name, vd : G.Variable_Name, i : M.Instantiation ¢
renaming_class_name(cds, cp2, r) A
vd € M.changed_variables(m) A
M.class_name(i) = cdy A
M.Request_from Instantiation(i) =
M.variable_change_body(m)({vd}) A
M.meth_res(m) = {vd}

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 78

end

The function ‘result_of_Get_State’ says that the result of every method playing the role mp in
a class playing the role cp is the set of state variables playing the role vp in the same class.
This is specifically used to describe the method GetState in the Memento pattern (see [18]).
The function ‘results_of_Get_State’ is similar except that it requires only that the result of the
method is a subset of the state variables playing the role vp, though it additionally requires
that each of these state variables belongs to the result of at least one such method. This is
specifically used to describe the method GetState in the Observer pattern (see [18]).

value
result_of_Get_State :
G.Class_Name x G.Method_Name x G.Variable_Name x Wf Design Renaming
— Bool
result_of_Get_State(cp, mp, vp, (ds, r)) =
(
V cd : G.Class_Name, md : G.Method_Name ¢
renaming_class_method(cd, cp, md, mp, r) =
let
m = DS.method_of(cd, md, ds),
vs = state_vars_renaming_to(cd, cp, vp, r)
in
M.meth_res(m) = vs
end

)’

results_of_Get_State :
G.Class_Name x G.Method_Name x G.Variable_Name x Wf Design Renaming
— Bool
results_of_Get_State(cp, mp, vp, (ds, r)) =
(
VY cd : G.Class_Name, md : G.Method_Name -
renaming_class_ method(cd, cp, md, mp, r) =
let
m = DS.method_of(cd, md, ds),
vs = state_vars_renaming_to(cd, cp, vp, r)
in
M.meth_res(m) # {} A M.meth_res(m) C vs
end
) A
(
VY cd : G.Class_Name, vd : G.Variable_Name *

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 79

renaming_class_state(cd, cp, vd, vp, r) =
(

Jd md : G.Method_Name
renaming_class_method(cd, cp, md, mp, r) A
let m = DS.method _of(cd, md, ds) in

vd € M.meth_res(m)
end

The function ‘res_loc_vchge_inst_aparam self’ requires that every method playing the role mp in
a class playing the role cp is implemented and contains an instantiation of a class playing the
role cpg, the result of this instantiation being assigned to a variable and this variable forming
the result of the method. There should also be an instantiation relation between the two classes.

value
res_loc_vchge_inst_aparam self :
G.Class_Name x G.Method_Name x G.Class_Name x Wf_Design Renaming — Bool
res_loc_vchge_inst_aparam_self(cp, mp, cpe, ((dsc, dsr), r)) =
(
YV cd : G.Class_-Name, md : G.Method_Name ¢
renaming_class_ method(cd, cp, md, mp, r) =
(
dcds : G.Class_Name, vd : G.Variable_Name ¢

R.exists_inst_relation(cd, cdg, dsr) A

renaming_class name(cds, cpa, r) A

let
m = DS.method_of(cd, md, (dsc, dsr)),
inst = M.mk Instantiation(cds, (G.self))

in
M.is_implemented(m) A
{vd} € dom M.variable_change_body(m) A
M.Request_from Instantiation(inst) =
M.variable_change_body(m)({vd}) A
M.meth res(m) = {vd}

end

The function ‘res_local_var_change_inst_aparam _ren’ requires that every method playing the role
mp in a class playing the role cp is implemented and has a body which comprises precisely one
instantiation followed by one invocation. The instantiation is an instantiation of the unique

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 80

class playing the role cps with no parameters and the result of this instantiation is assigned to
some variable, say v. Then the invocation invokes the unique method playing the role mps from
the class playing the role cpy on the variable v, the parameters of this invocation being all state
variables playing the role vp. Finally, the variable v is returned as the result of the method
playing the role mp.

value
res_local var_change_inst_aparam ren :
G.Class_Name x G.Method_Name x G.Variable_Name X
G.Class_Name x G.Method_Name x Wf_Design_Renaming — Bool
res_local_var_change_inst_aparam_ren(cp, mp, vp, cpg, mps, (ds, r)) =
(
Y cd, cdy : G.Class_Name, md, mds : G.Method Name ¢
renaming_class_method(cd, cp, md, mp, r) A
renaming_class method(cds, cpe, mdy, mpg, r) =
let
vs = state_vars_renaming_to(cd, cp, vp, r),
m = DS.method_of(cd, md, ds)
in
M.is_implemented(m) A
let
rlb = M.request_list_body(m),
vin = M.variable_change_body(m),
inst = M.mk_Instantiation(cds, ())
in
3 v : G.Variable_Name, inv : M.Invocation ¢
vin = [{v} — inst] A
M.call_vble(inv) = v A
M.a_params_from_set(M.a_params(M.call_sig(inv)), vs) A
rlb = (inst, inv) A M.meth_res(m) = {v}
end
end

The function ‘res_local var_change_inv_aparam ren’ requires that every method playing the role
mp which has a parameter playing the role vps and belongs to a class playing the role cp is
implemented and has a body which comprises precisely one invocation, this invoking the given
method mpo on the unique state variable playing the role vp with the same parameter. The
result of the invocation is returned as the result of the method.

value
res_local_var_change_inv_aparam ren :

G.Class_Name x G.Method_Name x G.Variable_ Name x G.Method_Name x

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 81

G.Variable_Name x Wf Design Renaming — Bool
res_local_var_change_inv_aparam_ ren(cp, mp, vp, mps, vpa, (ds, r)) =
(
v
cd, cdy : G.Class Name, md : G.Method Name, vd, vd, : G.Variable Name
renaming_class_state(cd, cp, vd, vp, r) A
renaming_class_method_param(cd, cp, md, mp, vds, vps, r) =
let

m = DS.method_of(cd, md, ds),

sig = M.mk_Actual_Signature(mps, (vd)),

inv = M.mk_Invocation(vds, sig)

in
M.is_implemented(m) A
(
J vd; : G.Variable_Name

{vd;} € dom M.variable_change_body(m) A
M.Request_from_Invocation(inv) =
M.variable_change_body(m)({vd;}) A
M.request_list(M.body(m)) = (inv) A
M.meth_res(m) = {vd; }

end

The next group of functions deal with the parameters of methods. The first, ‘no_parameter_in_design’,
says that every method playing the role mp in some class playing the role cp has no (formal) pa-
rameters, while the second, ‘images_ren_one_var_par_in_design’, says that each such method has a
single parameter and that parameter plays the role vp and the third, ‘one_image_ren_pars_in_design’,
extends this further and requires that the single parameter is a typed parameter, the type being

a class playing the role cpy. The function ‘all_pars_same_ren’ places no restriction on the number

of parameters (which could in fact be zero), but requires that all parameters play the given role

vp, and the function ‘fparams_var_ren’ again does not restrict the number of parameters but
requires that there must be at least one playing the role vp.

value

no_parameter_in_design :

G.Class_Name x G.Method_Name x Wf_Design_Renaming — Bool
no_parameter_in_design(cp, mp, (ds, r)) =

(

VY cd : G.Class_Name, md : G.Method_Name
renaming_class method(cd, cp, md, mp, r) =
let m = DS.method_of(cd, md, ds) in M.f_params(m) = () end

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns

82

images_ren_one_var_par-in_design :
G.Class_Name x G.Method_Name x G.Variable_Name X Wf Design Renaming
— Bool
images_ren_one_var_par_in_design(cp, mp, vp, (ds, r)) =
(
V cd : G.Class_Name, md : G.Method_Name
renaming_class_method(cd, cp, md, mp, r) =
let m = DS.method_of(cd, md, ds) in
3 p: G.Parameter °
M.f_params(m) = (p) A
renaming_class_method_param(cd, cp, md, mp,
G.type_parameter(p), vp, r)
end

);

one_image_ren_pars_in_design :
G.Class_Name x G.Method_Name x G.Class_Name x G.Variable_Name x
Wi{_Design_Renaming
— Bool
one_image_ren_pars_in_design(cp;, mp, cps, vp, (ds, r)) =
(
VY cd : G.Class_Name, md : G.Method_Name, vd : G.Variable Name ¢
renaming_class method(cd, c¢p1, md, mp, r) =
renaming_class_method_param(cd, cpy, md, mp, vd, vp, r) A
let m = DS.method_of(cd, md, ds) in
Jcdy @ G.Class_Name °
M.f_params(m) = (G.paramTyped(vd, cdy)) A
renaming_class_name(cd;, cpg, 1)
end

);

all_pars_same_ren :
G.Class_Name x G.Method_Name x G.Variable_Name X Wf Design Renaming
— Bool
all_pars_same_ren(cp, mp, vp, (ds, r)) =
(
VY cd : G.Class_Name, md : G.Method_Name, vd : G.Variable_ Name *
renaming_class_ method(cd, cp, md, mp, r) A
let m = DS.method_of(cd, md, ds) in
vd € G.set_f_params(M.f_params(m))
end =
renaming_class_method_param(cd, cp, md, mp, vd, vp, r)

)7

fparams_var_ren :

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 83

G.Class_Name x G.Method_Name x G.Variable_Name x Wf Design Renaming
— Bool
fparams_var_ren(cp, mp, vp, (ds, r)) =
(
YV cd : G.Class_Name, md : G.Method Name ¢
renaming_class_method(cd, cp, md, mp, r) =
let m = DS.method_of(cd, md, ds) in
3 p: G.Parameter °
p € elems M.f params(m) A
renaming_class method_param(cd, cp, md, mp,
G.type_parameter(p), vp, r)
end

)’

differents_params :
G.Class_Name x G.Method Name x G.Class Name x Wf Design Renaming — Bool
differents_params(cpi, mp, cpe, (ds, r)) =
(
Y cdi, cdg, cd3 : G.Class Name, md;, mds : G.Method Name,
vdy, vdg : G.Variable_Name
renaming_class methods(cd;, cp1, md;, mp, mds, mp, r) A
md; # mdy A
G.paramTyped(vd;, cds) €
elems M.f_params(DS.method_of(cd;, mdy, ds)) A
G.paramTyped(vds, cd3) € elems M.f params(DS.method_of(cd;, mds, ds)) =
Cd2 7é Cd3

The function ‘params_vars_in_SetState_one’ requires that every method playing the role mp in
a class playing the role cp is implemented, has the same number of parameters as there are
state variables playing the role vp in the same class, and has within its body assignments of its
parameters to those state variables, each parameter being assigned to a different state variable.
The function ‘params_vars_in_SetState_many’ is similar except that each method playing the
role mp makes assignments to a subset of the state variables, with the additional constraint that
each state variable must be assigned by at least one such method.

value

params_vars_in_SetState_one :

G.Class_Name x G.Method_Name x G.Variable_Name x Wf Design Renaming — Bool
params_vars_in_SetState_one(cp, mp, vp, (ds, r)) =

(

VY cd : G.Class_Name, md : G.Method_Name *
renaming_class_method(cd, cp, md, mp, r) =
let

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 84

vs = state_vars_renaming_to(cd, cp, vp, r),
m = DS.method_of(cd, md, ds),
fp = M.f_params(m)
in
M.is_implemented(m) A
len fp = card vs A
let
v = M.variable_change_body(m),
vss = { {v'} | v/ : G.Variable Name » v/ € vs }
in
vss C dom v A
M.is_one_one(vm / vss) A
(
Y v : G.Variable Name ¢
vV EVS =
(
3 vrs : M.Variables °
vrs C G.set_f_params(fp) A vi({v}) = vrs

end
end

);

params_vars_in_SetState_many :
G.Class_Name x G.Method_Name x G.Variable_Name x Wf Design Renaming — Bool

params_vars_in_SetState_many(cp, mp, vp, (ds, r)) =
(
VY cd : G.Class_Name, md : G.Method_Name -
renaming_class_ method(cd, cp, md, mp, r) =
let
vs = state_vars_renaming_to(cd, cp, vp, r),
m = DS.method_of(cd, md, ds),
fp = M.f_params(m)
in
M.is_implemented(m) A
len fp 0 A
len fp < card vs A
let
vm = M.variable_change_body(m),
vss = { {v'} | v/ : G.Variable Name « v’ € vs },
varsets = vss N dom vm
in
varsets # {} A
M.is_one_one(vm / varsets) A

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 85

(
V¥ v : G.Variable_Name -

{v} € varsets =
(
3 vrs : M.Variables °
vrs C G.set_f_params(fp) A vin({v}) = vrs

end
end
) A
(
V cd : G.Class_Name, vd : G.Variable_Name
renaming class_state(cd, cp, vd, vp, r) =
(

Jdmd : G.Method_Name ¢
renaming_class_method(cd, cp, md, mp, r) A
let m = DS.method_of(cd, md, ds) in

{vd} € dom M.variable_change_body(m)
end

The next batch of functions deals with the bodies of methods. The first, ‘self invocation’,
requires that the body of every method playing the role mp; in a class playing the role cp;
contains a self-invocation of a method playing the role mps in the same class.

value
self_invocation :
G.Class_Name x G.Method Name x G.Method_Name x Wf_Design Renaming — Bool
self_invocation(cp, mp;, mpe, ((dsc, dsr), r)) =
(
Y cd : G.Class_Name, md; : G.Method Name *
renaming_class_method(cd, cp, md;, mpy, r) =
let m = DS.method_of(cd, md;, (dsc, dsr)) in
d mds : G.Method_Name, i : M.Invocation
renaming_class_method(cd, cp, mds, mpg, r) A
M.invocation_in_request_list(i, m) A
M.meth_name(M.call_sig(i)) = mdy A
M.call_vble(i) = G.self
end

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 86

The function ‘exists_super_invocation’ requires that every class playing the role cp contains at
least one method playing the role mp whose body contains a super-invocation of the same
method. Similarly, the function ‘exists_super_self_inv’ requires that the body of every method
playing the role mps in a class playing the role cp contains a super-invocation of the same
method and a self-invocation of a method playing the role mp; in the same class.

value

exists_super_invocation :

G.Class_Name X G.Method_Name x Wf_Design_Renaming — Bool
exists_super_invocation(cp, mp, (ds, r)) =

(

Y cd : G.Class_Name
renaming_class name(cd, cp, r) =
(

dmd : G.Method_Name, inv : M.Invocation *
renaming_class_method(cd, cp, md, mp, r) A
let m = DS.method _of(cd, md, ds) in

M.invocation_in_request_list(inv, m) A

M.call_vble(inv) = G.super A

M.meth_name(M.call_sig(inv)) = md
end

);

exists_super_self_inv :
G.Class_Name x G.Method_Name x G.Method_Name x W{f_ Design Renaming
— Bool
exists_super_self_inv(cp, mp;, mpy, (ds, r)) =
(
VY cd : G.Class_Name, mdy : G.Method_Name ¢
renaming_class_method(cd, cp, mds, mps, r) =
(
J md; : G.Method_Name, invy, inve : M.Invocation
renaming_class_ method(cd, cp, md;, mpq, r) A
let m = DS.method_of(cd, md;, ds) in
M.invocation_in_request_list(invy, m) A
M.call_vble(invy) = G.super A
M.meth_name(M.call_sig(invy)) = mds A
M.invocation_in_request_list(invy, m) A
M.call_vble(invg) = G.self A
M.meth_name(M.call sig(invs)) = md;
end

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 87

The function ‘deleg with_var’ states that every method playing the role mp in a class playing
the role cp is implemented and contains an invocation to each of the state variables playing the
role vp in the same class of each method playing the role mps in a class playing the role cpo. It
is used primarily in cases where there is a unique state variable playing the role vp and also a
unique class playing the role cpy. The function ‘deleg with_var_coll aparam ren’ is similar except
that the parameter mpy represents a method in the design (in particular one of the collection
methods) and a parameter of the main method which plays the role vp, is passed directly as a
parameter to the internal invocation.

value
deleg_with_var :
G.Class_Name x G.Method Name x G.Variable Name X

G.Class_Name x G.Method_Name x Wf_Design_Renaming — Bool

deleg_with_var(cp, mp, vp, cpe, mpe, (ds, r)) =
(

Y cd, cds : G.Class_Name, vd : G.Variable Name, md, mds : G.Method Name *
renaming_class_method(cds, cp2, mda, mpo, r) A
renaming_class_ method _state(cd, cp, md, mp, vd, vp, r) =

let m = DS.method_of(cd, md, ds) in
31i: M.Invocation e
M.invocation_in_request_list(i, m) A
M.meth_name(M.call sig(i)) = mdy A M.call_vble(i) = vd
end

)’

deleg_with_var_coll_aparam _ren :
G.Class_Name x G.Method Name x G.Variable Name X

G.Method Name x G.Variable_Name x Wf Design_ Renaming — Bool

deleg_with_var_coll_aparam ren(cp, mp, vp, mpa, vpe, (ds, 1)) =
(

VY cd : G.Class_Name, md : G.Method_Name, vd, vds : G.Variable_ Name ¢
renaming_class method_param(cd, cp, md, mp, vds, vpa, r) A
renaming_class_state(cd, cp, vd, vp, r) =

let m = DS.method_of(cd, md, ds) in
31i: M.Invocation ¢
M.invocation_in_request_list(i, m) A
M.meth_name(M.call _sig(i)) = mpa A
M.call_vble(i) = vd A
vdy € elems M.a_params(M.call sig(i))
end

The function ‘deleg_var_to_some_class’ states that every method playing the role mp; in a class
playing the role cp; is implemented and contains an invocation to a state variable playing the

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 88

role vp of a method playing the role mps in some class playing the role cps, with the state
variable representing an association or aggregation relation between the two classes.

value
deleg_var_to_some_class :
G.Class_Name x G.Method Name x G.Variable Name x
G.Class_Name x G.Method_Name x Wf_Design Renaming — Bool
deleg_var_to_some_class(cpi, mpi, vp, cpg, mpg, ((dsc, dsr), r)) =
(
V cd; : G.Class_Name, md; : G.Method_Name °
renaming_class_method(cdy, cpy, mdy, mpq, r) =
let m = DS.method of(cd;, md;, (dsc, dsr)) in
M.is_implemented(m) A
(

3 cdy : G.Class Name, mdy : G.Method Name, inv : M.Invocation *
renaming_class_method(cds, cp2, mda, mpo, r) A
M.invocation_in_request_list(inv, m) A
M.meth_name(M.call_sig(inv)) = mdy A
let cr = class_renaming(cd;, cpi, r) in

state_var_renames_to(M.call_vble(inv), cr, vp)
end A
R.exists_assoc_aggr_relation(M.call_vble(inv), cdy, cdg, dsr)

end

The function ‘request_primitives’ states that every method playing the role mp in a class playing
the role cp is implemented and contains self invocations of all methods playing the role mpy in
the same class.

value
request_primitives :
G.Class_Name x G.Method_Name x G.Method_Name x Wf_Design_Renaming — Bool
request_primitives(cp, mp, mpe, (ds, r)) =
(
V cd : G.Class_Name, dtem_meth, dpr.op : G.Method Name
renaming_class_methods(cd, cp, dtem_meth, mp, dpr_op, mps, r) =
(
Jinv : M.Invocation
M.invocation_in request_list (inv, DS.method_of(cd, dtem_meth, ds)) A
M.meth_name(M.call_sig(inv)) = dpr_op A
M.call_vble(inv) = G.self

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 89

The function ‘ob_st_annotation’ states that every method playing the role mp; in a class playing
the role cp; is implemented and contains invocations of all methods playing the role mps in
classes playing the role cps, each invocation having a single parameter.

value
ob_st_annotation :
G.Class_Name x G.Class_Name x G.Method_Name x G.Method_Name x
Wi{_Design_Renaming
— Bool
ob_st_annotation(cp, cp2, mp1, mpe, (ds, r)) =
(

V cdq, cdy : G.Class_Name, md;, mdy : G.Method_Name ¢
renaming_class_method(cdy, cp1, mdy, mpq, r) A
renaming_class method(cds, cpe, mda, mpg, r) =

(
3 vdEl, vdVis : G.Variable_ Name ¢

let
m = DS.method_of(cd;, md;, ds),
so = M.mk_Actual Signature(mds, (vdVis)),
inv; = M.mk Invocation(vdEl, sy)

in
M.invocation_in_request_list (invy, m)

end

The function ‘Update_state_var_change_deleg_var’ states that every method playing the role mp;
in a class playing the role cp is implemented and makes assignments to every state variable
playing the role vp; in the same class through invocations to state variables playing the role vps
of methods playing the role mps in classes playing the role cps.

value
Update_state_var_change_deleg_var :
G.Class_Name x G.Method Name x G.Variable_Name X G.Variable_Name X
G.Class_Name x G.Method Name x Wf Design Renaming — Bool
Update_state_var_change_deleg_var(cp, mpi, vpi1, vpe, cp2, mpe, ((dsc, dsr), r)) =
(
VY cd : G.Class_Name, md : G.Method_Name, vdy : G.Variable_Name ¢
renaming_class_method_state(cd, cp, md, mp1, vdg, vpo, 1) =
let

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 90

m = DS.method_of(cd, md, (dsc, dsr)),
vs = state_vars_renaming_to(cd, cp, vpi, r)
in
M.is_implemented(m) A
vs C M.changed_variables(m) A
(
VY v : G.Variable_Name ¢
vV EVS =
(
3 vset : G.Variable_ Name-set, cdy : G.Class_Name,
inv : M.Invocation *
let
vm = M.variable_change_body(m),
M.mk Invocation(var, sig) = inv,
mdy = M.meth_name(sig)
in
vset € dom vm A
v € vset A
renaming_class method(cds, cpe, mds, mpg, r) A
var = vdg A
R.exists_assoc_aggr_relation(vds, cd, cdg, dsr)
end

end

The function ‘SetM _state_var_change deleg par’ states that every method playing the role mp;
in a class playing the role ¢cp which has a parameter playing the role vps is implemented and
has a body which consists of a single invocation to its parameter of a method playing the role
mps in a class playing the role cpo, the invocation having no parameters and the result of the
invocation being assigned to the state variables playing the role vp; in the same class playing
the role cp.

value
SetM _state_var_change_deleg_par :
G.Class_Name x G.Method Name x G.Variable Name x G.Variable Name x
G.Class_Name x G.Method_Name x Wf_Design_ Renaming — Bool
SetM _state_var_change_deleg_par(cp, mpi, vp1, vpg, Cp2, mpg, (ds, r)) =
(
Y cd : G.Class_.Name, md; : G.Method Name, vd, : G.Variable Name ¢
renaming_class_method_param(cd, cp, md;, mpy, vds, vpe, r) =
let
m = DS.method_of(cd, md;, ds),

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 91

vs = state_vars_renaming_to(cd, cp, vpi, r)
in
M.is_implemented(m) A
(
J cdy : G.Class_Name, md; : G.Method_Name ¢
renaming_class_method(cds, cp2, mda, mpo,) A
let
vmm = M.variable_change_body(m),
rlb = M.request_list_body(m),
s = M.mk_Actual _Signature(mds, ()),
inv = M.mk_Invocation(vdas, s)

in
vm = [vs — inv] A rlb = (inv)

end

end

The function ‘use_interface’ states that for every class cd; playing the role cp; and every method
mds playing the role mps in a class cdz which plays the role cps there is a method in the class
cd; which contains an invocation of the method mds, the variable of the invocation representing
an association or aggregation relation between the classes cd; and cds.

value
use_interface :
G.Class_Name x G.Class_Name x G.Method_Name x Wf_Design_Renaming — Bool
use_interface(cp1, cp2, mpo, ((dsc, dsr), r)) =
(
V cdy, cdo : G.Class_Name, mds : G.Method_Name ¢
renaming_class_ name(cp1, cdi, r) A
renaming_class_method(cds, cp2, mdy, mpo, r) =
(
3 md; : G.Method_Name, i : M.Invocation °
DS.has_method(md;, cdy, (dsc, dsr)) A
let
¢ = DS.class_of_method(md;, cdy, (dsc, dsr)),
m = DS.method_of(cd;, md;, (dsc, dsr))
in
M.invocation_in request_list(i, m) A
M.meth_name(M.call sig(i)) = mdy A
R.exists_assoc_aggr_relation(M.call_vble(i), ¢, cdg, dsr)
end

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 92

The function ‘not_use_interface’ states that classes playing the role cp; do not use the interface
represented by methods playing the role mps in classes playing the role cpo, that is there is
no method in any class playing the role cp; which contains an invocation of a method playing
the role mps in a class playing the role cpe and there is no association or aggregation relation
between the two classes which corresponds to such an invocation.

value
not_use_interface :
G.Class_Name x G.Class_Name x G.Method_-Name x Wf_Design Renaming — Bool
not_use_interface(cpy, cpa, mpe, ((dsc, dsr), r)) =
(
Y cdq, cdo : G.Class_Name, mdy, mdsy : G.Method_Name, i : M.Invocation *
renaming_class name(cpy, cdy, r) A
renaming_class_method(cds, cp2, mds, mpo, r) A
DS.has_method(mnd;, cdy, (dsc, dsr)) A
let
¢ = DS.class_of_method(md;, cd;, (dsc, dsr)),
m = DS.method_of(cd;, md;, (dsc, dsr))
in
M.invocation_in request_list(i, m)
end =
M.meth_name(M.call_sig(i)) # mdy A
let ¢ = DS.class_of method(md;, cd;, (dsc, dsr)) in
~R.exists_assoc_aggr_relation(M.call_vble(i), ¢, cdg, dsr)
end

The function ‘visitor’ states that every method md playing the role mp in a class playing the
role cp contains an invocation to a unique method playing the role mps in a unique class playing
the role cpo, the invocation being to a parameter of md which plays the role vp and the only
parameter of the invocation being ‘self’.

value
visitor :
G.Class_Name x G.Method_Name x G.Variable_Name x
G.Class_ Name x G.Method Name x Wf Design Renaming — Bool
visitor(cp, mp, vp, cpg, mpe, (ds, r)) =
(
VY cd : G.Class_Name, md : G.Method_Name, vd : G.Variable_Name *
renaming_class method_param(cd, cp, md, mp, vd, vp, r) =
(
3! mds : G.Method_Name, cdy : G.Class_Name ¢
renaming_class_method(cdsa, cp2, mdg, mpe, r) A

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 93

let
m = DS.method_of(cd, md, ds),
s = M.mk_Actual_Signature(mds, (G.self)),
i = M.mk_Invocation(vd, s)
in
M.invocation_in_request_list(i, m)
end

The function ‘different_create_iterator’ checks that every method playing the role mp in a class
playing the role cp is implemented and produces a single variable as result, this variable being
in the variable change map. In addition, no two different methods playing this role have the
same request or variable associated with the image of their result under their variable change
map.

value
different_create_iterator :
G.Class_Name x G.Method_Name x Wf_Design_Renaming — Bool
different_create_iterator(cp, mp, ((dsc, dsr), r)) =
(
V cd : G.Class_Name, md;, mds : G.Method_Name ¢
renaming_class_methods(cd, cp, md;, mp, mds, mp, r) A
md; 7é mds =
let
m; = DS.method_of(cd, md;, (dsc, dsr)),
my = DS.method_of(cd, mds, (dsc, dsr))
in
M.is_implemented(m;) A
M.is_implemented(ms) A
card M.meth res(m;) =1 A
card M.meth res(my) = 1 =
let
vd; : G.Variable Name ¢ {vd;} = M.meth_res(m;),
vdg : G.Variable_ Name * {vdy} = M.meth_res(ms)
in
{vd;} € dom M.variable_change_body(m;) A
{vd2} € dom M.variable_change body(ms) A
M.variable_change_body(mi)({vd:}) #
M.variable_change _body(ms)({vds})
end
end

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 94

The function ‘never_operate’ checks that classes playing the role cp contain no methods in which
there is an invocation to a variable representing either an association or aggregation relation
with a class playing the role cps.

value
never_operate : G.Class_ZName X G.Class_Name x Wf_Design Renaming — Bool
never_operate(cp, cpe, ((dsc, dsr), r)) =
(
Y cd, cds : G.Class_ Name, md : G.Method_Name, inv : M.Invocation,
vd : G.Variable Name ¢
renaming_class name(cd, cp, r) A
renaming_class_name(cds, cpa, r) A
R.exists_assoc_aggr_relation(vd, cd, cdg, dsr) A
DS.has_method(md, cd, (dsc, dsr)) A
M.invocation_in request_list(inv, DS.method_of(cd, md, (dsc, dsr))) =
M.call_vble(inv) # vd

The function ‘assign_invoke_param;’ checks that every method playing the role mp; and ev-
ery state variable playing the role vp in a class playing the role cp; are related to every pair
of methods playing the roles mpy and mps in a class playing the role cps via the function
‘has_assignment_invocation_param’ defined in Section 3.2 for some (dummy) variable v.

value
assign_invoke_param; :
G.Class_Name x G.Variable_Name x G.Class_Name X G.Method_Name x
G.Method_Name x G.Method_Name x W{_Design_Renaming — Bool

assign_invoke_parami (cp1, vp, cpz, mp1, mpy, mps, (ds, r)) =
(
Y cdq, cdo : G.Class_Name, vd : G.Variable_Name,
md;, mdsy, mds : G.Method_Name ¢
renaming_class_method_state(cd;, cpi, md;, mps, vd, vp, r) A
renaming_class_methods(cds, cpe, mds, mpe, mds, mps, r) =
let m = DS.method_of(cd;, md;, ds) in
(
d v : G.Variable_Name °

M.has_assignment_invocation_param(m, vd, v, mds, mds)

end

The function ‘assign_invoke_params’ states that every method playing the role mp; in a class
playing the role cpy is implemented and includes in its body an invocation to some variable v of

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 95

the method which plays the role mpy in a class playing the role cpg, recording the result of this
invocation in a state variable playing the role vp. Furthermore, for each method playing the role
mp; there is at least one method playing the role mp; in the same class which is implemented
and whose body includes an invocation to the same variable v of a method which plays the role
mps in the class playing the role cpg, the variable vd being passed as the parameter to this
invocation.

value
assign_invoke_paramy :
G.Class_Name x G.Variable_Name x G.Class_Name x G.Method_Name x
G.Method_Name x G.Method_Name x G.Method_Name x Wf_Design_Renaming
— Bool
assign_invoke_params(cpi, vp, Cp2, mp;, mps, mps, mpy, (ds, r)) =
(
Y cdy, cdy : G.Class Name, vd : G.Variable Name,
md;, mds, mdy : G.Method_Name ¢
renaming_class_ method _state(cd;, cp1, mdy, mpy, vd, vp, r) A
renaming_class_methods(cds, cpe, mds, mps, mdy, mpy, r) =
(
d mdy : G.Method_Name, v : G.Variable_Name ¢
renaming_class_method(cdy, cp1, mdg, mpe, r) A
let
m; = DS.method_of(cd;, md;, ds),
my = DS.method_of(cd;, mdy, ds)
in
M.has_assignment(m;j, vd, v, mds) A
M.has_invocation_param(msg, v, mdy, vd)
end

The function ‘client_comment’ states that every method playing the role mp; in a class playing
the role cp; is implemented and contains in its body an instantiation of a class playing either
the role cpo or the role cps. The instantiation of the cps role receives no parameters, while the
instantiation of the cpy role receives a single parameter which is generally a variable representing
a relation between the class playing the role cp; and some class playing the cps role but which
can also be ‘self’ if the class playing the role cp; also plays the role cps. The result of this
instantiation is assigned to a variable, and this variable is then passed as the sole parameter to
an invocation of a method playing the role mps in a class playing the role cpy4, this invocation
being possibly indirect as described by the function ‘invokes’ defined in Section 3.5.

value
client_comment :

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 96

G.Class_Name x G.Class_ Name x G.Class_Name x G.Class_ Name x G.Class_Name x
G.Method_Name X G.Method_Name x Wf_Design Renaming — Bool
client_comment(cp;, cp2, €p3, Cp4, CPs, mp1, mpe, ((dsc, dsr), r)) =
(
V cd; : G.Class_Name, md; : G.Method_Name °
renaming_class_method(cd;, cp1, md;, mpy, r) =
let m = DS.method_of(cd;, mdy, (dsc, dsr)) in
M.is_implemented(m) A
(
dins : M.Instantiation ¢
M.instantiation_in_request_list(ins, m) A
(
renaming_class_name(M.class_name(ins), cpa, r) V
renaming_class name(M.class_name(ins), cps, r)
)
) A
(
YV i: M.Instantiation ¢
let M.mk Instantiation(c, p) =i in
M.instantiation_in_request_list (i, m) A
(
renaming_class_name(c, cpa, 1) V
renaming_class name(c, cps, r)
) =
(
3 cds, c¢dy : G.Class_Name, mdy : G.Method_Name,
v : G.Variable_Name
let vim = M.variable_change_body(m) in
{v} € dom vm A
vm({v}) =iA
renaming_class_name(cds, cps, r) A
renaming_class_method(cd4, cps, mdg, mpe, r) A

(

renaming_class name(c, cpg, r) =

lenp=1A

if cds = c¢d; then
p = (G.self)

else

R.exists_assoc_aggr_relation
(hd (p), cdy, cds, dsr)
end
) A
(renaming_class name(c, cps, 1) = p = ()) A
DS.invokes

(

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 97

M.method_cut(m, i), mde, 1, v, cdi, cds, (dsc, dsr)

)

end
end

end

The function ‘st_com_body’ checks that every method which plays the role mp; in a class playing
the role cp; is implemented, has no result, and has a single parameter which plays the role vp;.
In addition, the body of the method simply assigns this parameter to the state variables playing
the role vpo.

value
st_com_body :
G.Class_Name x G.Method_Name x G.Variable_Name x G.Variable_Name x

Wi _Design_Renaming — Bool

st_com_body(cpi, mp1, vp1, vpe, ((dsc, dsr), r)) =
(

Y cd : G.Class_ Name, md : G.Method_Name, vd;, vds : G.Variable_ Name °
renaming_class state(cd, cpy, vdg, vpg, r) A
renaming_class_method_param(cd, cp;, md, mpy, vd;, vpy, r) =

let
m = DS.method_of(cd, md, (dsc, dsr)),
vmm = M.variable_change_body(m),
rlb = M.request_list_body(m)

in

M.is_implemented(m) A

rlb= () A

vim = [{vdy} — M.Request_or_Var_from_Variables({vd; })]
end

The function ‘lvar_chng_inv_deleg’ checks that every method which plays the role mp; in a class
playing the role cp; is implemented and has a body which contains an invocation of a method
playing the role mps in a class playing the role cpg, the result of which is assigned to a variable.
Another method playing the same role mp; contains an invocation to this variable of a method
playing the role mpy in a class playing the role cps. If the two invocations are in fact in the
same method then they must appear in the order stated.

value

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Specifying Properties of Patterns 98

Ivar_chng_inv_deleg :
G.Class_Name x G.Method_Name x G.Class_Name X G.Method_Name X

G.Class_Name x G.Method Name x W{ Design Renaming — Bool

lvar_chng_inv_deleg(cp;, mpi, cpe, mps, cps, mps, ((dsc, dsr), r)) =
(

V cdy, cdo, cdg : G.Class_Name, mdla, mdlb, mdy, mds : G.Method_Name ¢
renaming_class_methods(cd;, cpi, mdla, mp;, mdlb, mpq, r) A
renaming_class_method(cdsa, cp2, mda, mpo, r) A
renaming_class_method(cds, cps, mds, mps, r) =

(

Jinvy, inve : M.Invocation, vd : G.Variable_ Name ¢
DS.has_method(mdla, cd;, (dsc, dsr)) A
DS.has_method(md1b, cd;, (dsc, dsr)) A
let

cla = DS.class_of_method(mdla, cd;, (dsc, dsr)),
mla = DS.method of(cd;, mdla, (dsc, dsr)),
c1b = DS.class_of_method(md1b, cd;, (dsc, dsr)),
mlb = DS.method_of(cd;, mdlb, (dsc, dsr))
in
M.is_implemented(mla) A
vd € M.changed variables(mla) A
M.variable_change_body(mla)({vd}) =
M.Request_from Invocation(invy) A
M.meth_name(M.call_sig(invy)) = mds A
R.exists_assoc_aggr_relation(M.call_vble(invy), cla, cdg, dsr) A
M.invocation_in_request_list(invy, m1b) A
M.call_vble(invy) = vd A
M.meth_name(M.call _sig(invy)) = mdsz A
R.exists_assoc_aggr_relation(vd, cla, cds, dsr) A
(mla = mlb = M.order(invy, invy, M.request_list_body(mla)))
end

Finally, the function ‘res_chng vble_alternative’ checks that every method which plays the role
mp; in a class playing the role cp; is implemented, has a parameter playing the role vpo, has a
body which contains an alternative, assigns the result of evaluating that alternative to a variable,
and returns the value of that variable as its result. The first block of the alternative contains
an invocation of the method mps with the above parameter on a state variable playing the role
vpi. The second block contains an instantiation of a class playing the role cps, followed by an
invocation of the method mp3 to the same state variable, the result of the instantiation being a
parameter of the invocation.

value

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

Conclusions 99

res_chng_vble_alternative :
G.Class_Name X G.Method_Name x G.Variable Name X G.Variable_ Name x

G.Method_Name x G.Class_Name x G.Method_Name x Wf_Design Renaming
— Bool

res_chng_vble_alternative(cpy, mpi, vpi, vpe, mpsg, cpz, mps, (ds, r)) =
(

Y cdq, cdo : G.Class_ Name, md : G.Method Name, vd;, vds : G.Variable Name ¢
renaming_class_method_param(cdi, cp1, md, mp1, vda, vpa, r) A
renaming_class_state(cd;, cp1, vdi, vp1, r) A
renaming_class name(cds, cpe, r) =
let

m = DS.method of(cd;, md, ds),

sig = M.mk_Actual_Signature(mpg, (vds)),

inv; = M.mk Invocation(vd;, sig)

in

3 vds : G.Variable_Name, blky, blky : M.Block, inst : M.Instantiation,
invy : M.Invocation *
M.is_implemented(m) A
M.Request_from Invocation(invy) € elems blk; A
M.Request_from Instantiation(inst) € elems blky A
M.class_name(inst) = cdy A
M.Request_from Invocation(invy) € elems blky A
M.call_vble(invg) = vd; A
M.meth_name(M.call_sig(inve)) = mps A
vds € elems M.a_params(M.call_sig(invs)) A
M.order (inst, inve, blky) A
vds € M.changed_variables(m) A
M.variable_change_body(m)({vds}) =
M.Request_from_Alternative(blk, blky) A
M.meth _res(m) = {vds}

end

6 Conclusions

We have described a formal model of a generic object-oriented design based on the extended
OMT notation and we have shown how a design in this model can be linked to a GoF pattern
using the renaming map. Combining the model with specifications of the specific properties of
individual GoF patterns as in [18, 11, 4] then gives a way of formally determining whether or
not a given design matches a given pattern, thus allowing designers to be sure, as well as to
demonstrate to others that they are using the patterns correctly and consistently.

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

References 100

The model can also help designers to understand the properties of the GoF patterns clearly,
and indeed the analyses of the various GoF patterns using the model presented in [18, 11, 4]
have identified a number of inconsistencies and incompletenesses in the informal descriptions of
a number of patterns and has led to the proposal of modified pattern structures which resolve
these problems.

The work presented here concentrates on matching a subset of a design to a single pattern at a
time, whereas in practice a design is of course likely to be based around several different patterns
and may even comprise several instances of the same pattern. This can be taken into account
by generalising the renaming map (see [3]).

Although we have limited our attention to GoF patterns in our current work, we believe that
our basic model is in fact sufficiently general that it could be applied in a similar way to give
formal descriptions of other design patterns based on the extended OMT notation. We also
believe that our work could form a strong basis for a similar model of an object-oriented design
based on the UML notation (http://www.omg.org/uml), and we propose to investigate this in
the future.

References

[1] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. Angel. A
Pattern Language. Oxford University Press, 1977.

[2] Brad Appleton. Patterns and Software: Essential Concepts and Terminology.
http://www.enteract.com/~bradapp, November 1997.

[3] Gabriela Aranda and Richard Moore. Formally Modelling Compound Design Patterns.
Technical Report 225, UNU/IIST, P.O. Box 3058, Macau, December 2000.

[4] Gabriela Aranda and Richard Moore. GoF Creational Patterns: A Formal Specification.
Technical Report 224, UNU/IIST, P.O. Box 3058, Macau, December 2000.

[6] Kent Beck, James O. Coplien, Ron Crocker, Lutz Dominick, Gerard Meszaros,
Frances Paulisch, and John Vlissides. Industrial Experience with Design Pat-
terns. Technical report, First Class Software, AT&T, Motorola Inc, Siemens
AG, Bell Northern Research, Siemens AG, and IBM Research. http://wwwl.bell-
labs.com/user/cope/Patterns /ICSE96 /icse.html.

[6] Alejandra Cechich and Richard Moore. A Formal Specification of GoF Design Patterns.
Technical Report 151, UNU/IIST, P.O.Box 3058, Macau, January 1999. Presented at
and published in the proceedings of 6th Asia-Pacific Software Engineering Conference
(APSEC’99) Takamatsu, Japan, December 7-10, 1999, IEEE Computer Society Press, pp.
284-291.

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

References 101

7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

S. Alejandra Cechich and Richard Moore. A Formal Specification of GoF Design Pat-
terns. In Proceedings of the Asia Pacific Software Engineering Conference: APSEC’99,
Takamatsu, Japan, December 1999.

Peter Coad. Object Models - Strategies, Patterns, and Applications. Prentice-Hall, 1995.

A. Eden, J. Gil, Y. Hirshfeld, and A. Yehudai. Towards a Mathematical Foundation for
Design Patterns. http://www.math.tau.ac.il/~eden/bibliography.html.

A. Eden, Y. Hirshfeld, and A. Yehudai. LePUS - A Declarative Pattern Specification
Language. http://www.math.tau.ac.il/~eden/bibliography.html.

Andres Flores and Richard Moore. GoF Structural Patterns: A Formal Specification. Tech-
nical Report 207, UNU/IIST, P.O. Box 3058, Macau, August 2000. Presented at and pub-
lished in the proceedings of the TASTED International Conference on Applied Informatics
(AI 2001), Innsbruck, Austria, 19-22 February 2001, pp. 625-630.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison Wesley, 1995.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: El-
ements of Reusable Object-Oriented Software. Addison Wesley Professional Computing
Series. Addison Wesley, 1995.

Ralph Johnson. Design Patterns in the Standard Java Libraries. In Proceedings of the
Asia Pacific Software Engineering Conference: Keynote Materials, Tutorial Notes, pages
66-101, 1999.

L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming Lan-
guages and Systems, 16(3):872-923, May 1994.

Tommi Mikkonen. Formalizing Design Patterns. In Proceedings of the International Con-
ference on Software Engineering ICSE’98, pages 115-124. IEEE Computer Society Press,
1998.

The RAISE Language Group. The RAISE Specification Language. BCS Practitioner Series.
Prentice Hall, 1992. Available from Terma A/S. Contact jnp@terma.com.

Luis Reynoso and Richard Moore. GoF Behavioural Patterns: A Formal Specification.
Technical Report 201, UNU/IIST, P.O. Box 3058, Macau, May 2000. Presented at and
published in the proceedings of the ACIS 2nd International Conference on Software Engi-
neering, Artificial Intelligence, Networking & Parallel/Distributed Computing (SNPD’01),
Nagoya, Japan, August 2001, pp. 262-270.

J. Rumbaugh. Object-Oriented Modeling and Design. Prentice Hall, 1991.

Report No. 200, July 2000 UNU/IIST, P.O. Box 3058, Macau

