Ia The United Nations
University

UNU/IST

International Institute for
Software Technology

GoF Behavioural Patterns: A Formal

Specification

Luis Reynoso and Richard Moore

May 2000

UNU/IIST Report No. 201

UNU/IIST and UNU/IIST Reports

UNU/IIST (United Nations University International Institute for Software Technology) is a Research and
Training Centre of the United Nations University (UNU). It is based in Macau, and was founded in
1991. It started operations in July 1992. UNU/IIST is jointly funded by the Governor of Macau and
the governments of the People’s Republic of China and Portugal through a contribution to the UNU
Endownment Fund. As well as providing two-thirds of the endownment fund, the Macau authorities also
supply UNU/IIST with its office premises and furniture and subsidise fellow accommodation.

The mission of UNU/IIST is to assist developing countries in the application and development of software
technology.

UNU/IIST contributes through its programmatic activities:

1. Advanced development projects, in which software techniques supported by tools are applied,
2. Research projects, in which new techniques for software development are investigated,

3. Curriculum development projects, in which courses of software technology for universities in devel-
oping countries are developed,

4. University development projects, which complement the curriculum development projects by aiming
to strengthen all aspects of computer science teaching in universities in developing countries,

5. Courses, which typically teach advanced software development techniques,
6. Events, in which conferences and workshops are organised or supported by UNU/IIST, and

7. Dissemination, in which UNU/IIST regularly distributes to developing countries information on
international progress of software technology.

Fellows, who are young scientists and engineers from developing countries, are invited to actively partic-
ipate in all these projects. By doing the projects they are trained.

At present, the technical focus of UNU/IIST is on formal methods for software development. UNU/IIST
is an internationally recognised center in the area of formal methods. However, no software technique is
universally applicable. We are prepared to choose complementary techniques for our projects, if necessary.

UNU/IIST produces a report series. Reports are either Research E, Technical , Compendia or

Administrative . They are records of UNU/IIST activities and research and development achievements.
Many of the reports are also published in conference proceedings and journals.

Please write to UNU/IIST at P.O. Box 3058, Macau or visit UNU/IIST home page: http://www.iist.unu.edu,
if you would like to know more about UNU/IIST and its report series.

Zhou Chaochen, Director — 01.8.1997 — 31.7.2001

Ia The United Nations
University

UNU/IST

International Institute for
Software Technology

P.O. Box 3058
Macau

GoF Behavioural Patterns: A Formal
Specification

Luis Reynoso and Richard Moore

Abstract

GoF behavioural patterns are widely used in object-oriented design when dealing with com-
munication between or the transfer of responsibilities between classes and objects. The GoF
catalogue describes, using a standard but informal notation, eleven behavioural patterns which
can be used to capture different aspects of behaviour in a design. In this paper, we present an
analysis of the essential components and properties of nine of these patterns, including not only
the properties which are described explicitly in the GoF catalogue but also properties which
are not stated explicitly but which can be deduced from the description, intent, motivation,
class and method names, and so on of the pattern. These properties are then specified formally,
using a formal model of a general object-oriented design which was developed in earlier work as
the basis for the specification, and we also formally specify how to check whether a subset of a
particular design matches a particular pattern.

Luis Reynoso is a Fellow of UNU/IIST (November 1999 to May 2000), on leave from Comahue
University, Neuquén, Argentina, where he is teaching assistant. His research interests are fo-
cused on the combination of formal and informal methods and software engineering. He also
works in the Cadastral Provincial Direction of the Public Administration of the government of
the province of Neuquén.

Richard Moore is a Research Fellow on the staff of UNU/IIST, a position he took up on October
1st 1995. He has an M.A. in mathematics from the University of Cambridge and a Ph.D. in
physics from the University of Manchester. He has been engaged in computing science research
in the field of formal methods since 1985, a large part of which was carried out in the formal
methods group at Manchester University. He has written several papers on formal methods and
is co-author of two books on formal methods — mural: a Formal Development Support System,;
and Proof in VDM: A Practitioner’s Guide. He has also worked for the Defence Research Agency
in Malvern, UK, on various formal methods projects, both as a consultant and as a full-time
member of staff.

Copyright (© 2000 by UNU/IIST, Luis Reynoso and Richard Moore

Contents

Contents
1 Introduction 1
2 Behavioural Patterns 2
2.1 Mediator Pattern 4
2.1.1 Formal Specification of the Mediator Pattern 7
2.2 Template Method Pattern 11
2.2.1 Formal Specification of the Template Method Pattern 12
2.3 State Pattern e e 15
2.3.1 Formal Specification of the State Pattern 17
2.4 Strategy Pattern 20
2.4.1 Formal Specification of the Strategy Pattern 22
2.5 Tterator Pattern e 23
2.5.1 Formal Specification of the Iterator Pattern 25
2.6 Memento Pattern 30
2.6.1 Formal Specification of the Memento Pattern 33
2.7 Observer Pattern e 39
2.7.1 Formal Specification of the Observer Pattern 43
2.8 Command Pattern 51
2.8.1 Formal Specification of the Command Pattern 56
2.9 Visitor Pattern Lo e 64
2.9.1 Formal Specification of the Visitor Pattern 67
3 An Example: Instantiation of the State Pattern 73
4 Classifying the Behavioural Patterns 80
4.1 Communication between peer objects oL L. 80
4.2 Variation encapsulated in and altered by a context 82
5 Conclusion 83
A Specification of the TCP Network Connection 84

Report No. 201, May 2000

UNU/IIST, P.O. Box 3058, Macau

Introduction 1

1 Introduction

Design patterns are the product of one cognitive intellectual activity, abstraction, “a fundamen-
tal objective of good software development” [3]. The patterns are generic and embody “best
practice” solutions to a particular range of design problems, though these solutions are not nec-
essarily the simplest or most efficient for any given problem [6]. Patterns thus offer designers a
way of reusing proven solutions to particular aspects of design rather than having to start each
new design from scratch.

Design patterns are also useful because they provide designers with an effective “shorthand” for
communicating with each other about complex concepts [1]: the name of the pattern serves as a
precise and concise way of referring to a design technique which is well-documented and which
is known to work well.

One specific and popular set of software design patterns, which are independent of any specific
application domain, are the so-called “GoF”! patterns which are described in the catalogue of
Gamma et al. [5]. The GoF catalogue is thus a description of the know-how of expert designers
in problems appearing in various different domains.

Although there is nothing in design patterns that makes them inherently object-oriented [1], the
GoF catalogue uses object-oriented concepts to describe twenty three patterns which capture and
compact the essential parts of corresponding design solutions. Each GoF pattern thus identifies
a group of classes, together with the key aspects of their functionality and interactions, which
commonly occur in a range of different object-oriented design problems.

In earlier work [4], we have defined an abstract model of a general object-oriented design in terms
of classes, their properties, and the relationships between them, and we have formally specified
this model using the RAISE specification language RSL [9]. We have also identified common
properties of the classes and relationships appearing in the patterns in the GoF catalogue and
we have defined these as generic RSL functions. These functions thus offer a means of checking
whether (a subset of) a particular design matches a given GoF pattern.

Broadly speaking, this process involves associating various elements of the design (classes, state
variables and methods, including their input parameters and results) with the names appearing
in the pattern using a renaming map. The renaming map thus defines which entity in the design
corresponds to which entity in the pattern, or which role in the pattern is played by a particular
class in the design, and we can then check that each entity appearing in the renaming map at
the design level satisfies the properties of the pattern level entity to which it renames, and hence
that a (subset of a) design matches a pattern as a whole. This process is illustrated in Figure 1.

In this report we use these techniques to specify the properties of nine of the eleven patterns
belonging to the behavioural group of patterns in the GoF catalogue, one of the three groups
into which the catalogue is divided. Section 2 analyses the essential components and properties

1«Gang of Four”

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 2

renaming relationship ————

subset of classes and relations of adesign ————— B>
Our Knowledge of one specific pattern

Figure 1: The Elements of the Matching Process

of each of these patterns, taking into account not only properties which are stated explicitly in
the GoF catalogue but also properties which are implicit in the description, intent, motivation,
class and method names and so on of the pattern. These implicit properties are then used to
formulate an extension to the presentation of the pattern’s structure, where appropriate. We also
give a formal specification of the properties of each pattern in RSL. Note, however, that these
specifications rely almost entirely on the specifications of the common properties of patterns
presented in [4] which are not repeated here. In addition, familiarity with the elements of the
basic model presented in [4] is also assumed when presenting these specifications. In Section 3
we then illustrate how the model can be used to check that an actual design corresponds to a
pattern, using the example which appears in the motivation of the State pattern in [5]. Section 4
then uses the analysis from Section 2 to compare and relate the patterns, both conceptually and
in terms of their specifications. Finally, in Section 5 we give a brief summary of our work and
discuss some possible extensions to it.

2 Behavioural Patterns

The GoF patterns have been fundamental in helping the software engineering community recog-
nise forms of evolution for objects in an application domain. Behavioural patterns basically
deal with communication between or the transfer of responsibilities between classes and objects,
and each pattern identifies an aspect of a system that may vary and proposes a way of writing
programs such that the variation is possible [11].

We begin by briefly describing each pattern, stressing the particular aspect of a system that
varies with each pattern.

Chain of Responsibility
“Potential receivers” serve as the channel of communication between the object that makes
a request and the actual receiver of a message.

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 3

Command
Command objects define operations on components and other objects. Undoable opera-
tions can be carried out by command objects. Command allows classes and objects to be
used for non-physical things, operations and abstract notations [3].

Interpreter
Interpreter represents a grammar as a class hierarchy and implements an interpreter as an
operation on instances of these classes [5].

Iterator
The Iterator pattern abstracts behaviour for accessing and traversing objects in an aggre-
gate. It is also used to allow the elements of an aggregate structure to be accessed without
showing the inner structure (implementation) of the aggregate.

Mediator
The Mediator pattern promotes object interaction to full object status. It fosters loose
coupling by keeping objects from referring to each other explicitly [12]. Instead of col-
leagues referring to each other explicitly, each refers exclusively to the mediator so that
the mediator acts as the channel of communication between multiple peer objects.

Memento
One object coordinates and safekeeps the state of another object, allowing it to recover
its previous state. The snapshot of the object is saved in a memento object. The three
objects interact with each other in terms of coupled methods that save and recover the
class state.

Observer
The one-many relationship between objects is defined in this pattern. An “interface for
signalling changes in the subjects observed” is implemented by the collaborations of the
pattern.

State
The State pattern encapsulates the states of an object so that it can change its behaviour
when its state changes [5]. This pattern allows an object to appear to change its class.

Strategy
The Strategy pattern encapsulates a number of algorithms and lets us vary the algorithm
used at run-time [8].

Template Method
This pattern is classified by [3] as a cliche, a trite of programming. The rule of thumb
underlying this method is: “if a method calls other methods, then by overriding these
methods the calling method changes its behaviour”.

Visitor
Visitor encapsulates behaviour that would otherwise be distributed across classes. It al-
lows behaviour to be added to a composite structure without changing the existing class
definitions [10].

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 4

These properties are summarised in Table 1.

‘ Pattern H Aspect that can vary
Chain of Responsibility || the object that fulfills a request
Command when and how a request is fulfilled
Interpreter grammar and interpretation of a language
Tterator how elements of an aggregate object are accessed or traversed
Mediator how and which objects interact with each other
Memento what private information is stored outside an object, and when
Observer dependencies between objects
State the behaviour of an object, depending on its state
Strategy an algorithm
Template Method steps of an algorithm
Visitor operations that can be applied to objects

Table 1: Aspects of Behavioural Patterns

Each of the subsections below deals with a single pattern. We first present the most important
elements of each pattern (the intent, structure, participants, and collaborations) in the format
used in [5], which has now become the effective standard notation. Then we analyse the prop-
erties of the pattern informally, describing not only those properties which are stated explicitly
in [5] but also those which are implicit in the pattern’s structure, collaborations, intent, moti-
vation, class and method names, and so on. Finally, we present a formal specification of these
properties.

Each specification begins with a definition of a set of constants representing the names of the
entities (classes, state variables, methods and parameters) appearing in the pattern. Then the
properties of the pattern are defined by using these constants as parameters to various functions
which describe general properties of patterns. These functions are all defined in [4].

The order in which the patterns are described below is not significant, except that they are
generally presented in order of increasing complexity. Particular concepts which apply to several
patterns are explained in detail where they first crop up, but only superficially where they
reoccur.

2.1 Mediator Pattern

The Mediator pattern is used “when a set of objects communicate in well-defined but complex
ways so that the resulting interdependencies are unstructured and difficult to understand; when
reusing an object is difficult because it refers to and communicates with many other objects;

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 5

and when a behaviour that’s distributed between several classes should be customizable without
a lot of subclassing” [5]. It is one of the simplest patterns: its structure, which is shown in
Figure 2, includes neither methods nor annotations. It is therefore an appropriate pattern with
which to introduce the simple concepts and properties used in the formal specifications.

Mediator medietor Colleague

/N

ConcreteM ediator ConcreteColleaguel ConcreteColleague2

Figure 2: Mediator Pattern Structure

The intent, participants and collaborations of the pattern as defined in [5] are:

Intent

Define an object that encapsulates how a set of objects interact. Mediator promotes loose
coupling by keeping objects from referring to each other explicitly, and it lets you vary
their interaction independently.

Participants

Mediator

o defines an interface for communicating with Colleague objects.

ConcreteMediator

e implements cooperative behaviour by coordinating Colleague objects.

e knows and maintains its colleagues.

Colleague classes

e each Colleague class knows its Mediator object.

e each colleague communicates with its mediator whenever it would have otherwise
communicated with another colleague.

Collaborations

e Colleagues send and receive requests from a Mediator object. The mediator imple-
ments the cooperative behaviour by routing requests between the appropriate col-
league(s).

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 6

As can be seen from its structure in Figure 2, the Mediator pattern consists essentially of two
linked hierarchies of classes and their subclasses. Such hierarchies are in fact common in many
patterns and share common properties, though the ones appearing in this Mediator pattern are
the simplest form. We explain them using the Mediator-ConcreteMediator hierarchy as example.

First, there should be only a single class in the design which plays the Mediator role, and this
should be an abstract class. Second, although there may in practice be many levels of classes
between the Mediator class and the ConcreteMediator classes, all the leaf classes in the hierarchy
(that is the classes which are subclasses of the Mediator class but which have no subclasses
themselves) must play the ConcreteMediator role. Finally, neither the Mediator class nor any of
its subclasses can play a role from outside the hierarchy (i.e. no class in the Mediator hierarchy
can play either the Colleague or the ConcreteColleague role), though subclasses of the Mediator
class which are not leaf classes may also play the ConcreteMediator role (for example, one concrete
mediator may be a specialisation of another).

Such a hierarchy could of course be degenerate — there may be only a single class playing the
ConcreteMediator role. In our specification of the pattern, and indeed of hierarchies of classes in
all the patterns we deal with, we still consider this case to be a valid instantiation of the pattern.
However, there is in practice little to be gained by separating the Mediator and ConcreteMediator
roles in the design if there is only a single ConcreteMediator class, and we could combine them
into a single role, which would of course be the ConcreteMediator role, and omit the Mediator role
from the pattern entirely — indeed it is stated explicitly in the discussion of the implementation
of the pattern in [5] that “there is no need to define an abstract Mediator class when colleagues
work with only one mediator”. We have neglected this aspect in our specification, instead
choosing to consider this situation as a variation of the pattern. In fact, similar variations can
be made to many other patterns and indeed the concept of variations of a pattern is used by
many authors when they want to express a refinement or an extension of a pattern. These
variations will be the subject of future work.

Another possibility is that a design may contain more than one Mediator hierarchy or more than
one Colleague hierarchy, either coupled in pairs as depicted in the Mediator pattern structure or
perhaps with some sort of sharing between several mediator and colleague hierarchies. We do not
model this situation explicitly, preferring instead to consider it, without any loss of generality,
as multiple instances of a Mediator pattern in which both hierarchies are unique — we simply
construct a different renaming map for each separate instance of the pattern in the design.

According to the participants and collaborations of the pattern, the ConcreteMediator classes
are responsible for implementing cooperative behaviour between colleagues by routing requests
between them. For this to make sense, a ConcreteMediator class should have at least two as-
sociated ConcreteColleague classes in the design otherwise there is little point in having the
mediator — the colleague class is simply communicating with itself. Furthermore, a ConcreteCol-
league class which is not associated with any ConcreteMediator class can hardly be said to play
the ConcreteColleague role since it cannot participate in any communications with other Con-
creteColleague classes except directly. Such direct communication between concrete colleagues is
considered to be contrary to the spirit of the pattern, which requires that the mediators handle

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 7

the communication between the colleagues, and we therefore rule it out and require that every
ConcreteColleague class is associated with at least one ConcreteMediator class.

Based on these considerations, we can now go on to develop the formal specification of the
Mediator pattern.

2.1.1 Formal Specification of the Mediator Pattern

We first define the names of the classes, state variables, methods and parameters used in the
pattern as RSL constants. For the Mediator pattern, these are specified as follows:

value
Mediator : G.Class_ Name,
ConcreteMediator : G.Class_Name,
Colleague : G.Class Name,
ConcreteColleague : G.Class Name,
mediator : G.Variable Name

In order to verify whether some given subset of the classes and relationships of a design effectively
represent a Mediator pattern, we link the classes in the design to classes in the pattern using the
renaming map. The classes in the pattern to which a particular class in the design are linked
in this way are called its roles’. Then, a given subset of the classes and relationships in the
design can be considered as a Mediator pattern if each of these classes has properties which are
consistent with those of its designated role(s) in the pattern.

These properties are defined by instantiating the general functions defined in [4] with parameters
representing the particular names appearing in the Mediator pattern. The resulting specification
then represents the specification of the Mediator pattern.

The specific properties of the classes in the Mediator pattern are as follows:

1. there is a single class which plays the Mediator role. This class is abstract and forms the
root of a hierarchy of classes in which all leaf classes play the ConcreteMediator role and
in which no class plays either the Colleague role or the ConcreteColleague role;

2. there is a single class which plays the Colleague role. This class is abstract and forms the
root of a hierarchy of classes in which all leaf classes play the ConcreteColleague role and
in which no class plays either the Mediator role or the ConcreteMediator role;

*In most cases a class in the design plays a single role (i.e. corresponds to or renames to a single class in the
pattern), but it is possible for one class to play several roles.

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 8

3. the class which plays the Colleague role contains a single state variable which plays the
role of the mediator state variable;

4. the class playing the Colleague role is linked to the class playing the Mediator role by a
one-one association relation representing the state variable playing the mediator role, and
there are no other relations between these two classes;

5. there is at least one class playing the ConcreteMediator role, and every class playing this
role is a concrete subclass of the class which plays the Mediator role;

6. there is at least one class playing the ConcreteColleague role and every class playing this
role is a concrete subclass of the class which plays the Colleague role;

7. every class playing the ConcreteMediator role is linked to at least two classes playing the
ConcreteColleague role by association or aggregation relations;

8. there are no direct relationships between distinct classes playing the ConcreteColleague
role;

9. for every class playing the ConcreteColleague role there is at least one class playing the
ConcreteMediator role which is linked to it by an association or aggregation relation.

We use the functions hierarchy and is_abstract_class from [4] to define the first of these properties.
The function hierarchy is a generic function which checks that a hierarchy of classes in the design
has as its root a class which plays a given role in the pattern and which is unique in the design,
has leaf classes which play any of a given set of roles in the pattern (In this case there is only
one class in this set, namely ConcreteMediator, but it is possible to have more than one class as,
for example, in the Command pattern described in Section 2.8.), and has no classes which play
roles from a given set of roles (in this case Colleague and ConcreteColleague). The property we
require is then obtained by simply instantiating this function with the required roles.

The generic function is_abstract_class checks that all classes that play a given role in the design
are abstract, and again we instantiate this with the appropriate role, namely Mediator, to obtain
the property we require. The first property of the Mediator pattern is thus specified as follows:

value
Mediator_hierarchy : Wf Design Renaming — Bool
Mediator_hierarchy(dr) =
hierarchy

(
)7

Mediator, {ConcreteMediator}, {Colleague, ConcreteColleague}, dr

is_abstract_Mediator : Wf_Design Renaming — Bool
is_abstract_Mediator(dr) = is_abstract_class(Mediator, dr)

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 9

The same functions hierarchy and is_abstract_class are of course used to specify the second
property of the Mediator pattern, except that in this case we instantiate the functions with the
Colleague and ConcreteColleague roles in place of the Mediator and ConcreteMediator roles and
vice versa.

value
Colleague_hierarchy : Wf_Design_Renaming — Bool
Colleague_hierarchy(dr) =
hierarchy

(

Colleague, {ConcreteColleague}, {Mediator, ConcreteMediator}, dr

)’

is_abstract_Colleague : Wf_Design_Renaming — Bool
is_abstract_Colleague(dr) = is_abstract_class(Colleague, dr)

The third property, that the Colleague class contains a single state variable playing the media-
tor role, is obtained by similarly instantiating the function store_unique_variable with both the
Colleague and mediator roles. This is combined in our specification with the specification of the
fourth property which defines the relationship between the Colleague and Mediator classes. The
function has_assoc_aggr_var_ren checks that the two given classes are linked by at least one asso-
ciation or aggregation relation which has given sink cardinality and which represents the given
state variable. This is instantiated with the appropriate roles in the function Mediator_relation
to give the property that there is at least one association relation linking the Colleague and
Mediator classes which represents the mediator state variable and which has sink cardinality one.
The function has_unique_assoc_aggr checks that the two given classes are linked by a unique
association or aggregation and that there is no instantiation relation between them. These two
constraints together ensure that property 4 is satisfied.

value
Mediator_relation : Wf_Design Renaming — Bool
Mediator_relation(dr) =
has_assoc_aggr_var_ren
(Colleague, Mediator, Association, mediator, G.one, dr) A
has_unique_assoc_aggr(Colleague, Mediator, dr) A
store_unique_vble(Colleague, mediator, dr)

The fifth and sixth properties of the Mediator pattern are specified using the functions exists_role
and #s_concrete. The first of these checks that there is at least one class in the design that plays a
given role, while the second checks that the classes of one given role are concrete with respect to
those of another, that is that they are subclasses and none of the methods that are visible in the

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 10

classes (including inherited methods) are defined (i.e. all visible methods are either implemented
or error methods). Note that the subclasses are not necessarily immediate subclasses: they could
in fact be separated from the parent class by a hierarchy of intermediate classes.

value
exists_concrete_Mediator : Wf Design_Renaming — Bool
exists_concrete_Mediator(dr) = exists_role(ConcreteMediator, dr),

is_concrete_Mediator : Wf_Design_Renaming — Bool

is_concrete_Mediator(dr) =
is_concrete(Mediator, ConcreteMediator, dr),

exists_concrete_Colleague : Wf Design Renaming — Bool
exists_concrete_Colleague(dr) =
exists_role(ConcreteColleague, dr),

is_concrete_Colleague : Wf Design Renaming — Bool
is_concrete_Colleague(dr) =
is_concrete(Colleague, ConcreteColleague, dr)

The functions has_at_least_two_assoc_aggr, classes_not_related and has_assoc_aggr are used to
specify the last three properties of the Mediator pattern respectively. With the appropriate
parameters, these functions correspond precisely to the properties required.

value
Colleagues_relation : Wf Design Renaming — Bool
Colleagues_relation(dr) =
has_at_least_two_assoc_aggr
(ConcreteMediator, ConcreteColleague, G.one, dr),

Colleagues_not_related : Wf_Design Renaming — Bool
Colleagues_not_related(dr) =
classes_not_related(ConcreteColleague, dr),

Concrete_Colleagues_relation : Wf_Design_Renaming — Bool

Concrete_Colleagues_relation(dr) =
has_assoc_aggr(ConcreteColleague, ConcreteMediator, G.one, dr)

Finally we can define a single function which checks all the required properties and which thus
verifies if a design represents a Mediator pattern.

value

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 11

is_mediator : Wf Design Renaming — Bool

is_mediator(dr) =
Mediator_hierarchy(dr) A
exists_concrete_Mediator(dr) A
Colleague_hierarchy(dr) A
exists_concrete_Colleague(dr) A
Concrete_Colleagues_relation(dr) A
Mediator_relation(dr) A
Colleagues_relation(dr) A
is_concrete_Mediator(dr) A
is_abstract_Mediator(dr) A
is_concrete_Colleague(dr) A
is_abstract_Colleague(dr) A Colleagues_not_related(dr)

2.2 Template Method Pattern

The Template Method pattern is used “to implement the invariant parts of an algorithm once
and leave it up to subclasses to implement the behaviour that can vary; when common behaviour
among subclasses should be factored and localised in a common class to avoid code duplication;
and to control subclass extensions by defining a method that calls “hook” operations at specific
points, thereby permitting extensions only at those points” [5]. The structure of the pattern is
shown in Figure 3.

AbstractClass

TemplateMethod() O -+--- ...)
PrimitiveOperationi() PrimitiveOperationl1()

PrimitiveOper ation2() H’imitiveOperationZ()

=

ConcreteClass

PrimitiveOperation1()
PrimitiveOperation2()

Figure 3: Template Method Pattern Structure

The intent, participants and collaborations of the pattern are defined in [5] as follows:

Intent

Define the skeleton of an algorithm in an operation, deferring some steps to subclasses.
Template Method lets subclasses redefine certain steps of an algorithm without changing
the algorithm’s structure.

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 12

Participants

AbstractClass

¢ defines abstract primitive operations that concrete subclasses define to implement
steps of an algorithm.

e implements a template method defining the skeleton of an algorithm. The tem-
plate method calls primitive operations as well as operations defined in Abstract-
Class or those of other objects.

ConcreteClass

e implements the primitive operations to carry out subclass-specific steps of the
algorithm.

Collaborations

e ConcreteClass relies on AbstractClass to implement the invariant steps of the algo-
rithm.

The pattern structure shown in Figure 3 consists of a single inheritance hierarchy in which
an abstract class implements a method in terms of operations which are defined locally but
implemented in subclasses. The properties of this hierarchy are similar to the properties of
the two hierarchies in the Mediator pattern (see Section 2.1) though even simpler — the only
classes in the Template Method pattern are AbstractClass and ConcreteClass so we do not need
to specifically exclude other pattern classes from the hierarchy and we simply require that all
leaf classes in the hierarchy play the ConcreteClass role.

The pattern structure also shows only a single TemplateMethod method in the AbstractClass. We
could of course have more than one such method in a design. However, without loss of generality
we can consider that case to correspond to multiple instances of the Template Method pattern,
one for each method. We therefore restrict here to a single such method. Of course a single
TemplateMethod can depend on more than one PrimitiveOperation and these can be implemented
at different levels within the hierarchy.

2.2.1 Formal Specification of the Template Method Pattern

The names of the classes and methods used in the Template Method pattern are defined as the
following RSL constants:

value
AbstractClass : G.Class_ Name,
ConcreteClass : G.Class_Name,
TemplateMethod : G.Method Name,
PrimitiveOperation : G.Method_Name

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 13

The specific properties of the two classes in the Template Method pattern are as follows:

1. there is a single class which plays the AbstractClass role. This class is abstract and forms
the root of a hierarchy of classes in which all leaf classes play the ConcreteClass role;

2. there is at least one class playing the ConcreteClass role, and every class playing this role
is a concrete subclass of the class which plays the AbstractClass role;

3. the class playing the AbstractClass role contains at least one method which plays the
PrimitiveOperation role and all such methods are defined (i.e. not implemented) methods;

4. the class playing the AbstractClass role contains precisely one method which plays the
TemplateMethod role. This method is implemented and contains at least one self invocation
to a method which plays the PrimitiveOperation role;

5. every method which plays the PrimitiveOperation role in a class playing the ConcreteClass
role is implemented.

The first of these properties is exactly analogous, up to the names of the classes involved, to the
first property of the Mediator pattern (see Section 2.1). However, in this case the pattern has
no classes outside this hierarchy so we do not need to explicitly exclude other classes; the third
parameter of the hierarchy function is therefore the empty set. In addition, we do not need to
specify explicitly that the AbstractClass class is abstract because this is implied by property 3 —
a class which contains a defined method cannot be concrete. Our specification of property 1 is
therefore written entirely in terms of the hierarchy function:

value
AbstractClass_hierarchy : Wf_Design_Renaming — Bool
AbstractClass_hierarchy(dr) =
hierarchy (AbstractClass, {ConcreteClass}, {}, dr)

Similarly, the second property is exactly analogous, again up to the names of the classes involved,
to the fifth property of the Mediator pattern:

value
exists_concrete_class : Wf_ Design Renaming — Bool
exists_concrete_class(dr) = exists_role(ConcreteClass, dr),

is_ConcreteClass : Wf_Design Renaming — Bool
is_ConcreteClass(dr) =
is_concrete(AbstractClass, ConcreteClass, dr)

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 14

The third and fourth properties have no counterparts in the Mediator pattern since they are
properties of methods. The third is written simply using the functions has_def method and
has_all_def method from [4]. The first of these checks that all classes playing a given role contain
a defined method playing a given role, while the second checks that all methods playing a given
role in some class are defined methods.

value
has_PrimitiveOperation_def : Wf_Design Renaming — Bool
has_PrimitiveOperation_def(dr) =
has_def method(AbstractClass, PrimitiveOperation, dr) A

has_all def method(AbstractClass, PrimitiveOperation, dr)

The fourth property is specified using the functions has_impl_method, unique_method and re-
quest_primitives. The first of these is analogous to the function has_def method used above
except that it checks for an implemented method instead of a defined method. The function
unique_method checks that all classes playing a given role contain precisely one method which
plays a given role. In addition, it checks that no subclass of the given class contains more than
one method playing the given role. This second part is not useful in the Template Method
pattern but is used in, for example, the Observer pattern to check that the method playing the
Update role is unique both in the Observer class and in the ConcreteObserver classes (see Sec-
tion 2.7). The third function, request_primitives, checks that all methods playing a particular
role in some given class are implemented and include in their bodies an invocation to self of a
method playing another given role. With the appropriate parameters below, this is precisely the
second part of the fourth property of the Template Method pattern.

value
has_TemplateMethod_impl : Wf Design Renaming — Bool
has_TemplateMethod_impl(dr) =
has_impl method(AbstractClass, TemplateMethod, dr) A
request_primitives
(AbstractClass, TemplateMethod, PrimitiveOperation, dr) A
unique_method(AbstractClass, TemplateMethod, dr)

The final property is checked using the function has_all_impl_method. This is analogous to the
function has_all_def-method used in the specification of property 3 above except that it checks
that all methods are implemented.

value
all PrimitiveOperation_impl : Wf Design_ Renaming — Bool

all PrimitiveOperation_impl(dr) =
has_all impl method(ConcreteClass, PrimitiveOperation, dr)

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 15

Combining these properties together yields the following function which verifies if a design
represents a Template Method pattern.

value
is_template_method : Wf_Design Renaming — Bool
is_template_method(dr) =
AbstractClass_hierarchy(dr) A
exists_concrete_class(dr) A
is_ConcreteClass(dr) A
has_TemplateMethod_impl(dr) A
has_PrimitiveOperation def(dr) A all PrimitiveOperation impl(dr)

2.3 State Pattern

The State pattern, which is also known as Objects for States, encapsulates the state of an
object in other, separate objects [2]. In this way it encapsulates state-dependent behaviour: the
ConcreteState classes represent the different state-dependent behaviours. It is used “when an
object’s behaviour depends on its state and it must change its behaviour at run-time depending
on that state, or when operations have large, multipart conditional statements that depend on
the object’s state” [5]. Its structure is shown in Figure 4.

Context dae State
Request() O Handlg()
| sate>Handle() *
ConcreteStateA ConcreteStateB
Handle() Handle()

Figure 4: State Pattern Structure

The intent, participants and collaborations of the pattern are defined in [5] as follows:

Intent

Allow an object to alter its behaviour when its internal state changes. The object will
appear to change its class.

Participants

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 16

Context
o defines the interface of interest to clients.
e maintains an instance of a ConcreteState subclass that defines the current state.

State

e defines an interface for encapsulating the behaviour associated with a particular
state of the Context.

ConcreteState

e each subclass implements a behaviour associated with a state of the Context.
Collaborations

e Context delegates state-specific requests to the current ConcreteState object.

e A context may pass itself as an argument to the State object handling the request.
This lets the State object access the context if necessary.

e Context is the primary interface for clients. Clients can configure a context with
State objects. Once a context is configured, its clients don’t have to deal with the
State objects directly.

e Either Context or the ConcreteState subclasses can decide which state succeeds an-
other and under what circumstances.

The structure of the State pattern comprises a single hierarchy of classes rooted at the abstract
State class, together with a single Context class. The Context class basically defines a common
interface which clients can use to interact with the various ConcreteState subclasses, and essen-
tially it simply forwards requests appropriately via its state variable. This is represented by the
single aggregation relation between these classes in the pattern structure.

In practice, therefore, clients generally interact with the Context class rather than with the
State classes directly, although there can and probably will be direct interaction, in particular
when the state variable in the Context class is being instantiated. This instantiation of the state
variable is not defined explicitly in the pattern, however, so we omit it from our analysis and
specification.

In fact there is no Client class shown in the pattern structure at all, although certain responsi-
bilities of clients are mentioned in the participants and the collaborations. We therefore do not
specify that a client class must exist, though in practice a design using the State pattern would
surely contain at least one such class otherwise the pattern can hardly be claimed to have its
intended use. We do model one property of clients, however, namely that all client classes have
either an association or aggregation relation with the Context class and interact with it via its
Request interface.

Finally, just as for the Mediator pattern (see Section 2.1), the State pattern can have different
variations in its structure which can tailor it to provide a more concrete or comprehensive
solution to a particular problem. In fact seven different variations of the pattern can be found
in [2]. Again, we do not consider such variations here but will address them in future work.

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 17

2.3.1 Formal Specification of the State Pattern

The State pattern uses the following names for classes, state variables and methods:

value
Context : G.Class_Name,
State : G.Class_Name,
ConcreteState : G.Class_Name,
Client : G.Class Name,
state : G.Variable Name,
Handle : G.Method_Name,
Request : G.Method_Name

The classes and relations in the State pattern satisfy the following properties:

1. there is a single class which plays the State role. This class is abstract and forms the root
of a hierarchy of classes in which all leaf classes play the ConcreteState role and in which
no class plays either the Context role or the Client role;

2. there is a single class which plays the Context role and this class is concrete;

3. the class which plays the Context role contains a single state variable which plays the state
role;

4. the class playing the Context role is linked to the class playing the State role by a one-one
aggregation relation representing the state variable playing the state role, and there are
no other relations between these two classes;

5. there is at least one class playing the ConcreteState role, and every class playing this role
is a concrete subclass of the class which plays the State role;

6. the class playing the State role contains at least one method which plays the Handle role
and all such methods are defined methods;

7. every method which plays the Handle role in a class playing the ConcreteState role is
implemented;

8. the class playing the Context role contains at least one method which plays the Request
role. All methods which play this role are implemented and contain at least one invocation
to the state variable playing the state role of a method which plays the Handle role;

9. any class playing the Client role is linked to the class playing the Context role by an
association or aggregation relation, and the client classes communicate with the context
by invoking its Request methods.

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 18

The first of these properties is analogous to the first property of the Mediator pattern (see
Section 2.1), up to the names of the classes of course, but as in the Template Method pattern (see
Section 2.2) we do not need to specify explicitly that the State class is abstract because according
to property 6 the class contains a defined method and therefore cannot be concrete. We therefore
specify only the properties of the hierarchy:

value
State_hierarchy : Wf_Design Renaming — Bool
State_hierarchy(dr) =
hierarchy(State, {ConcreteState}, {Context, Client}, dr)

The second property is specified using the functions ezists_one and is_concrete_class from [4].
The function exists_one checks that a single class in the design plays a given role in the pattern,
and the function is_concrete_class checks that all classes that play a given role are concrete.

value
exists_one_Context : Wf Design Renaming — Bool
exists_one_Context(dr) = exists_one(Context, dr),

is_concrete_Context : Wf_Design_Renaming — Bool
is_concrete_Context(dr) = is_concrete_class(Context, dr),

Properties 3, 4 and 5 are analogous to properties 3, 4 and 5 of the Mediator pattern. The specifi-
cations of these properties therefore follow the corresponding specifications given in Section 2.1.

value
context_relationship : Wf_Design_Renaming — Bool
context_relationship(dr) =
has_assoc_aggr_var_ren
(Context, State, Aggregation, state, G.one, dr) A
has_unique_assoc_aggr(Context, State, dr) A
store_unique_vble(Context, state, dr),

exists_ConcreteState : Wf Design_Renaming — Bool
exists_ConcreteState(dr) = exists_role(ConcreteState, dr),

is_ConcreteState : W Design_Renaming — Bool
is_ConcreteState(dr) = is_concrete(State, ConcreteState, dr)

The sixth property is identical up to the class and method names to the third property of the
Template Method pattern (see Section 2.2).

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 19

value
has_Handle_def : Wf_Design_Renaming — Bool
has_Handle_def(dr) =
has_def_method(State, Handle, dr) A
has_all def_method(State, Handle, dr)

Property 7 is analogous to property 5 of the Template Method pattern.

value
all_Handle_impl : Wf_Design_Renaming — Bool
all Handle_impl(dr) =
has_all impl method(ConcreteState, Handle, dr)

The eighth property is new. The fact that a class has a particular method (which may be
inherited) is specified using the function ezists_method, while the function deleg_with_var checks
the remainder of the property.

value
inside Request : Wf_Design Renaming — Bool
inside_Request(ds, r) =
exists_method(Context, Request, r) A
deleg_with_var(Context, Request, state, State, Handle, (ds, r))

The final property is also new and is checked using the functions has_assoc_aggr_reltype and
use_interface. These check the two clauses of the final property respectively.

value
client_relationship : Wf Design Renaming — Bool
client_relationship(dr) =
has_assoc_aggr_reltype(Client, Context, AssAggr, G.one, dr) A
use_interface(Client, Context, Request, dr)

These properties are then combined together to give the following function which checks if a
design represents a State pattern:

value
is_state_pattern : Wf_Design_Renaming — Bool
is_state_pattern(dr) =

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 20

is_concrete_Context(dr) A

exists_one_Context(dr) A

State_hierarchy(dr) A

exists_ConcreteState(dr) A

client_relationship(dr) A

context_relationship(dr) A

is_ConcreteState(dr) A

has_Handle_def(dr) A all Handle impl(dr) A inside Request(dr)

2.4 Strategy Pattern

The Strategy pattern, which is also known as the Policy pattern, is used “when many related
classes differ only in their behaviour; when you need different variants of an algorithm, for
example reflecting different space/time trade-offs; when an algorithm uses data that clients
shouldn’t know about; or when a class defines many behaviours and these appear as multiple
conditional statements in its operations” [5]. The OMT diagram in Figure 5 shows the structure
of the Strategy pattern.

Context srategy Strategy
Contextinterface() Algorithminterface()
ConcreteStrategyA ConcreteStrategyB
Algorithminterface() Algorithminterface()

Figure 5: Strategy Pattern Structure

The intent, participants and collaborations of the pattern are defined as follows in [5]:

Intent

Define a family of algorithms, encapsulate each one, and make them interchangeable.
Strategy lets the algorithm vary independently from clients that use it.

Participants

Context

e is configured with a ConcreteStrategy object.

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 21

e maintains a reference to a Strategy object.
e may define an interface that lets Strategy access its data.

Strategy

e declares an interface common to all supported algorithms. Context uses this
interface to call the algorithm defined by a ConcreteStrategy.

ConcreteStrategy

e implements the algorithm using the Strategy interface.
Collaborations

e Strategy and Context interact to implement the chosen algorithm. A context may
pass all data required by the algorithm to the strategy when the algorithm is called.
Alternatively, the context can pass itself as an argument to Strategy operations. That
lets the strategy call back on the context as required.

e A context forwards requests from its clients to its strategy. Clients usually create and
pass a ConcreteStrategy object to the context; thereafter, clients interact with the
context exclusively. There is often a family of ConcreteStrategy classes for a client
to choose from.

Although the intent of the Strategy pattern is completely different from that of the State pattern,
the two patterns have almost identical structures: up to renaming of the entities appearing in
the pattern, the only difference is that in the State pattern there is an annotation accompanying
its Request method whereas in the Strategy pattern there is no such annotation accompanying
the corresponding Contextlnterface method.

In fact, even though this annotation is not present in the Strategy pattern, it is clear from
the intent and collaborations of the pattern that the Contextlnterface method must in any case
contain an invocation to the strategy state variable of the Algorithmlnterface method. The
effective properties of the two patterns, at least as defined by their structure, are therefore
identical.

We can, however, identify one important difference between the two patterns which is not
apparent from the structure but which derives from the intent. The intent of the Strategy
pattern is that the Strategy class hierarchy provides alternative implementations of a single
algorithm, with the Algorithmlinterface method in each ConcreteStrategy subclass representing a
particular variation of the algorithm [11]. This means there should be only one method in the
design having a renaming to Algorithmlinterface. In the State pattern, on the other hand, the
intent of the State class hierarchy is to describe changes in the behaviour of an object which
depend on its state. This description of the behaviour could of course involve many methods,
so in the State pattern there may be more than one method in the design which renames to
Handle.

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 22

2.4.1 Formal Specification of the Strategy Pattern

The names of the classes, methods and variables used in the Strategy pattern, and indeed
the whole specification of the pattern barring the additional property identified above, can be
obtained immediately by simply applying a formal renaming to the specification of the State
pattern. Note that where the names used in the two patterns are the same no formal renaming
is required. Note also that we additionally rename the function is_state_pattern to is_strategy0
since this does not represent the whole specification of the Strategy pattern.

use
Strategy for State,
ConcreteStrategy for ConcreteState,
AlgorithmInterface for Handle,
ContextInterface for Request,
strategy for state,
is_strategy0Q for is_state_pattern

in

STATE

The additional property of the Strategy pattern identified above is stated as:

1. the class playing the Strategy role contains exactly one method which plays the Algorith-
mlinterface role

This property is embodied in the function unique_method and is specified as follows:

value
unique_method_algorithm_interface : Wf_Design Renaming — Bool

unique_method_algorithm_interface(dr) =
unique_method(Strategy, AlgorithmInterface, dr)

Then a simple conjunction of the functions unique_method_algorithm_interface and is_strategy0
gives the function which checks whether a given design matches the Strategy pattern:

value
is_a_strategy : Wf_ Design_Renaming — Bool
is_a_strategy(dr) =
unique_method_algorithm _interface(dr) A is_strategy0(dr)

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 23

2.5 Iterator Pattern

The Iterator pattern, which is also known as the Cursor pattern, is used “to access an aggregate
object’s contents without exposing its internal representation; to support multiple traversals of
aggregate objects; or to provide a uniform interface for traversing different aggregate structures
(that is, to support polymorphic iteration)” [5]. Its structure is shown in Figure 6.

gt i Iterator
Firs()
Createlterator() Next()
1sDoney)
Currenttem()
ConcreteAggregate
****************** ' Conoeteterator

Creaelteator) O |

refum new Concretelteretor(th)

Figure 6: Structure of the Iterator Pattern

The intent, participants and collaborations of the pattern defined in [5] are:

Intent

Provide a way to access the elements of an aggregate object sequentially without exposing
its underlying representation.

Participants

Iterator

o defines an interface for accessing and traversing elements.
Concretelterator

e implements the Iterator interface.
o keeps track of the current position in the traversal of the aggregate.

Aggregate
o defines an interface for creating an Iterator object.

ConcreteAggregate

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 24

e implements the Iterator creation interface to return an instance of the proper
Concretelterator.

Collaborations

e A Concretelterator keeps track of the current object in the aggregate and can compute
the succeeding object in the traversal.

The structure again consists of two linked hierarchies, similar to the Mediator pattern (see
Section 2.1), though the relations linking the hierarchies are different: in the Iterator pattern
a ConcreteAggregate class creates instances of Concretelterator classes using its Createlterator
methods and the Concretelterator class then acts back on the same ConcreteAggregate class,
this class having passed itself as parameter to the instantiation. There should thus be one
Createlterator method in a ConcreteAggregate class for each instantiation relation linking that
class to a Concretelterator class, and each Concretelterator class should have association relations
with precisely those ConcreteAggregate classes that instantiate it.

Note that we also require that there are no “redundant” Concretelterator classes, just as we
required there to be no redundant ConcreteColleague classes in the Mediator pattern. Again, this
is not strictly necessary but a Concretelterator class which is not related to any ConcreteAggregate
classes cannot carry out its responsibilities in the pattern which we consider violates the spirit
of the pattern.

Although the Concretelterator class is shown as an empty class in the structure of the pattern (see
Figure 6), it clearly must implement the four methods First, Next, IsDone and Currentltem that
it inherits from the lterator class. We therefore include these methods in our specification, which
is based on the modified structure shown in Figure 7.

Aggregate Client e
Fird()
Createlterator() Next()
IsDone()
Currentitem()
ConcreteAggregate
— 0 Concretelterator
! . First()
return new Concretel terator(this) Next()
1sDone()
Currentltem()

Figure 7: The Modified Iterator Structure

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 25

Finally, note also that we do not explicitly specify any properties of clients. This is because
the Client class is drawn in the structure in [5] in a form which indicates that it has no specific
responsibilities in the pattern.

2.5.1 Formal Specification of the Iterator Pattern

We begin as usual by defining the names of the entities appearing in the pattern. These are:

value
Iterator : G.Class_Name,
Concretelterator : G.Class Name,
Aggregate : G.Class_Name,
ConcreteAggregate : G.Class_Name,
Createlterator : G.Method Name,
First : G.Method_Name,
Next : G.Method_Name,
IsDone : G.Method_Name,
Currentltem : G.Method Name

Now we describe the properties of each of the classes that participates in the pattern:

1. there is a single class which plays the Aggregate role. This class is abstract and forms the
root of a hierarchy of classes in which all leaf classes play the ConcreteAggregate role and
in which no class plays either the Iterator role or the Concretelterator role;

2. there is a single class which plays the Iterator role. This class is abstract and forms the
root of a hierarchy of classes in which all leaf classes play the Concretelterator role and in
which no class plays either the Aggregate role or the ConcreteAggregate role;

3. the class playing the Aggregate role contains at least one method which plays the Createlt-
erator role and all such methods are defined methods;

4. the class playing the lterator role contains exactly one method which plays the First role
and this is a defined method;

5. the class playing the lterator role contains exactly one method which plays the Next role
and this is a defined method;

6. the class playing the Iterator role contains exactly one method which plays the IsDone role
and this is a defined method;

7. the class playing the lterator role contains exactly one method which plays the Currentltem
role and this is a defined method;

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 26

10.

11.

12.

13.

14.

15.

16.

there is at least one class playing the ConcreteAggregate role, and every class playing this
role is a concrete subclass of the class which plays the Aggregate role;

there is at least one class playing the Concretelterator role, and every class playing this role
is a concrete subclass of the class which plays the lterator role;

the method which plays the First role is implemented in every class which plays the Con-
cretelterator role;

the method which plays the Next role is implemented in every class which plays the Con-
cretelterator role;

the method which plays the IsDone role is implemented in every class which plays the
Concretelterator role;

the method which plays the Currentltem role is implemented in every class which plays the
Concretelterator role;

the number of methods which play the Createlterator role in a class playing the ConcreteAg-
gregate role is equal to the number of instantiation relations linking that class to classes
playing the Concretelterator role. Each such method is implemented and contains an in-
stantiation with parameter self of one of the classes playing the Concretelterator role with
which its class is linked by an instantiation relation, and the result of this instantiation is
the result of the method. Each method corresponds to a different instantiation relation so
no two methods contain the same instantiation (that is an instantiation of the same class);

for every class playing the Concretelterator role there is at least one class playing the
ConcreteAggregate role which is linked to it by an instantiation relation;

instantiation and association relations between classes playing the ConcreteAggregate and
Concretelterator roles come in pairs. Thus, if a ConcreteAggregate class has an instantiation
relation to a Concretelterator class then there must be an association relation between the
same two classes but in the opposite direction. Similarly, if a Concretelterator class has
an association relation with a ConcreteAggregate class then there must be an instantiation
relation between the same two classes but in the opposite direction.

The first two properties are analogous to property 1 of the Template Method pattern (see
Section 2.2) and again we only need to specify the properties of the class hierarchies because
both the Aggregate class and the Iterator class contain defined methods (properties 3 to 7) and
so must be abstract.

value
Aggregate_hierarchy : Wf Design Renaming — Bool
Aggregate_hierarchy(dr) =
hierarchy

(

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 27

Aggregate, {ConcreteAggregate}, {Iterator, Concretelterator}, dr

)’

Iterator_hierarchy : Wf_Design Renaming — Bool
Iterator_hierarchy(dr) =
hierarchy
(

Tterator, {Concretelterator}, {Aggregate, ConcreteAggregate}, dr

)

The third property is analogous to property 3 of the TemplateMethod pattern (see Section 2.2):

value
has_Createlterator_def : Wf Design_Renaming — Bool
has_Createlterator_def(dr) =
has_def method(Aggregate, Createlterator, dr) A
has_all def method(Aggregate, Createlterator, dr)

Properties 4 to 7 are analogous to a combination of the first parts of properties 3 and 4 of the
Template Method pattern (see Section 2.2). We therefore specify these properties using the
functions has_def method and unique_method:

value
has First_def : Wf Design Renaming — Bool
has_First_def(dr) =
unique_method(Iterator, First, dr) A
has_def_method(Iterator, First, dr),

has_Next_def : Wf Design_Renaming — Bool
has_Next_def(dr) =
unique_method(Iterator, Next, dr) A
has_def_method(Iterator, Next, dr),

has_IsDone_def : Wf Design Renaming — Bool
has_IsDone_def(dr) =
unique_method(Iterator, IsDone, dr) A
has_def method(Iterator, IsDone, dr),

has_CurrentItem def : Wf Design Renaming — Bool
has_CurrentItem def(dr) =
unique_method(Iterator, CurrentItem, dr) A
has_def_method(Iterator, CurrentItem, dr)

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 28

The eighth and ninth properties are analogous to property 5 of the Mediator pattern (see Sec-
tion 2.1:

value
exists_ConcreteAggregate : Wf Design Renaming — Bool
exists_ConcreteAggregate(dr) = exists_role(ConcreteAggregate, dr),

is_concrete_Aggregate : Wf_Design_Renaming — Bool

is_concrete_Aggregate(dr) =
is_concrete(Aggregate, ConcreteAggregate, dr),

exists_Concretelterator : Wf_Design_Renaming — Bool
exists_Concretelterator(dr) = exists_role(Concretelterator, dr),

is_concrete Iterator : Wf Design Renaming — Bool
is_concrete_Iterator(dr) =
is_concrete(Iterator, Concretelterator, dr)

Properties 10 through 13 are specified simply using the function has_impl_method which was used
in the specification of the fourth property of the Template Method pattern (see Section 2.2).

value
has First_impl : Wf Design Renaming — Bool
has_First_impl(dr) =
has_impl method(Concretelterator, First, dr),

has Next_impl : Wf Design Renaming — Bool
has_Next_impl(dr) =
has_impl method(Concretelterator, Next, dr),

has IsDone_impl : Wf _Design Renaming — Bool
has_IsDone_impl(dr) =
has_impl method(Concretelterator, IsDone, dr),

has_CurrentItem_impl : Wf Design Renaming — Bool

has_CurrentItem_impl(dr) =
has_impl method(Concretelterator, CurrentItem, dr)

The functions nro_inst_asso, res_loc_vchge_inst_aparam_self and different_create_iterator are used
to check the three parts of property 14 respectively. The first two of these functions corre-
spond exactly to the properties required. The function different_create_iterator actually uses
the knowledge about the result and body of the method which is incorporated in the function

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 29

res_loc_vchge_inst_aparam_self to simplify the specification. We know from this function that
the Createlterator function is implemented and that its result is a variable representing the reg-
uisite instantiation in its body. Therefore, we can use the results of the different methods to
access their respective instantiations and it then suffices to ensure that these instantiations are
different in different Createlterator methods: since the parameter to each of these instantiations
is the same, namely self, the instantiations can only be different if the classes they instantiate
are different.

value
has_Createlterator_impl : Wf_Design_Renaming — Bool
has_Createlterator_impl(dr) =
res_loc_vchge_inst_aparam_self
(ConcreteAggregate, Createlterator, Concretelterator, dr) A
different_create_iterator
(ConcreteAggregate, Createlterator, dr) A
nro_inst_asso
(ConcreteAggregate, Concretelterator, Createlterator, dr)

Property 15 is checked directly using the function has_instantiation.

value
ConcreteAggregate_creates_iterator : Wf Design Renaming — Bool
ConcreteAggregate_creates_iterator(dr) =
has_instantiation(ConcreteAggregate, Concretelterator, dr)

The function equal_inst_asso is used to verify the final property. This again corresponds exactly
to the property required.

value
ConcreteAggregate_Iterator : Wf Design Renaming — Bool
ConcreteAggregate_Iterator(dr) =
equal_inst_asso(ConcreteAggregate, Concretelterator, dr)

All these properties are then combined in the standard way to give the following function which
verifies whether or not a design matches the Iterator pattern:

value
is_an_iterator : Wf_Design_Renaming — Bool
is_an_iterator(dr) =

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns

30

Aggregate_hierarchy(dr) A
Iterator_hierarchy(dr) A
exists_ConcreteAggregate(dr) A
exists_Concretelterator(dr) A
is_concrete_Aggregate(dr) A
is_concrete_Iterator(dr) A
has_First_def(dr) A
has_Next_def(dr) A

has IsDone_def(dr) A
has_CurrentItem_def(dr) A
has_First_impl(dr) A

has Next_impl(dr) A
has_IsDone_impl(dr) A
has_CurrentItem impl(dr) A
has_Createlterator_def(dr) A
has_Createlterator_impl(dr) A
ConcreteAggregate_creates_iterator(dr) A
ConcreteAggregate_Iterator(dr)

2.6 Memento Pattern

The Memento pattern, which is also known as the Token pattern, is used when “a snapshot of
(some portion of) an object’s state must be saved so that the object can be restored to that
state later, but a direct interface to obtaining the state would expose implementation details

and break the object’s encapsulation” [5].

Originator Memento
SetMemento(Memento m) O GetState()
CresteMemento() O 1 SetState()

state | ! state

---| state=m-> GetState()

" | return new Memento(state)

Figure 8: Memento Pattern Structure

memento

The structure of the pattern is shown in Figure 8.

Caretaker

The intent, participants and collaborations of the pattern are defined as follows in [5]:

Intent

Report No. 201, May 2000

UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 31

Without violating encapsulation, capture and externalize an object’s internal state so that
the object can be restored to this state later.

Participants

Memento

e stores internal state of the Originator object. The memento may store as much or
as little of the originator’s internal state as necessary at its originator’s discretion.

e protects against access by objects other than the originator. Mementos have
effectively two interfaces. Caretaker sees a narrow interface to the Memento —
it can only pass the memento to other objects. Originator, in contrast, sees a
wide interface, one that lets it access all the data necessary to restore itself to its
previous state. Ideally, only the originator that produced the memento would be
permitted to access the memento’s internal state.

Originator

e creates a memento containing a snapshot of its current internal state.
e uses the memento to restore its internal state.

Caretaker

e is responsible for the memento’s safekeeping.
e never operates on or examines the contents of a memento.

Collaborations

e A caretaker requests a memento from an originator, holds it for a time, and passes it
back to the originator, as illustrated in the interaction diagram in Figure 9. Sometimes
the caretaker will not pass the memento back to the originator, because the originator
might never need to revert to an earlier state.

e Mementos are passive. Only the originator that created a memento will assign or
retrieve its state.

In the pattern structure shown in Figure 8 the Memento class contains GetState and SetState
methods which are both shown “undefined”, that is without annotations or parameters. The
reason for this may be because there are in practice different ways of implementing these meth-
ods. In the case of SetState, at the one extreme we could have a single method which instantiates
all state variables in the Memento class at once, and at the other extreme we could have one
SetState method for each state variable, with anything in between these two extremes being
also a possibility (i.e. several SetState methods which instantiate some but not all of the state
variables). In the case of GetState, a similar range of alternative implementations can be en-
visaged, and again we could have a single GetState method which returns all the state variables
in the Memento class at once, or one GetState method for each state variable, or something
intermediate between these two extremes.

While it would be possible to specify these various alternatives, we feel that having only one
SetState method and one GetState method is most in-keeping with the spirit of the pattern:

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 32

aCaretaker anOriginator aMemento
CregteMemento() new Memento ‘
SetStatey)
SetMemento(aMemento)
GetStatey)
i
L

Figure 9: Collaborations of the Memento Pattern

the Originator effectively sees and treats the Memento as a single entity and does not need to
know about or manipulate its internal structure. We therefore choose to model a single SetState
method which instantiates all state variables in the Memento class at the same time and a
single GetState method which returns all the state variables in the Memento class at once, say
in the form of some sort of tuplet. With this choice, the number of parameters of the SetState
method should be the same as the number of state variables in the Memento class, and the
GetState method requires no parameters (in fact it requires no parameters in all the alternative
implementations). In addition, we can define the body of the SetMemento method to consist of
a simple assignment to all state variables in the Originator class of an invocation of the single
GetState method on the memento. We make these properties explicit by adding appropriate
annotations to the methods as shown in the modified structure in Figure 10.

There are also (at least) two alternative implementations of the body of the CreateMemento
method: the Memento class could implement a parameterised new method which creates a
new instance of the class and sets its state variables at the same time, or this process could
be done in two steps using first the basic unparameterised new method to create the instance
and then instantiating the state variables using the SetState method. In this case we choose
the latter alternative, primarily because otherwise the SetState method effectively performs
no useful function in the pattern. The appropriate annotation is modified accordingly in the
modified pattern structure shown in Figure 10.

The Caretaker has an important role in the Memento pattern as described in the collaborations
above: it causes the Originator to create a memento by invoking its CreateMemento method, and
it can also cause it to reset its state to that stored in the memento by invoking its SetMemento
method. In the first of these interactions, the Originator invokes the CreateMemento method to

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 33

Originator ~ f---- > Memento memento

Caretaker
SetMemento(memento_param Memento)
Q GetState() G--------------1 - ManageMemento()
CreateM emgwto() | SetState(state paraml, state param2) | | ‘

; o | !
statel i | statel ! " !
qae2 | i Sate? : return { statel, state2} i

| {statel, satez} = memento_param -> GetState() | memento = originator -> CreateM emento()
- amemento = new Memento() 3 originator -> SetMemento(memento)
amemento. SetState(statel, state?) |
return amemento .

{statel, state2} = {state_paraml, state_param?2}

Figure 10: The Modified Memento Structure

create a new memento and set the state of that memento by “copying” the appropriate parts of
its own state to it using the SetState method (see the annotation to the CreateMemento method
in Figure 10). In the second interaction, the Originator retrieves the state of its memento using
the SetMemento method.

In an actual implementation, it is possible that these two interactions take place singly within
different methods in the Caretaker or in sequence in a single method, probably with other inter-
actions in between them. We make these two possibilities explicit in the pattern by introducing
three new method roles in the Caretaker class: RenewMemento, which represents a method
which contains the first interaction (i.e. which causes the Originator to invoke its CreateMemento
method); ResetMemento, which represents a method which contains the second interaction (i.e.
which causes the Originator to invoke its SetMemento method); and ManageMemento, which rep-
resents a method which contains both interactions in the appropriate order. For simplicity we
show only the method ManageMemento in the modified structure diagram in Figure 10 though
we note that this could be replaced by the two methods RenewMemento and ResetMemento and
indeed in our specification below we allow either of these two alternatives.

Finally, note that we do not explicitly model a relationship between the Originator and the
Caretaker classes even though such a relation is perhaps implied by the interaction diagram in
Figure 9 because in some cases there may be no such relationship. For example the Originator
could be a singleton class (i.e. a class with a single instance as represented by the Singleton
Pattern in [5]), in which case the Caretaker would simply reference the sole instance of the class
directly.

2.6.1 Formal Specification of the Memento Pattern

The following constants are relevant to the Memento pattern:

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 34

value
Originator : G.Class_Name,
Memento : G.Class_Name,
Caretaker : G.Class Name,
memento : G.Variable Name,
memento_param : G.Variable Name,
state : G.Variable Name,
originator : G.Variable Name,
state_param : G.Variable_Name,
SetMemento : G.Method Name,
CreateMemento : G.Method Name,
GetState : G.Method Name,
SetState : G.Method Name,
RenewMemento : G.Method Name,
ResetMemento : G.Method Name,
ManageMemento : G.Method Name

The classes and relations in the Memento pattern satisfy the following properties:

1. there is a single class which plays the Memento role and this class is concrete;
2. there is a single class which plays the Originator role and this class is concrete;
3. there is a single class which plays the Caretaker role and this class is concrete;

4. the class which plays the Memento role contains one or more state variables which play
the state role;

5. the class which plays the Originator role contains one or more state variables which play
the state role;

6. the class which plays the Caretaker contains a single state variable which plays the memento
role;

7. the class playing the Caretaker role is linked to the class playing the Memento role by a
one-one aggregation relation representing the state variable playing the memento role, and
there are no other relations between these two classes;

8. the class playing the Originator role and the class playing the Memento role have the same
number of state variables which play the state role;

9. the class playing the Memento role contains exactly one method which plays the GetState
role. This method is implemented, has no parameters, and its result is the set of all state
variables which play the state role;

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 35

10.

11.

12.

13.

14.

15.

the class playing the Memento role contains precisely one method which plays the SetState
role. This method is implemented and returns no result, and the number of its parameters
is equal to the number of state variables which play the state role in the Memento class.
Each parameter plays the state_param role and the body of the method assigns each state
variable which plays the state role to a different parameter;

the class playing the Originator role contains a unique method which plays the CreateMe-
mento role and the body of this method consists of an instantiation with no parameters of
the class playing the Memento role followed by an invocation of the method which plays
the SetState role on the instance created. The parameters of this invocation are all the
state variables which play the state role, and the result of this invocation is the result of
the CreateMemento method;

the class playing the Originator role contains a unique method which plays the SetMemento
role. This method is implemented and has no result and only one parameter, this parameter
playing the memento_param role and its type being the class which plays the Memento role.
The body of the method consists of a single invocation to the parameter of the method
which plays the GetState role in the class which plays the Memento role, and the results of
this invocation are assigned to different variables playing the state role in the class playing
the Originator role;

the class playing the Originator role is linked to the class playing the Memento role by an
instantiation relation;

the class playing the Caretaker role contains either at least one method which plays the
RenewMemento role or at least one method which plays the ManageMemento role. Each
RenewMemento method is implemented and its body includes an invocation to some vari-
able, say v, of the method which plays the CreateMemento role in the Originator class and
records the result of this invocation in some variable, say vd. For each RenewMemento
method there is at least one ResetMemento method which is implemented and whose body
includes an invocation to the same variable v of the method which plays the SetMemento
role in the Originator class, the variable vd being passed as the parameter to this invoca-
tion. Each ManageMemento method is also implemented and has a body which performs
both the invocations described above, in that order;

the class playing the Caretaker role never operates on its memento state variable.

Properties 1, 2 and 3 are analogous to property 2 of the State pattern (see Section 2.3).

value
exists_one_concrete_Originator : Wf Design_Renaming — Bool
exists_one_concrete_Originator(pr) =
exists_one(Originator, pr) A is_concrete_class(Originator, pr),

exists_one_concrete_Memento : Wf Design Renaming — Bool

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 36

exists_one_concrete_Memento(pr) =
exists_one(Memento, pr) A is_concrete_class(Memento, pr),

exists_one_concrete_Caretaker : Wf Design_Renaming — Bool
exists_one_concrete_Caretaker(pr) =
exists_one(Caretaker, pr) A is_concrete_class(Caretaker, pr)

Properties 4 and 5 are specified using the function store_vble.

value
store_state : Wf_Design_Renaming — Bool
store_state(pr) =
store_vble(Originator, state, pr) A
store_vble(Memento, state, pr)

Properties 6 and 7 are analogous to properties 3 and 4 of the State pattern.

value
Caretaker_relation : Wf_Design Renaming — Bool
Caretaker_relation(pr) =
has_assoc_aggr_var_ren
(Caretaker, Memento, Aggregation, memento, G.one, pr) A
has_unique_assoc_aggr(Caretaker, Memento, pr) A
store_unique_vble(Caretaker, memento, pr)

Property 8 is equivalent to saying that the Memento class is the memory of the Originator class
or alternatively that it has a copy of the Originator state variables. The property is new and
is specified using the function quantities_of variables, which simply states that any two classes
playing the given two roles contain the same number of state variables playing a third given
role.

value
copy-of_state : Wf_Design_Renaming — Bool
copy-of_state(ds, r) =
quantities_of variables(Originator, Memento, state, r)

The majority of property 9 is also new. The functions unique_method and has_impl_method are
used to check that the GetState method is implemented and unique, as in property 4 of the
Template Method pattern (see Section 2.2). The fact that the method has no parameters is

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 37

checked using the function no_parameter_in_design, and the function result_of Get_State checks
that the result of the method is the set of all state variables which play the state role.

value
M _has_GetState_impl : Wf Design Renaming — Bool
M _has_GetState_impl(pr) =
unique_method(Memento, GetState, pr) A
has_impl method(Memento, GetState, pr) A
no_parameter_in_design(Memento, GetState, pr) A
result_of Get_State(Memento, GetState, state, pr)

The tenth property is also largely new. The uniqueness of the SetState method is checked using
the function unique_method, while the function has_method_without_res checks that all methods
which play a given role have an empty result. The fact that all parameters of the SetState
method play the same state_param role is checked using the function all_pars_same_ren, which
more generally checks that all parameters in a given method play a single given role, while the
function params_vars_in_SetState_one checks the remainder of the property.

value

M _has_SetState_impl : Wf_Design Renaming — Bool

M_has_SetState_impl(pr) =
unique_method(Memento, SetState, pr) A
has_method_without_res(Memento, SetState, pr) A
params_vars_in_SetState_one(Memento, SetState, state, pr) A
all_pars_same_ren

(Memento, SetState, state_param, pr)

The function unique_method is also used to check the uniqueness of the CreateMemento method
in property 11. The function res_local_var_change_inst_aparam_ren checks the remainder of this

property.

value
O_has_createM interface : Wf Design Renaming — Bool
O_has_createM_interface(pr) =
res_local_var_change_inst_aparam_ren
(Originator, CreateMemento, state, Memento, SetMemento, pr) A

unique_method(Originator, CreateMemento, pr)

The twelfth property is specified using the function unique_method again, together with the func-
tions one_image_ren_pars_in_design, SetM_state_var_change_deleg_par and has_method_without_res.

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 38

The first of these checks that a method has only one parameter and that the type of the param-
eter is some given class. The second checks that the SetMemento method is implemented and its
body assigns its state variables to the results of applying the GetState method to its parameter.
And the third checks that the result of the SetMemento method is empty.

value
O_has_setM_interface : Wf_Design_Renaming — Bool
O_has_setM_interface(pr) =
one_image ren_pars_in_design
(Originator, SetMemento, Memento, memento_param, pr) A
SetM state_var_change_deleg par
(
Originator,
SetMemento,
state,
memento_param,
Memento,
GetState,
pr
) A
has_method_without_res(Originator, SetMemento, pr) A
unique method(Originator, SetMemento, pr)

Because of the uniqueness of the classes playing the Originator and the Memento roles, property
13 is in fact equivalent to property 11 of the Iterator pattern.

value
ori_mem relation : Wf Design_Renaming — Bool
ori_mem relation(pr) = has_instantiation(Originator, Memento, pr)

The existence of the methods in property 14 and the fact that they are all implemented is
checked by the functions has_impl method and has_all_impl_method in the normal way. The
functions assign_invoke_parami1 and assign_invoke_param2 check the properties of the bodies
of ManageMemento and of RenewMemento and its corresponding ResetMemento respectively,
and the function never_operate checks property 15. This last function in fact checks the more
general property that one given class has no method in which there is an invocation to a variable
representing either an association or aggregation relation with another class.

value
Caretaker : Wf Design Renaming — Bool
Caretaker(pr) =

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 39

(has_impl method(Caretaker, RenewMemento, pr) V
has_impl method(Caretaker, ManageMemento, pr)) A
has_all impl method(Caretaker, RenewMemento, pr) A
has_all.impl method(Caretaker, ResetMemento, pr) A
has_all impl method(Caretaker, ManageMemento, pr) A
assign_invoke_param1(

Caretaker, memento, Originator, ManageMemento,

CreateMemento, SetMemento, pr) A
assign_invoke_param?2(

Caretaker, memento, Originator, RenewMemento,

ResetMemento, CreateMemento, SetMemento, pr) A
never_operate(Caretaker, Memento, pr)

Combining all these properties together yields the following specification of a function which
checks whether a design represents a Memento pattern:

value

is_memento_pattern : Wf Design Renaming — Bool

is_.memento_pattern(dr) =
exists_one_concrete_Caretaker(dr) A
exists_one_concrete_Originator(dr) A
exists_one_concrete_Memento(dr) A
Caretaker_relation(dr) A
ori_mem relation(dr) A
store_state(dr) A
copy-of_state(dr) A
M _has_SetState_impl(dr) A
M _has_GetState_impl(dr) A
Caretaker(dr) A
O_has_createM_interface(dr) A O_has_setM_interface(dr)

2.7 Observer Pattern

The Observer pattern, which is also known both as Dependents and as Publish-Subscribe, is used
when an abstraction has two aspects, one dependent on the other; when a change to one object
requires changing others and you don’t know how many objects need to be changed; and when
an object should be able to notify other objects without making assumptions about what those
objects are” [5]. It is basically an abstraction of the well-known dependency mechanism used
in Smalltalk’s Model-View-Controller architecture in which all views of the model are notified
when the state of the model is modified [8].

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 40

Subject observers Observer
-@
Attach(Observer) Update()
Detach(Observer) -
Notify() O ----- -1 __| for all oin observers{

%l 0-> Update() } %L

ConcreteObser ver
ConcreteSubject Sbiet | Updete) O --| - observerSiate =
subject -> GetState()
GetState() O < — observerState
SetState() " —
subjectState

Figure 11: Observer Pattern Structure

The OMT diagram in Figure 11 shows the Observer structure.

The intent, participants and collaborations of the pattern are defined in [5] as follows:

Intent

Define a one-to-many dependency between objects so that when one object changes state,
all its dependents are notified and updated automatically.

Participants

Subject

e knows its observers. Any number of Observer objects may observe a subject.
e provides an interface for attaching and detaching Observer objects.

Observer

e defines an updating interface for objects that should be notified of changes in a
subject.

ConcreteSubject

e stores state of interest to ConcreteObserver objects.

e sends a notification to its observers when its state changes.
ConcreteObserver

e maintains a reference to a ConcreteSubject object.
e stores state that should stay consistent with the subject’s.

e implements the Observer updating interface to keep its state consistent with the
subject’s.

Collaborations

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 41

e ConcreteSubject notifies its observers whenever a change occurs that could make its
observers’ states inconsistent with its own.

e After being informed of a change in the concrete subject, a ConcreteObserver object
may query the subject for information. ConcreteObserver uses this information to
reconcile its state with that of the subject.

The interaction diagram in Figure 12 illustrates the collaborations between a subject and
two observers. Note how the Observer object that initiates the change request postpones
its update until it receives the Update message from the subject.

aConcreteSubject aConcreteObser ver another Concr eteObser ver
SetStatey)
Notify()
Update()
GetState()
Update()
GetStatey)

Figure 12: Observer Collaborations

The structure of the Observer pattern also consists essentially of two linked hierarchies like the
Mediator and Iterator patterns (see Sections 2.1 and 2.5 respectively), but again the relationships
between the hierarchies are different. Here, the Subject class records a collection of observers in
its state variable observers, this being represented by the one-many aggregation relation between
these two classes. Conversely, each instance of a ConcreteObserver class holds a reference in its
subject state variable to a single instance of a ConcreteSubject class.

This latter relation is shown between the ConcreteObserver and ConcreteSubject classes in the
structure, which suggests that each ConcreteObserver class is specific to a particular ConcreteSub-
ject class, that is has a relationship with only one ConcreteSubject class. This is what we model,
together with additional constraints which say first that each ConcreteObserver class cannot have
more observerState variables than the number of subjectState variables in the ConcreteSubject
class it is related to and second that there are no “redundant” ConcreteSubject classes, that is
that each ConcreteSubject class is related to at least one ConcreteObserver class.

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 42

However, this is certainly not the only possibility and it is in fact debatable whether it really
constitutes an abstraction of Smalltalk’s Model-View-Controller mechanism. Indeed it rather
seems to constitute a restriction of the MVC mechanism because in MVC it is quite acceptable
for a view to be used with a range of different models. But if we want to model a situation in
which ConcreteObservers can be associated with different ConcreteSubject classes it seems more
appropriate to place the relationship between the Observer class and the Subject class, as is in
fact the case in MVC, rather than between the corresponding concrete classes. We therefore
consider this case to be one of several possible variants of the Observer pattern and will deal
with it in more detail in future work.

Either way, the two relations linking the subject and observer hierarchies should in fact be
reciprocal, so that the subject state variable of an observer should be precisely the subject to
which it was added by the Attach method. One way in which this constraint could be maintained
would be to ensure that the subject state variable of an observer is set by the Attach method.
However, another possibility would of course be to instantiate the subject variable in another
method which subsequently invokes the Attach method. We therefore give no specification of
this consistency property below but note that without such a consistency constraint a design is
not necessarily consistent with the Observer pattern.

One thing we can deduce about the Attach and Detach methods is that they must respectively
add and remove an observer from the observers state variable. In our model we assume that
various basic operations on collections of objects are “built-in”, including operations for adding
and removing an object to or from a collection of objects, which we denote respectively by the
methods collectionadd and collectionremove. The bodies of the Attach and Detach methods must
therefore include an invocation to the observers state variable of the appropriate one of these
methods, the parameters of these invocations including the observer instance which appears as
the parameter of the Attach or Detach method itself.

When a method which does not represent one of these built-in operations (for example the
Update method) is invoked on a collection of objects, we interpret this in our model as meaning
that the message is in fact sent to each of the objects in the collection independently. In this
way, the annotation of the Notify method is modelled as a single invocation to the observers state
variable of the Update method.

The SetState and GetState methods perform similar tasks to the methods with the same names in
the Memento pattern (see Section 2.6). However, in the Observer pattern the ConcreteObserver
objects do not necessarily store all of the subjectState variables in the ConcreteSubject’s state.
Moreover, different ConcreteObservers may store different parts of the ConcreteSubject’s state,
that is different subsets of its subjectState variables. In the Observer pattern, therefore, the
ConcreteSubject’s state is not treated as a single entity, as is the case of the Memento’s state
in the Memento pattern. It would thus not be unreasonable to have more than one SetState
and GetState method in the Observer pattern, each setting or returning some subset of the
subjectState variables, provided of course that each subjectState variable is set and returned by
at least one of each of those methods.

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 43

We therefore assume simply that there is at least one GetState method and that each such
method has no parameters and has a non-empty result which consists of some subset of the
subjectState variables. Similarly, we assume that there is at least one SetState method and that
each such method has no result and assigns each of its parameters, which should not be empty,
to a different subjectState variable. We further assume that each subjectState variable appears
in the result of at least one GetState method and is assigned in the body of at least one SetState
method. These assumptions are again included as annotations in a modified OMT diagram of
the pattern structure which is shown in Figure 13.

Subject observers Observer
Attach(Observer observer_param) O\\\ e Update()
Detach(Observer observer_param)Q | 4 observers -> collectionadd(observer_param) ‘

Notify() O~~__
- - fobservers -> collectionremove(observer_param) ‘ #
"~ observers -> Update()
ConcreteObser ver
subject

ConcreteSubject Update() O---]---
- - I
GeStHel) O - [return {subjectStatel, subjectStated) —— |

GetStae2) O - [retum {subjectState2, subjectState3, subjectSiated) ObserverState2

SetStatel(subjectState_paraml, subjectState_param3)
SetState2(subjectState_paraml, subjectState_param?
SetState3(subjectState_param4) Q\\

N ’(subjectStatel, subjectState?} = { subjectState_paraml, subjectState_param2}

subjectStatel
subjectState2 !
subjectState3 { observerStatel, v1} = subject -> GetStatel()
subjectStated)

{observerState2, v2, v3} = subject -> GetState2()

Figure 13: The Modified Observer Structure

With these assumptions, the body of the Update method is similar to the body of the Set-
Memento method in the Memento pattern. The main differences are that the Update method
can contain more than one invocation, each to a different GetState method, and the receiver of
these invocations (i.e. the subject variable) is a state variable, whereas in the SetMemento method
there is only a single invocation to the GetState method and the receiver of this invocation is
the parameter of the method. Note also that, as shown in Figure 13, additional local variables
may be needed in the Update method because the GetState methods do not necessarily return
the exact subset of the subject state that is required by each concrete observer: additional state
may be returned which the observer simply ignores.

2.7.1 Formal Specification of the Observer Pattern

As usual, we begin by introducing constants which represent the names of the classes, methods,
state variables and parameters used in the pattern.

value
Subject : G.Class_Name,

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 44

ConcreteSubject : G.Class_Name,
Observer : G.Class_Name,
ConcreteObserver : G.Class_Name,
observers : G.Variable Name,
observer_param : G.Variable Name,
subject : G.Variable_Name,
subjectState : G.Variable Name,
observerState : G.Variable_ Name,
subjectState_param : G.Variable Name,
Attach : G.Method Name,

Detach : G.Method Name,

Notify : G.Method Name,
GetState : G.Method_Name,
SetState : G.Method Name,
Update : G.Method_Name

The classes and relations in the Observer pattern satisfy the following properties:

1. there is a single class which plays the Subject role. This class is abstract and forms the
root of a hierarchy of classes in which all leaf classes play the ConcreteSubject role and in
which no class plays either the Observer role or the ConcreteObserver role;

2. there is a single class which plays the Observer role. This class is abstract and forms the
root of a hierarchy of classes in which all leaf classes play the ConcreteObserver role and in
which no class plays either the Subject role or the ConcreteSubject role;

3. the class playing the Subject role contains a single state variable which plays the observers
role;

4. the class playing the Subject role is linked to the class playing the Observer role by a
one-many association relation representing the state variable playing the observers role;

5. the class playing the Observer role contains exactly one method which plays the Update
role and this method is a defined method;

6. there is at least one class playing the ConcreteSubject role, and every class playing this role
is a concrete subclass of the class which plays the Subject role;

7. there is at least one class playing the ConcreteObserver role, and every class playing this
role is a concrete subclass of the class which plays the Observer role;

8. the class playing the Subject role contains exactly one method which plays the Attach role.
This method is implemented and has a single parameter, which plays the observer_param
role and which is of type Observer. The body of the method contains an invocation to
the state variable playing the observers role of the primitive collectionadd method, and the
parameter of the Attach method is included in the parameters of this invocation;

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 45

10.

11.

12.

13.

14.

15.

16.

17.

the class playing the Subject role contains exactly one method which plays the Detach role.
This method is implemented and has a single parameter, which plays the observer_param
role and which is of type Observer. The body of the method contains an invocation to the
state variable playing the observers role of the primitive collectionremove method, and the
parameter of the Detach method is included in the parameters of this invocation;

the class playing the Subject role contains exactly one method which plays the Notify role.
This method is implemented and its body contains an invocation to the variable playing
the observers role of the Update method in the Observer class;

every class playing the ConcreteSubject role contains at least one state variable playing the
subjectState role;

every class playing the ConcreteSubject role contains at least one method which plays the
GetState role. Each such method is implemented, has no parameters, and returns a non-
empty subset of the state variables which play the subjectState role. Each subjectState
variable belongs to the result of at least one GetState method;

every class playing the ConcreteSubject role contains at least one method which plays the
SetState role. Each such method is implemented, has no result, and has at least one
parameter, and all the parameters play the subjectState_param role. The body of each
method simply assigns each of the parameters to a different subjectState variable, and
each subjectState variable appears in such an assignment in at least one SetState method;

every class playing the ConcreteObserver role has exactly one state variable which plays
the subject role;

every class playing the ConcreteObserver role is linked to exactly one class playing the Con-
creteSubject role by a one-one association relation representing the state variable playing
the subject role, and there are no other relations between classes of these two roles. In
addition, every class playing the ConcreteSubject role has a link of this form from at least
one class playing the ConcreteObserver role;

every class playing the ConcreteObserver role has at least one state variable which plays
the observerState role, and the number of such variables is not greater than the number of
state variables playing the subjectState role in the ConcreteSubject class represented by its
subject state variable;

the method playing the Update role is implemented in every class playing the Concre-
teObserver role and returns no result. The body of the method consists of a series of
assignments to subsets of the observerState state variables of the result of invoking some
GetState method on the subject state variable, and each observerState state variable is set
by at least one such assignment.

The first two properties are analogous to property 1 of the Mediator pattern (see Section 2.1),
though as in the TemplateMethod pattern (see Section 2.2) we do not need to explicitly specify
that the Observer class is abstract because this is implied by property 5.

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 46

value
Subject_hierarchy : Wf_Design_Renaming — Bool
Subject_hierarchy(dr) =
hierarchy
(Subject, {ConcreteSubject}, {Observer, ConcreteObserver}, dr),

is_abstract_Subject : Wf_Design_Renaming — Bool
is_abstract_Subject(dr) = is_abstract_class(Subject, dr),

Observer_hierarchy : Wf_Design Renaming — Bool
Observer_hierarchy(dr) =
hierarchy
(Observer, {ConcreteObserver}, {Subject, ConcreteSubject}, dr)

Properties 3 and 14 are analogous to property 3 of the Mediator pattern.

value
store_observers : Wf Design_ Renaming — Bool
store_observers(dr) = store_unique_vble(Subject, observers, dr),

store_subject : Wf_Design_Renaming — Bool
store_subject(dr) =
store_unique_vble(ConcreteObserver, subject, dr)

Aside from the cardinality of the relation, property 4 is analogous to the first part of property 4 of
the Mediator pattern and is therefore specified simply using the function has_assoc_aggr_var_ren.

value
Observer_relation : Wf_ Design_Renaming — Bool
Observer _relation(dr) =
has_assoc_aggr_var_ren
(Subject, Observer, Association, observers, G.many, dr)

Property 5 is analogous to property 4 of the Iterator pattern (see Section 2.5).

value
Update_defined : Wf Design_Renaming — Bool
Update_defined(dr) =
has_def_method(Observer, Update, dr) A
unique method(Observer, Update, dr)

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 47

Properties 6 and 7 are analogous to property 5 of the Mediator pattern.

value
exists_concrete_Subject : Wf_Design_Renaming — Bool
exists_concrete_Subject(dr) = exists_role(ConcreteSubject, dr),

is_concrete_Subject : Wf_Design Renaming — Bool
is_concrete_Subject(dr) =
is_concrete(Subject, ConcreteSubject, dr),

exists_concrete_Observer : Wf Design Renaming — Bool
exists_concrete_Observer(dr) = exists_role(ConcreteObserver, dr),

is_concrete_Observer : Wf_Design Renaming — Bool
is_concrete_Observer(dr) =
is_concrete(Observer, ConcreteObserver, dr)

The first two parts of property 8 are analogous to the first two parts of property 4 of the
TemplateMethod pattern. The properties of the parameter are analogous to the properties of
the parameter in the SetMemento method (see property 12 of the Memento pattern in Section 2.6)
so are similarly specified using the function one_image_ren_pars_in_design. The properties of the
body of the method are new and are specified by the function deleg_with_var_coll_aparam_ren.
This checks more generally that the body of every method playing a given role in some class
contains an invocation to each state variable playing a given role of a given (built-in) collection
method, the parameters of the invocation being those playing some given role. In this particular
case we know from other properties that there is only one parameter to the Attach method
and only ony observers state variable, so this specifies precisely the required body of the Attach
method.

value
Attach_implemented : Wf Design Renaming — Bool
Attach_implemented(dr) =
unique_method(Subject, Attach, dr) A
has_impl method(Subject, Attach, dr) A
one_image_ren_pars_in_design
(Subject, Attach, Observer, observer_param, dr) A
deleg_with_var_coll_aparam_ren

(
)

Subject, Attach, observers, G.collectionadd, observer_param, dr

Property 9 is entirely analogous to property 8 above except that the collectionremove method
not the collectionadd method is invoked in the Detach method.

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 48

value
Detach_implemented : Wf Design Renaming — Bool
Detach_implemented(dr) =
unique_method(Subject, Detach, dr) A
has_impl method(Subject, Detach, dr) A
one_image_ren_pars_in_design
(Subject, Detach, Observer, observer_param, dr) A
deleg_with_var_coll_aparam ren
(
Subject,
Detach,
observers,
G.collectionremove,
observer_param,

dr

The first two parts of property 10 are again analogous to the first two parts of property 4 of the
TemplateMethod pattern, while the properties of the body of the Notify method are analogous
to the properties of the body of the Request method in the State pattern (see Section 2.3) and
so are similarly specified using the function deleg_with_var.

value
Notify_implemented : Wf Design Renaming — Bool
Notify_implemented(dr) =
has_impl method(Subject, Notify, dr) A
deleg_with_var
(Subject, Notify, observers, Observer, Update, dr) A
unique_method(Subject, Notify, dr)

Property 11 is analogous to property 4 of the Memento pattern (see Section 2.6). However, we
do not need to specify this property explicitly here because it is implied by property 12: this
states that there is at least one GetState method and each such method returns a non-empty
subset of the subjectState state variables; therefore there must be at least one subjectState state
variable.

Property 12 is similar to property 9 of the Memento pattern (see Section 2.6).The main difference
here is that in the Observer pattern we can have more than one GetState method and that each
one returns a non-empty subset of the subjectState variables. We therefore use the function
has_all_impl_method instead of unique_method, and we use the new function results_of Get_State
to define the properties of the results of the methods. In addition to checking that the result
of each GetState method is a non-empty subset of the subjectState state variables, this function

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 49

also checks that each subjectState state variable appears in the result of at least one GetState
method.

value

GetState_implemented : W{_ Design_Renaming — Bool

GetState_implemented(dr) =
has_impl method(ConcreteSubject, GetState, dr) A
has_all impl method(ConcreteSubject, GetState, dr) A
no_parameter_in_design(ConcreteSubject, GetState, dr) A
results_of Get_State

(ConcreteSubject, GetState, subjectState, dr)

Property 13 is similarly largely analogous to property 10 of the Memento pattern. Here, however,
we use has_impl_method instead of unique_method because there can be more than one SetState
method, and we use params_vars_in_SetState_many instead of params_vars_in_SetState_one be-
cause each SetState method may deal with only a subset of the state.

value
SetState_implemented : Wf Design_Renaming — Bool
SetState_implemented(dr) =
has_impl_method(ConcreteSubject, SetState, dr) A
params_vars_in_SetState_many(
ConcreteSubject, SetState, subjectState, dr) A
all_pars_same_ren(
ConcreteSubject, SetState, subjectState_param, dr) A
has_method_without_res(ConcreteSubject, SetState, dr)

The first part of property 15 is specified exactly using the function has_assoc_var_ren and the
uniqueness of the relation is specified using has_unique_assoc_aggr as in, for example, property
4 of the Mediator pattern. The last part of the property is checked directly by the function
class_connected.

value
concrete_Observer_relation : Wf_Design Renaming — Bool
concrete_Observer _relation(dr) =
has_assoc_var_ren
(ConcreteObserver, ConcreteSubject, subject, G.one, dr) A
has_unique_assoc_aggr(ConcreteObserver, ConcreteSubject, dr) A
class_connected(ConcreteSubject, ConcreteObserver, dr)

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 50

The first part of property 16 is analogous to property 11, though in this case we must specify
it. We of course use the function store_vble as in property 4 of the Memento pattern. The
remainder of this property is checked precisely using the function less_quantities_of variables.

value
store_ObserverState : Wf Design Renaming — Bool
store_ObserverState(dr) =
store_vble(ConcreteObserver, observerState, dr) A
less_quantities_of_variables
(
ConcreteObserver,
observerState,
ConcreteSubject,
subjectState,
dr

Property 17 is new and is checked using the function Update_state_var_change_deleg var.

value
Update_implemented : Wf_Design_Renaming — Bool
Update_implemented(dr) =
Update_state_var_change_deleg_var
(
ConcreteObserver,
Update,
observerState,
subject,
ConcreteSubject,
GetState,
dr

Finally, we combine all the above properties together to obtain the following specification of a
function which checks whether a design represents an Observer pattern:

value
is_observer_pattern : Wf Design Renaming — Bool
is_observer_pattern(dr) =
Subject_hierarchy(dr) A

Observer_hierarchy(dr) A

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 51

exists_concrete_Subject(dr) A
exists_concrete_Observer(dr) A
Observer_relation(dr) A
concrete_Observer_relation(dr) A
store_subject(dr) A
store_observers(dr) A
store_ObserverState(dr) A
is_abstract_Subject(dr) A
Attach_implemented(dr) A
Detach_implemented(dr) A
Notify_implemented(dr) A
GetState_implemented(dr) A
SetState_implemented(dr) A
Update_defined(dr) A
Update_implemented(dr) A
is_concrete_Observer(dr) A is_concrete_Subject(dr)

2.8 Command Pattern

The Command pattern is used to parameterize objects such as menu items with an action they
are supposed to perform; to specify, queue, and execute requests at different times; to support
undo operations; to support the logging of changes so that they can be reapplied; or to structure
a system around high-level operations built from primitive operations. It is also known as both
Action and Transaction. Its structure is shown in Figure 14.

Invoker Command
Executey)
Client Z}
3 ——>| Recever ConcreteCommand
! recelver
| Action) Bxecute) O~ 77 receiver -> Action()
e | e

Figure 14: Command Pattern Structure

Command objects define operations on components and other objects. They are similar to
messages in traditional object-oriented systems. They can also be executed in isolation to
perform arbitrary computation, and they can reverse the effects of such execution to support
undo. [13].

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 52

Some commands may be directly accessible to the user while others are only used internally in a
system. For example, operations offered on a menu are directly accessible to the user, but after
choosing a particular item from a menu, say to print a document, the system may enter a mode
where the user is offered further choices, for example which document to print or which printer
to print it on. In addition, either the command or the operands could be chosen first. Thus, for
example, in a text editor a region of text may first be selected, then a command such as copy
or delete may be given [7].

The intent, participants and collaborations of the pattern are defined in [5] as follows:

Intent

Encapsulate a request as an object, thereby letting you parameterise clients with different
requests, queue or log requests, and support undoable operations.

Participants

Command
e declares an interface for executing an operation.
ConcreteCommand

e defines a binding between a Receiver object and an action.
¢ implements Execute by invoking the corresponding operation(s) on Receiver.

Client
e creates a ConcreteCommand object and sets its receiver.
Invoker
e asks the command to carry out the request.
Receiver
e knows how to perform the operations associated with carrying out a request.
Any class may serve as a Receiver.

Collaborations

e The client creates a ConcreteCommand object and specifies its receiver.
e An Invoker object stores the ConcreteCommand object.

e The invoker issues a request by calling Execute on the command. When commands
are undoable, ConcreteCommand stores state for undoing the command prior to
invoking Execute.

e The ConcreteCommand object invokes operations on its receiver to carry out the
request.

These collaborations are illustrated in the interaction diagram in Figure 15, which also
shows how the Command pattern decouples the invoker from the receiver and hence from
the request it carries out.

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 53

aRecalver aClient aCommand aninvoker
new Command(aReceiver)
Store Command(aComman)
/
D Action() D Exectte) q

Figure 15: Collaborations of the Command Pattern

The structure of the Command pattern consists of a hierarchy of Command and ConcreteCom-
mand classes which represent the commands, together with Invoker, Receiver and Client classes.
Each ConcreteCommand class has an Execute method, which defines what the command does,
and is associated with a particular Receiver class, which represents the objects on which the
command acts. The command stores an instance of its Receiver class in its receiver state vari-
able, and the command is executed by invoking a particular Action method from the Receiver
class on this state variable as shown in the annotation to the Execute method.

There can be several different classes playing the Invoker role. For example, if a Command
pattern is used to implement some part of a user interface toolkit (see the discussion of the
motivation of the Command pattern in [5] and Figure 16) it can include different widgets that
issue requests, for instance menu items and buttons.

The application in Figure 16 also shows that there can also be several different classes playing
the Receiver role, the receiver basically depending on the particular command that is issued. For
example, the receiver of a PasteCommand is a Document while the receiver of an OpenCommand
is an Application.

Note also that in this example the Application class plays both the Client role and the Receiver
role. In this situation, the association relationship linking the Client and Receiver classes shown
in Figure 14 would in fact not be present in the design.

The client has an important role in the Command pattern as shown in the interaction diagram in
Figure 15 and basically acts as coordinator between the Invoker, Receiver and ConcreteCommand
classes. First, it creates a new concrete command and instantiates its receiver, then it passes

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 54

Application |<_>———>¢| Menu *»’W _command | Command
Add(Document) Add(Menultem) Clicked() ? Execute()

I

I

Document !
command -> Execute() o

Open()

Close()

cut() PasteCommand OpenCommand

Copy() Execute()
Execute()

Paste() AskUser()

Figure 16: An Application of the Command Pattern

this concrete command to the invoker. However, the second of these interactions, that is the
interaction between the client and the invoker, is not included in the OMT diagram representing
the pattern structure (Figure 14).

Part of this interaction is shown in the OMT diagram representing the application of the Com-
mand pattern (Figure 16), though the Client (Application) is related to the Invoker (Menultem)
indirectly through the intermediate Menu class rather than directly and the transfer of the
command from the client to the invoker is still omitted.

In our treatment of the Command pattern we include the full invocation as shown in the inter-
action diagram in Figure 15, and require that the Client class contains a method which invokes
the StoreCommand method in the Invoker, though we allow this invocation to be indirect. We
introduce a new role, ClientMethod, into the pattern to represent the method in the Client class
which initiates this invocation and extend the structure of the pattern to include both this
method and the StoreCommand method, as well as a (possibly) transitive relationship between
the Client and the Invoker. The StoreCommand method has a single command as its parameter
and simply assigns this parameter to its command state variable. The modified OMT diagram
is shown in Figure 17.

Note that in this diagram we have omitted the state variable state from the ConcreteCommand
class, and indeed we also omit it from our analysis and specification. According to the discussion
of the Command pattern in [5], this variable is intended to support undo and redo operations.
However, if such operations are to be supported additional methods are required in the pattern.
For example, if commands are undoable the Command class requires an unexecute method, and
if it supports command logs it will also require load and store methods.

In fact, none of these methods are included in the pattern structure in Figure 14, and indeed the
Command pattern can be used to design systems which do not have these operations and which
therefore do not require the state variable in the ConcreteCommand class. We therefore prefer
to omit this variable, thereby restricting our specification to a Command pattern without undo

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 55

Invoker

StoreCommand(acommand) command

7| Requestmethnody 7
Transitive Relatiori'ship 9 :
L ! i Command

:
. command -> Execute() !
|

P Receiver
i receiver | ConcreteCommand
I Action()

Execute() O

acommand = new ConcreteCommand(areceiver) - -
invoker -> StoreCommand(acommand) receiver -> Action()

Figure 17: The Modified Command Structure

operations, and to consider the Command pattern with undo operations as a variant of this
basic Command pattern. The Command pattern with undo operations will then be considered
along with other pattern variants in future work.

We do consider one variation of the pattern here, though, largely because it can be incorporated
as a simple, and effectively optional extension of the basic pattern. This is the macro command,
which is introduced in [5] as a sort of “generalised” command.

Basically, a macro command represents a sequence of commands (which may itself include macro
commands) and execution of such a command is equivalent to executing each command in the
sequence in turn. A macro command therefore has no explicit receiver in the same sense as a
normal command, but instead stores the sequence of commands which it represents. In the case
of a macro command, therefore, the ClientMethod has a slightly different form than that shown
in Figure 17: the instantiation of the MacroCommand class which replaces the instantiation of
the ConcreteCommand class has no parameter.

We represent this macro command by extending the pattern structure with a new role Macro-
Command and also extending the Command hierarchy in the pattern to allow both ConcreteCom-
mand and MacroCommand classes as leaves. The MacroCommand class then has an aggregation
relation with the abstract Command class which represents its sequence of commands. The
extension to the pattern structure is shown in Figure 18.

Introducing the MacroCommand class into the Command hierarchy makes the hierarchy more
complicated than the simple form, introduced and described in Section 2.1, which has featured
in all the patterns we have dealt with so far. For the leaves of the hierarchy, there is really not
much difference between the two forms of hierarchy — each leaf class in the Command hierarchy

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 56

Command

MacroCommand

[N E forall ¢ in commands
Execute() c.Execute();

Figure 18: The Structure of the Macro Command

commands

can simply play either, but not both, of the possible roles, ConcreteCommand or MacroCommand.
However, classes intermediate between the Command class and the leaves of the hierarchy may
also play either the ConcreteCommand or the MacroCommand role (again not both), and these
two classes have different properties. We therefore need to ensure that neither one of these classes
inherits from (is a subclass of) the other, otherwise the subclass effectively has the properties of
both roles.

On the basis of the above considerations, we now proceed to give a formal specification of the
properties of the Command pattern in RSL.

2.8.1 Formal Specification of the Command Pattern

The names of the classes, methods and variables appearing in the Command pattern are:

value
Invoker : G.Class_Name,
Client : G.Class_Name,
Command : G.Class_Name,
ConcreteCommand : G.Class_Name,
Receiver : G.Class Name,
MacroCommand : G.Class_Name,
command : G.Variable Name,
receiver : G.Variable Name,
commands : G.Variable_ Name,
command_param : G.Variable Name,
Execute : G.Method_Name,
Action : G.Method Name,
StoreCommand : G.Method Name,
ClientMethod : G.Method Name,

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 57

RequestMethod : G.Method_Name

The classes and relations in the Command pattern satisfy the following properties:

10.

11.

12.

. there is a single class which plays the Command role. This class is abstract and forms the

root of a hierarchy of classes in which all leaf classes play either the ConcreteCommand role
or the MacroCommand role and in which no class plays either the Invoker role, the Receiver
role or the Client role. Intermediate classes may also play the ConcreteCommand role or
the MacroCommand role, subject to the constraint that no class playing either one of these
roles may be a subclass of a class playing the other role;

. the class playing the Command role contains exactly one method which plays the Execute

role and this method is a defined method;

there is at least one class playing the ConcreteCommand role, and every class playing this
role is a concrete subclass of the class which plays the Command role;

. there is at least one class playing the Invoker role and all classes playing this role are

concrete;

every class playing the Invoker role has exactly one state variable which plays the command
role;

every class playing the Invoker role is linked to the class playing the Command role by an
aggregation relation representing the state variable playing the command role, and there
are no other relations between classes of these two roles;

every class playing the Invoker role contains at least one method playing the Request-
Method role. Each such method is implemented and its body contains an invocation to
the command state variable of the method which plays the Execute role in the Command
class;

there is at least one class playing the Receiver role and all classes playing this role are
concrete;

there is exactly one class playing the Client role and this class is concrete;

the class playing the Client role has an association or aggregation relation with every class
playing the Receiver role, except that if the Client class also plays the Receiver role it does
not need to have such a relation with itself;

every class playing the ConcreteCommand role contains exactly one state variable playing
the receiver role;

every class playing the Receiver role contains at least one method playing the Action role
and each such method is implemented;

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 58

13. every class playing the ConcreteCommand role contains at least one method playing the
Execute role. Each such method is implemented and its body contains an invocation to
the receiver state variable of the method which plays the Action role in the Receiver class;

14. every class playing the ConcreteCommand role is linked to exactly one class playing the
Receiver role by a one-one association relation representing the state variable playing the
receiver role, and every class playing the Receiver role has a link of this form from at least
one class playing the ConcreteCommand role;

15. every class playing the Invoker role contains exactly one method playing the StoreCommand
role. This method is implemented, has no result, and has a single prameter which is of
type Command and which plays the command_param role. The body of the method simply
assigns this parameter to the command state variable;

16. the class playing the Client role contains at least one method playing the ClientMethod
role. Each such method is implemented and contains in its body an instantiation of a class
playing either the ConcreteCommand or the MacroCommand role. The instantiation of the
MacroCommand role receives no parameters, while the instantiation of the ConcreteCom-
mand role receives a single parameter which is generally a variable representing a relation
between the Client class and some class playing the Receiver role but which can also be self
if the Client class also plays the Receiver role. The result of this instantiation is assigned
to a variable, and this variable is then passed as the sole parameter to an invocation of
the StoreCommand method in some class playing the Invoker role, this invocation being
possibly indirect;

17. every class playing the MacroCommand role is a concrete subclass of the class which plays
the Command role;

18. every class playing the MacroCommand role contains a single state variable which plays
the commands role;

19. the method playing the Execute role is implemented in every class playing the MacroCom-
mand role, and the body of this method contains an invocation to the commands state
variable of the method which plays the Execute role in the Command class;

20. every class playing the MacroCommand role is linked to the class playing the Command role
by a one-many aggregation relation representing the state variable playing the commands
role, and there are no other association or aggregation relations between classes of these
two roles.

The first part of property 1 is analogous to property 1 of the Mediator pattern (see Section 2.1),
and again as in the TemplateMethod pattern (see Section 2.2) we do not need to explicitly
specify that the Command class is abstract because this is implied by property 2. The second
part of the property is in fact also included in the function hierarchy which was introduced in
Section 2.1, though in that and other patterns this additional part is automatically true because
there is only one available role for the subclasses and leaf classes. The specification of property
1 therefore looks entirely analogous to the specification of the properties of the hierarchies of
the other patterns.

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 59

value
Command hierarchy : Wf_Design_Renaming — Bool
Command hierarchy(dr) =
hierarchy
(

Command,
{ConcreteCommand, MacroCommand},
{Receiver, Invoker, Client},
dr

Property 2 is analogous to property 4 of the Iterator pattern (see Section 2.5).

value
has_Execute_def : Wf Design_Renaming — Bool
has_Execute_def(dr) =
has_def_method(Command, Execute, dr) A
unique_method(Command, Execute, dr)

Property 3 is analogous to property 5 of the Mediator pattern.

value
exists_concrete_Command : Wf_Design Renaming — Bool
exists_concrete_Command(dr) = exists_role(ConcreteCommand, dr),

is_concrete_Command : Wf Design Renaming — Bool
is_concrete_Command(dr) =
is_concrete(Command, ConcreteCommand, dr)

The first part of property 4 is similarly analogous to the first part of property 5 of the Medi-
ator pattern, and the second part is analogous to the second part of property 2 of the State
pattern (see Section 2.3).

value
exists_Invoker : Wf _Design Renaming — Bool
exists_Invoker(dr) =
exists_role(Invoker, dr) A is_concrete_class(Invoker, dr)

Properties 5 and 6 are analogous to properties 3 and 4 of the Mediator pattern.

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns

60

value
Invoker_has_ Command : Wf Design Renaming — Bool
Invoker_has_Command(dr) =
has_unique_assoc_aggr(Invoker, Command, dr) A
has_assoc_aggr_var_ren
(Invoker, Command, Aggregation, command, G.one, dr) A
store_unique_vble(Invoker, command, dr)

The seventh property is analogous to property 8 of the State pattern.

value
Invoker_invoke : Wf Design_Renaming — Bool
Invoker_invoke(ds, r) =
exists_method(Invoker, RequestMethod, r) A
deleg_with_var
(Invoker, RequestMethod, command, Command, Execute, (ds, r))

Property 8 is exactly analogous to property 4.

value
exists_Receiver : Wf_Design_Renaming — Bool
exists_Receiver(dr) =
exists_role(Receiver, dr) A is_concrete_class(Receiver, dr)

Property 9 is exactly analogous to property 2 of the State pattern (see Section 2.3).

value
exists_one_Client : Wf_Design_Renaming — Bool
exists_one_Client(dr) =
exists_one(Client, dr) A is_concrete_class(Client, dr)

Property 10 is defined using the function has_assoc_aggr_com.

value
Client_association : Wf Design Renaming — Bool
Client_association(dr) = has_assoc_aggr_com(Client, Receiver, dr)

Property 11 is analogous to property 3 of the Mediator pattern.

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 61

value
store_receiver : Wf_Design_Renaming — Bool
store_receiver(dr) =
store_unique_vble(ConcreteCommand, receiver, dr)

Property 12 is simply specified using the function has_implmethod. This strictly only checks
that at least one Action method is implemented, and in principle allows the class to also contain
defined Action methods. However, this latter is ruled out because we know from property 8 that
all classes playing the Receiver role are concrete, which means that they cannot include defined
methods. All Action methods must therefore be implemented methods.

value
Action_in Receiver : Wf_Design_Renaming — Bool
Action_in Receiver(dr) = has impl method(Receiver, Action, dr)

Property 13 is entirely analogous to property 7. However, in this case the Execute method is
known to exist because it is inherited from the Command class, so we do not need to specify
this explicitly here. The clause including ezists_method can therefore be omitted from our
specification in this case.

value
has_Execute_cc_interface : Wf_Design Renaming — Bool
has_Execute_cc_interface(dr) =
deleg_ with_var
(ConcreteCommand, Execute, receiver, Receiver, Action, dr)

Property 14 is similar to property 15 of the Observer pattern (see Section 2.7) except that here
the specified relation is not necessarily the only relation between the two classes. We therefore
do not include the function has_unique_assoc_aggr in the specification below.

value
binding Receiver_Command : Wf _Design Renaming — Bool
binding Receiver_Command(dr) =
has_assoc_var_ren
(ConcreteCommand, Receiver, receiver, G.one, dr) A
class_connected(Receiver, ConcreteCommand, dr)

The first two parts of property 15 are analogous to the first parts of property 12 of the Memento
pattern (see Section 2.6). The remaining properties, namely those of the body of the method,
are specified using the function st_com_body.

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 62

value

has_StoreCommand_impl : Wf Design Renaming — Bool

has_StoreCommand_impl(dr) =
has_impl method(Invoker, StoreCommand, dr) A
unique_method(Invoker, StoreCommand, dr) A
one_image_ren_pars_in_design

(Invoker, StoreCommand, Command, command_param, dr) A

has_method_without_res(Invoker, StoreCommand, dr) A
st_com_body(Invoker, StoreCommand, command_param, command, dr)

Property 16 is specified using the functions exists_method, which ensures the existence of the
method as in property 8 of the State pattern, and client_comment, which checks the remainder
of the property.

value
comment_of_Client : Wf_Design Renaming — Bool
comment_of_Client(ds, r) =
exists_method(Client, ClientMethod, r) A
client_comment
(
Client,
ConcreteCommand,
Receiver,
Invoker,
MacroCommand,
ClientMethod,
StoreCommand,
(ds, r)

Property 17 is exactly analogous to the second part of property 3. The first part of property 3
does not apply to MacroCommand because the Command pattern need not include MacroCom-
mand classes but must include ConcreteCommand classes.

value
is_concrete_MacroCommand : Wf_Design Renaming — Bool
is_concrete_MacroCommand(dr) =
is_concrete(Command, MacroCommand, dr)

Property 18 is analogous to property 3 of the Mediator pattern, and property 20 is similar to
property 4 of the Mediator pattern except that here we only specify that there are no other

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns

63

aggregation or association relations between the classes, which means that there could also be
an instantiation relation. Instead of the function has_unique_assoc_aggr we specify this property
using has_unique_assoc_aggr_relation which simply says that there is only one association or

aggregation relation between the two given classes.

value

MacroCommand_relationship : Wf_Design Renaming — Bool

MacroCommand_relationship(dr) =

has_unique_assoc_aggr_relation(MacroCommand, Command, dr) A

has_assoc_aggr_var_ren

(MacroCommand, Command, Aggregation, commands, G.many, dr) A

store_unique_vble(MacroCommand, commands, dr)

Property 19 is entirely analogous to properties 7 and 13.

value

has Execute_in mc : Wf Design Renaming — Bool

has_Execute_in_mc(dr) =
deleg_with_var

(MacroCommand, Execute, commands, Command, Execute, dr)

Combining the above properties together we obtain the following function which checks whether

a design represents a Command pattern:

value

is_.command_pattern : Wf Design Renaming — Bool

is_command _pattern(dr) =
exists_Invoker(dr) A
Command_hierarchy(dr) A
exists_one_Client(dr) A
exists_concrete_Command(dr) A
exists_Receiver(dr) A
store_receiver(dr) A
Client_association(dr) A
Invoker_has_Command(dr) A
is_concrete_Command(dr) A
has_Execute_def(dr) A
has_Execute_cc_interface(dr) A
comment_of_Client(dr) A
Invoker_invoke(dr) A
Action_in_Receiver(dr) A

Report No. 201, May 2000

UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 64

binding Receiver_Command(dr) A
has_StoreCommand_impl(dr) A
is_concrete_MacroCommand(dr) A

has_Execute_in mc(dr) A MacroCommand._relationship(dr)

2.9 Visitor Pattern

The Visitor pattern is used “when an object structure contains many classes of objects with
differing interfaces and you want to perform operations on these objects that depend on their
concrete classes; when many distinct and unrelated operations need to be performed on objects
in an object structure and you want to avoid “polluting” their classes with these operations;
and when the classes defining an object structure rarely change but you often want to define
new operations over the structure” [5]. The structure of the pattern is shown in Figure 19.

Visitor

Client

VisitConcreteElementA(Concr eteElementA)
VisitConcreteElementB(Concr eteElementB)

A

ConcreteVisitorA ConcreteVisitorB

VisitConcreteElementA (ConcreteElementA) VisitConcreteElementA (ConcreteElementA)
VisitConcreteElementB(ConcreteElementB) VisitConcreteElementB(ConcreteElementB)

~| ObjectStructure m

Accept(Visitor)

ConcreteElementA ConcreteElementB
Accept(Visitorv) O Accept(Visitorv) ©
OperationA() | OperationB() !

v -> VisitConcreteElementA (this) ‘ ‘ v -> VisitConcreteElementB(this)

Figure 19: Visitor Pattern Structure

The intent, participants and collaborations of the pattern are defined in [5] as:

Intent

Represent an operation to be performed on the elements of an object structure. Visitor

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 65

lets you define a new operation without changing the classes of the elements on which it
operates.

Participants

Visitor
e declares a Visit operation for each class of ConcreteElement in the object struc-
ture. The operation’s name and signature identifies the class that sends the Visit
request to the visitor. That lets the visitor determine the concrete class of the
element being visited. Then the visitor can access the element directly through
its particular interface.

ConcreteVisitor

e implements each operation declared by Visitor. Each operation implements a
fragment of the algorithm defined for the corresponding class of object in the
structure. ConcreteVisitor provides the context for the algorithm and stores
its local state. This state often accumulates results during the traversal of the
structure.

Element

e defines an Accept operation that takes a visitor as an argument.
ConcreteElement

e implements an Accept operation that takes a visitor as an argument.
ObjectStructure

e can enumerate its elements.
e may provide a high-level interface to allow the visitor to visit its elements.

e may either be a composite or a collection such as a list or a set.
Collaborations

e A client that uses the Visitor pattern must create a ConcreteVisitor object and then
traverse the object structure, visiting each element with the visitor.

e When an element is visited, it calls the Visitor operation that corresponds to its class.
The element supplies itself as an argument to this operation to let the visitor access
its state, if necessary.

The interaction diagram in Figure 20 illustrates the collaborations between an object
structure, a visitor, and two elements.

The basic idea of the Visitor pattern is that a composite object, which is represented by the
ObjectStructure class, is constructed out of objects from the various ConcreteElement classes, and
each ConcreteVisitor class performs operations on this composite object by calling appropriate
sub-operations on each of the components of the object, these sub-operations being represented

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 66

anObjectStructure aConcreteElementA aConcreteElementB aConcreteVisitor

i Accept(aVisitor) i ‘

VisitConcreteElementA (aConcreteElementA)

T OperationA()

Accept(aVisitar) T -

VisitConcreteElementB(aConcreteElementB)

i OperationB()

T .

Figure 20: Collaborations of the Visitor Pattern

in the structure as the various VisitConcreteElement methods in a particular ConcreteVisitor class.
Some additional post-processing of the results returned by these sub-operations may of course
also be necessary. Each ConcreteVisitor class therefore contains one VisitConcreteElement method
for each ConcreteElement class, and that ConcreteElement class represents the class of the object
which is passed as parameter to the VisitConcreteElement method.

We restrict to a single Visitor hierarchy and a single Element hierarchy, considering without loss
of generality that multiple visitors and multiple object structures in a design correspond to
multiple instances of the pattern. We also assume that the body of the Accept method in the
ConcreteElement classes contains only the invocation shown in the annotation in the structure.
Again, it would be perfectly possible in a design for the Accept operation to do more, but we
consider that situation as departing from the spirit of the pattern — if additional functionality
is required it can be included in another method which first invokes the Accept operation and
then implements the additional behaviour.

From the interaction diagram in Figure 20, we can see that the ObjectStructure class invokes the
Accept operation on the Element class; indeed this is effectively represented by the association
relation between these two classes in the structure of the pattern (Figure 19). However, the
specific method which performs this invocation does not explicitly appear in the structure of the
pattern. In our formal specification, however, we wish to specify the properties of this method.
We therefore introduce the role SendVisitor to represent it, and we include an annotation to this
method which states that its body contains an invocation of the Accept method. The OMT
diagram representing the structure of the Visitor pattern is thus revised to the form shown in
Figure 21 and this structure forms the basis for our analysis and specification of the pattern.

As in the Iterator pattern (see Section 2.5) we do not explicitly specify any properties of clients
in the pattern because the Client class is again depicted in the structure in [5] in a form which

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns

67

indicates that it has no specific responsibilities.

Client

Visitor

VisitConcreteEl ementA(Concr eteElementA)
VisitConcreteElementB(ConcreteElementB)

A

ConcreteVisitorA

ConcreteVisitorB

VisitConcreteElementA(

VisitConcreteElementB(ConcreteElementB)

ConcreteElementA)

VisitConcreteElementA (ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

ObjectStructure

SendVisitor() Q

J Element

Accept(Visitor visitor_param)

aElement-> Accept(avisitor)

| A

ConcreteElementA

ConcreteElementB

Accept(Visitor visitor_param)
OperationA()

Accept(Visitor visitor_param)
OperationB()

‘ v -> VisitConcreteElementA (self) ‘

‘ v -> VisitConcreteElementB(self)

Figure 21: The Modified Visitor Structure

2.9.1 Formal Specification of the Visitor Pattern

The names of the entities involved in the Visitor pattern are defined by the following RSL

constants:

value

Visitor : G.Class_Name,
ConcreteVisitor : G.Class_ Name,
Element : G.Class_Name,
ConcreteElement : G.Class Name,
ObjectStructure : G.Class_Name,
concreteElement : G.Variable Name,
visitor_param : G.Variable Name,
VisitConcreteElement : G.Method Name,
Accept : G.Method Name,
Operation : G.Method_Name,
SendVisitor : G.Method_Name

Report No. 201, May 2000

UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 68

Based on these considerations, we summarise the properties of the entities in the Visitor pattern
as follows:

10.

11.
12.

. there is a single class which plays the Visitor role. This class is abstract and forms the root

of a hierarchy of classes in which all leaf classes play the ConcreteVisitor role and in which
no class plays either the Element role, the ConcreteElement role, the ObjectStructure role
or the Client role;

. there is a single class which plays the Element role. This class is abstract and forms the

root of a hierarchy of classes in which all leaf classes play the ConcreteElement role and
in which no class plays either the Visitor role, the ConcreteVisitor role, the ObjectStructure
role or the Client role;

the class playing the Element role contains exactly one method which plays the Accept
role. This is a defined method and has only one parameter, this parameter playing the
visitor_param role and being of type Visitor;

there is at least one class playing the ConcreteElement role, and every class playing this
role is a concrete subclass of the class which plays the Element role;

the class playing the Visitor role contains at least one method which plays the VisitCon-
creteElement role and all such methods are defined methods. Each method has a single
parameter, which plays the concreteElement role and which is of type ConcreteElement,
and no two methods have parameters which are of the same type;

the number of methods which play the VisitConcreteElement role in the class playing the
Visitor role is equal to the number of classes playing the ConcreteElement role;

there is at least one class playing the ConcreteVisitor role, and every class playing this role
is a concrete subclass of the class which plays the Visitor role;

every method which plays the VisitConcreteElement role in a class playing the ConcreteVis-
itor role is implemented;

every class playing the ConcreteElement role contains at least one method which plays the
Operation role and all such methods are implemented methods;

the method playing the Accept role in each class playing the ConcreteElement role con-
tains a unique invocation involving a method playing the VisitConcreteElement role. This
invocation is sent to the parameter of the Accept method and the only parameter of the
invocation is self;

there is a single class which plays the ObjectStructure role and this class is concrete;

there is either an association or an aggregation relation of cardinality one-many between
the class playing the ObjectStructure role and the class playing the Element role;

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 69

13. the class playing the ObjectStructure role contains at least one method that plays the
SendVisitor role and each such method is implemented and contains an invocation of the
method which plays the Accept role.

Properties 1 and 2 are analogous to property 1 of the Mediator pattern (see Section 2.1), though
again as in the TemplateMethod pattern (see Section 2.2) we do not need to explicitly specify
that the Visitor and Element classes are abstract because this is implied by properties 3 and 5.

value
Visitor_hierarchy : Wf_Design_Renaming — Bool
Visitor_hierarchy(dr) =
hierarchy
(Visitor, {ConcreteVisitor}, {Element, ConcreteElement}, dr),

Element_hierarchy : Wf_Design Renaming — Bool
Element_hierarchy(dr) =
hierarchy

(Element, {ConcreteElement}, {Visitor, ConcreteVisitor}, dr)

The third property is similar to property 8 of the Observer pattern (see Section 2.7) except
that the Accept method is a defined method rather than an implemented one and further-
more its body is unspecified. We therefore omit the function deleg_with_var_coll_aparam_ren

from the specification of Accept below and we also use the function has_def method in place of
has_impl_method.

value
has_Accept_defined : Wf Design Renaming — Bool
has_Accept_defined(dr) =
has_def method(Element, Accept, dr) A
unique_method(Element, Accept, dr) A
one_image_ren_pars_in_design
(Element, Accept, Visitor, visitor_param, dr)

Property 4 is analogous to property 5 of the Mediator pattern.

value
exists_concrete_Element : Wf _Design Renaming — Bool
exists_concrete_Element(dr) = exists_role(ConcreteElement, dr),

is_concrete_Element : Wf_Design_Renaming — Bool

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 70

is_concrete_Element(dr) =
is_concrete(Element, ConcreteElement, dr)

The first clause of property 5 is analogous to property 3 of the Template Method pattern. The
fact that all VisitConcreteElement methods have parameters of different types is specified by the
function differents_params, while the other properties of the parameter are analogous to the
properties of the parameter of the SetMemento method in the Memento pattern (see property
12, Section 2.6) and so are specified using the function one_image_ren_pars_in_design.

value
has_VisitConcreteElement_defined : Wf_ Design_Renaming — Bool
has_VisitConcreteElement_defined(dr) =
has_def_method(Visitor, VisitConcreteElement, dr) A
has_all def method(Visitor, VisitConcreteElement, dr) A
one_image_ren_pars_in_design
(
Visitor,
VisitConcreteElement,
ConcreteElement,
concreteElement,
dr
) A
differents_params
(Visitor, VisitConcreteElement, ConcreteElement, dr)

The sixth property is specified by directly equating the appropriate numbers of methods and
classes, which are calculated using the functions quantity_of method and quantity_of classes re-
spectively.

value
equivalents_quantities : Wf Design Renaming — Bool
equivalents_quantities(ds, r) =
quantity_of method(Visitor, VisitConcreteElement, r) =
quantity _of_classes(ConcreteElement, r)

Property 7 is entirely analogous to property 4.

value
exists_concrete_Visitor : Wf_Design Renaming — Bool
exists_concrete_Visitor(dr) = exists_role(ConcreteVisitor, dr),

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 71

is_concrete_Visitor : Wf_Design_Renaming — Bool
is_concrete_Visitor(dr) =
is_concrete(Visitor, ConcreteVisitor, dr)

Property 8 is analogous to property 5 of the Template Method pattern.

value
all_VisitConcreteElement_impl : Wf_Design_Renaming — Bool
all_VisitConcreteElement_impl(dr) =
has_all impl method(ConcreteVisitor, VisitConcreteElement, dr)

Property 9 is analogous to property 12 of the Command pattern (see Section 2.8) and the
specification can be simplified in the same way for the same reason.

value
has_Operation_implemented : Wf_Design Renaming — Bool
has_Operation_implemented(dr) =
has_impl method(ConcreteElement, Operation, dr)

Property 10 is new and is defined using the function visitor which checks precisely the properties

required.

value
has_Accept_implemented : Wf Design Renaming — Bool
has_Accept_implemented(dr) =
visitor
(

ConcreteElement,
Accept,
visitor_param,
Visitor,
VisitConcreteElement,
dr

Property 11 is analogous to property 2 of the State pattern (see Section 2.3).

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Behavioural Patterns 72

value
exists_one_ObjectStructure : Wf_Design Renaming — Bool
exists_one_ObjectStructure(dr) =
exists_one(ObjectStructure, dr) A
is_concrete_class(ObjectStructure, dr)

Property 12 is analogous, up to the type and cardinality of the relation, to the first part of
property 9 of the State pattern.

value
ObjectStructure_relation : Wf Design_Renaming — Bool
ObjectStructure relation(dr) =
has_assoc_aggr_reltype
(ObjectStructure, Element, AssAggr, G.many, dr)

Property 13 is also new and is defined using the function o0b_st_annotation which checks precisely
what is needed.

value
ObjectStructure request_accept : Wf Design Renaming — Bool
ObjectStructure request_accept(dr) =
ob_st_annotation
(ObjectStructure, Element, SendVisitor, Accept, dr)

As usual, we combine all the above properties to obtain the following function which checks
whether a design represents a Command pattern:

value

is_visitor : Wf Design Renaming — Bool

is_visitor(dr) =
Visitor_hierarchy(dr) A
Element _hierarchy(dr) A
exists_one_ObjectStructure(dr) A
exists_concrete_Visitor(dr) A
exists_concrete_Element(dr) A
is_concrete_Visitor(dr) A
is_concrete_Element(dr) A
equivalents_quantities(dr) A
has_VisitConcreteElement_defined(dr) A
all VisitConcreteElement_impl(dr) A

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

An Example: Instantiation of the State Pattern 73

has_Accept_defined(dr) A

has_Operation_implemented(dr) A

has_Accept_implemented(dr) A

ObjectStructure_relation(dr) A ObjectStructure_request_accept(dr)

3 An Example: Instantiation of the State Pattern

In this section we give an example of how an object-oriented design is represented in our model
and how we relate this to a pattern using the renaming map. As the basis for this, we use the
example which is used in [5] to illustrate the motivation and sample code of the State pattern.

This example is a model of a TCP network connection. This connection can be in one of several
states — closed, established, listening, etc. — and different operations can be applied to these
states to manipulate the connection.

The OMT-extended diagram of this design, where we only include classes representing the three
states mentioned above, is shown in Figure 22.

Client ;*‘ var_context->ActiveOpen() ‘
I

ClientMethod()O -

var_state

TCPState
TCPConnection
ActiveOpen() fo p—— - 4 var_state-> ActiveOpen(self)‘ Transmit(TCPconnection connection, octetstream)
PassiveOpen() o ActiveOpen(TCPConnection connection)
assiveOpen() O- - - — — - - y
P i var_state>Pa$veOpen(se|fj PassiveOpen(TCPConnection connection)

Closs) O---__

send() a_ e var_state->Close(self) Close(TCPConnection connection)

Acknowledge() o~ Send(TCPConnection connection)
cknowl ~ T -]
’ o var_siate->Send(sdlf) Acknowl edge(TCPConnection connection)

Synchronize() (SR .]]
\{ var state>AcknowIedge(se|f)‘ Synchronize(TCPConnection connection)

ProcessOctet(octetstream) ™ <))
N ChangeState(TCPConnection connection, TCPState state])s
ChangeState(TCPState state) Q | ™~ N

var_state->Synchroni ze(self) ‘ N
i var_state = state /k ‘ oonnection—>ChangeStae(siate)‘

TCPEstablished TCPListen TCPClosed

Transmit(TCPconnection connection, octetstream) et
ActiveOpen(TCPConnection connection) Q

e @ Send(TCPConnection connection)Q
Close(TCPConnection connection) | . / PassiveOpen(TCPConnection connection) |
O | ! © I
e : : k P ' :
A I ’ t‘ |
1
! I ‘ ChangeState(connection, uniquel nstanceEstablished) I |
‘ connection->Proce£sOctet(octastream)‘ ! ‘ ChangeState(connection, uniquelnstanceListen)‘}
I |
‘ ChangeState(connection, uniquel nstanceListen)‘ ‘ ChangeState(connection, uniquel nstanceEstainshedi

Figure 22: Design for a TCP Network Connection

We give only a representative sample of the specification of the design here, defining only the
class TCPConnection and the relations in detail. The complete specification can be found in

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

An Example: Instantiation of the State Pattern 74

Appendix A. The reader is also referred to [4] for the definitions of the types and values used
in the specification below.

We begin by defining RSL constants which represent the names of the classes, methods, state
variables and parameters which are used in the design. Those used in the class TCPConnection
and the relations are:

value
TCPConnection : G.Class_Name,
TCPState : G.Class_ Name,
TCPEstablished : G.Class_Name,
Client : G.Class Name,
ActiveOpen : G.Method_Name,
PassiveOpen : G.Method Name,
Close : G.Method_Name,
Send : G.Method _Name,
Acknowledge : G.Method_Name,
Synchronize : G.Method Name,
ProcessOctet : G.Method Name,
ChangeState : G.Method_Name,
var_state : G.Variable_ Name,
var_context : G.Variable Name,
state : G.Variable Name,
octetstream : G.Variable Name

Next we define the other parts of the methods — their bodies, results and parameters — and the
collection of all methods in the class.

Although there are eight methods in the class TCPConnection, the forms of ActiveOpen, Pas-
siveOpen, Close, Send, Acknowledge and Synchronize are essentially the same: each has no pa-
rameters, returns no result, causes no variable changes, and has a body which consists of a single
invocation to the var_state variable of the corresponding method (i.e. the method with the same
name) in the TCPState class, the parameter of each invocation being self. The specifications of
these six methods are therefore all identical up to the names involved. Therefore we only show
the specification of one of them, ActiveOpen, here together with the specifications of ProcessOctet
and ChangeState.

We first define constants representing the bodies of the methods.

Because there are many cases in which different methods in the design have essentially the
same structure as, for example, with the six methods described above, we introduce generic
parameterised functions to represent these common structures and then define the individual
methods in terms of these. An additional advantage of this approach is that the generic functions
are likely to be reusable across many different designs.

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

An Example: Instantiation of the State Pattern 75

We therefore begin by defining the function one_inv_meth_body which descibes in parameterised
form the bodies of the first six methods in TCPConnection. This function then basically de-
scribes the body of any method in the design which consists of a single invocation to a given
variable of a given method, the invocation having a single given parameter and the method
involving no variable changes. Note that the invoked method and its parameter form an ac-
tual signature (see [4]) in the specification. Then the body of the ActiveOpen method is rep-
resented by a constant, meth_body_AOctn, which is constructed by instantiating the function
one_inv_meth_body appropriately, in this case with the values var_state, ActiveOpen and self.

value
one_inv_meth_body :
G.Variable Name x G.Method_Name x G.Wf_Variable Name —
M.Method _Body
one_inv_meth_body(v, m, p) =
M.implemented
([], (M.mk_Invocation(v, M.mk_Actual Signature(m, (p))))),

meth_body_AOctn : M.Method_Body =
one_inv_meth _body(var_state, ActiveOpen, G.self),

The ProcessOctet and ChangeState methods are treated similarly. The first of these, like sev-
eral other methods in the design, has no explicit body, so we introduce a generic constant
empty_method_body to represent the body of all such methods. The second simply assigns its
parameter to a particular state variable, so its body is empty apart from a single variable
change which represents this assignment. This type of body is modelled generically using the
function assign_param_meth_body and the body of the ChangeState method is again obtained by
instantiating this function appropriately, in this case with the variables var_state and state.

value
empty_method_body : M.Method Body = M.implemented(]], ()),

assign_param_meth body :

G.Variable Name x G.Wf_Variable Name — M.Method_Body
assign_param_meth body(v, p) =

M.implemented([{v} — M.Request_or_Var_from_Variable(p) |, ()),

meth_body_ChgSt : M.Method_Body =
assign_param_meth_body(var_state, state)

Having defined the bodies of the methods, we now proceed to define the methods as a whole.

Again there are similarities in the structure of the methods: the first six methods in the TCP-
Connection class all have no parameters and no result, though they have different bodies; the

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

An Example: Instantiation of the State Pattern 76

method ProcessOctet has a single untyped parameter and no result; and the method ChangeS-
tate, in common with the majority of the methods in the other classes, has a single typed
parameter and no result. We therefore introduce the two generic functions method_with_body
and method_with_body_param to describe each of these forms in an appropriately parameterised
way.

value
method _with body : M.Method Body — M.Method
method_with_body(b) = M.mk_Method((), {}, b),

method_with body_param :
M.Method_Body x G.Wf{f Formal Parameters — M.Method
method_with_body_param(b, p) = M.mk_Method(p, {}, b)

Then the specifications of the individual methods in the class TCPConnection are obtained by
appropriately instantiating these generic functions, and the collection of all methods in the
class, which is represented by the RSL constant Ctn_Class_Methods, is formed by constructing a
map from each method name to the appropriate method. However, the methods constructed by
these generic functions do not necessarily satisfy the well-formedness condition is_wf-method (the
result type of the functions is Method not Wf_Method). Similarly, the collection of methods must
satisfy the well-formedness condition is_wf_class_method. We must therefore check that these
conditions are satisfied in order to be certain that the design is well-formed and the definition
below is correctly typed.

value
Ctn_Class_Methods : M.Class_Method =
[
ActiveOpen — method_with_body(meth_body_AOctn),
PassiveOpen +— method _with_body(meth body POctn),
Close — method_with_body(meth_body_Cctn),
Send +— method with body(meth _body_Sctn),
Acknowledge +— method_with_body(meth_body_Akctn),
Synchronize — method_with_body(meth_body Syctn),
ProcessOctet —
method_with_body_param
(empty_method_body, (G.var(octetstream))),
ChangeState —
method_with_body_param
(meth_body_ChgSt, (G.paramTyped(state, TCPState)))

The sets of methods for the other classes are defined similarly.

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

An Example: Instantiation of the State Pattern 77

The next step is to incorporate the definitions of the methods in the class into a definition of
the class as a whole. For this we need to additionally define the class state and its type.

In the design, the class TCPConnection has a single state variable var_state and is a concrete
class. The specification of this class, which we must again check for well-formedness (the function
is_wf_class) is therefore:

value
Ctn_Class : C.Wf_Class =
C.mk Design_Class({var_state}, Ctn_Class_Methods, G.concrete)

Next we turn to the relations in the design. There are in fact one aggregation relation, one
association relation and three inheritance relations (one between TCPState and each of its sub-
classes) included. Here we only show the specification of one of the inheritance relations because
the others are entirely analogous up to the names of the classes involved.

The aggregation and association relations are both one-one, so their specifications (the constants
agg-rel and ass_rel respectively) are similar apart from their types and the names of the classes
and variables involved. The inheritance relations are simply specified as inheritance relations
between the appropriate pair of classes. Each must of course be shown to satisfy the well-
formedness condition wf relation.

value
agg rel : R.Wf Relation =
R.mk_Design Relation
(
R.aggregation(R.mk_Ref(var_state, G.one, G.one)),
TCPConnection,
TCPState

);

ass_rel : R.Wf_Relation =
R.mk_Design_Relation

(

R.association(R.mk_Ref(var_context, G.one, G.one)),
Client,
TCPConnection

)’

inhl rel : R.Wf_Relation =
R.mk_Design_Relation(R.inheritance, TCPState, TCPEstablished)

The other classes and relations in the design are specified in a similar way, then the specification

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

An Example: Instantiation of the State Pattern 78

of the design as a whole is obtained by combining them together. To do this, we construct a
map which associates each class name in the design with its definition and a set containing all
the relations in the design. The design as a whole is then represented by the pair constructed
from these two components. Checking the remaining well-formedness conditions then ensures
that the design as a whole is well-formed.

value
Class_ Map : C.Classes =
[
Client — Cli_Class,
TCPConnection — Ctn_Class,
TCPState — Sta_Class,
TCPEstablished — Est_Class,
TCPListen — Lis_Class,
TCPClosed +— Clo_Class

]’

Rel_set : R.Wf Relation-set =
{agg_rel, inhl rel, inh2 rel, inh3 rel, ass rel},

State_DS : DS.W{ Design_Structure = (Class_Map, Rel_set)

This completes the specification of the design and we must now link the design to the pattern
by defining a renaming mapping from the names of the classes, methods, state variables and
parameters in the design to the corresponding entities which represent their roles in the pat-
tern (see Figure 4 in Section 2.3). Again we concentrate on the class TCPConnection here. The
full definition of the renaming map can also be found in Appendix A.

The class TCPConnection corresponds to the Context class in the pattern, and the first six meth-
ods (ActiveOpen, PassiveOpen, Close, Send, Acknowledge, and Synchronize) in TCPConnection
all correspond to the Request operation in the pattern. Thus, in this example there are many
elements of the design which play a single role in the pattern.

Since all the above methods play the same role in the pattern and have no explicit parameters,
they all have the same renaming. We therefore simplify our specification by introducing a
constant Ctn_req_mtd which represents this renaming. Then we construct a renaming map
Ctn_mtd for the methods (and their parameters) by mapping each of the methods at the design
level to this constant.

Note that the methods ProcessOctet and ChangeState have no counterparts in the pattern so are
simply omitted from the method renaming map.

value

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

An Example: Instantiation of the State Pattern 79

Ctn_req-mtd : Method_Renaming = mk Method_Renaming(S.Request, |),

Ctn_mtd : Method_and _Parameter_Renaming =
[

ActiveOpen — Ctn_req_mtd,
PassiveOpen — Ctn_req_mtd,

Close — Ctn_req_mtd,

Send — Ctn_req_mtd,

Acknowledge — Ctn_req_mtd,
Synchronize — Ctn_req_mtd

We similarly build a variable renaming map to associate the state variables in the TCPConnection
class with those in the Context class. This is then combined with the method renaming to yield
the renaming for the whole class.

value
Ctn_vbles : VariableRenaming = [var_state — S.state],

Ctn_Class_Renaming : ClassRenaming =
mk_ClassRenaming(S.Context, Ctn_mtd, Ctn_vbles)

We follow the same procedure for the other classes in the design to obtain the renaming for the
whole design, which simply associates the names of the classes in the design with the appropriate
class renaming. Note that each design class plays a single role in the pattern so there is only
a single class renaming for each design class. Again, we must check that the well-formedness
condition is_wf Renaming is satisfied.

value
State_Renaming : Renaming =
[

TCPConnection +— {Ctn_Class_Renaming},
TCPState — {Sta_Class_Renaming},
TCPEstablished — {Con_Class Renaming},
TCPListen — {Con_Class Renaming},
TCPClosed — {Con_Class Renaming},
Client — {Cli_Class_Renaming}

The final step is to combine the specifications of the design and the renaming and to check that
these together satisfy the well-formedness condition is_wf design_renaming.

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Classifying the Behavioural Patterns 80

value
State_Pat_Ren : Design Renaming = (State_DS, State_Renaming)

This value is then used as input to the function is_state_pattern defined in Section 2.3 to check
whether or not the TCP network connection design is an instance of the State pattern.

4 Classifying the Behavioural Patterns

In Section 2 we have described nine of the behavioural patterns and formally specified their
properties. In this section we present a possible classification of the behavioural patterns based
on common aspects identified during our analysis and specification.

Behavioural patterns describe not just patterns of objects or classes but also the patterns of
communication between them [5]. In addition, they characterize the way in which classes and
objects interact and distribute responsibilities, and each encapsulates one aspect that changes
frequently in a program.

We classify the behavioural patterns considering the ways in which objects of the classes are in-
terconnected and communicate with each other, and also how they provide object evolution (how
the action that can be performed on an object or a set of objects changes or seems to change).
We identify two main categories of behavioural patterns — communication between peer ob-
jects, and variation in behaviour encapsulated in and altered by a context — and a number of
subcategories of these.

4.1 Communication between peer objects

The participant classes in the patterns belonging to this group are tightly coupled. The be-
haviour of the classes is defined by a set of requests that have to be performed in some methods
in order for the participants of the pattern to correctly carry out their responsibilities. This
group contains most of the patterns describing a group of peer objects that cooperate to per-
form a task that no single object can carry out by itself [5]. Different subgroups reflect the three
different basic mechanisms by which this cooperation is achieved: through instance variables,
objects, and intermediaries.

Communication using instance variables

The classes in the patterns in this category collaborate by interchanging values of instances
variables. The Memento and Observer patterns fall into this category. Both of these pat-
terns have classes in which there are operations for accessing and updating their instances
variables, the GetState and SetState methods respectively.

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Classifying the Behavioural Patterns 81

In the Memento pattern, the Memento class stores part of the state of the Originator class,
and the state of the Memento class is used to restore the state of the Originator class if
necessary. The GetState method is used to obtain the relevant state of the originator when
a new memento is created and the SetState method is used to restore the originator’s state
to that of the memento (see Figure 10).

In the Observer pattern, the ConcreteObserver classes have a copy of the relevant parts
of the state of the ConcreteSubject class they observe. The state of a subject is changed
by an invocation of a SetState method, then the subject informs its observers that it has
been updated and the observers copy the subject’s state to their own using the GetState
methods (see Figure 13).

Communication using objects

The classes in the patterns in this group communicate by passing an object as a parameter
to a method invocation. The Memento, Command and Visitor patterns fall into this
category.

In the Visitor pattern, the SendVisitor method in the ObjectStructure class invokes the
Accept method on the elements of the structure, passing the visitor as a parameter to this
invocation. Then, when the Accept operation is executed, the appropriate VisitConcre-
teElement method is invoked on that visitor, the element passing itself as a parameter in
this case (see Figures 21 and 20).

Similarly, in the Memento pattern, the caretaker passes its memento to the originator
as a parameter of the SetMemento method when the state of the originator needs to be
restored (see Figures 10 and 9).

Finally, in the Command pattern the client uses the ClientMethod to create a command
and specifies the receiver of that command by passing the receiver as a parameter to the
instantiation. Then the new command is itself passed as a parameter to an invocation of
the StoreCommand method in the invoker (see Figures 17 and 15).

Note that the Observer pattern is not included in this category even though it uses an
object as a parameter in the Attach, Detach and SetState methods. This is because these
methods are not explicitly concerned with the collaborations of the pattern.

Communication through intermediaries

Objects from the patterns in this category do not communicate directly. Rather they
communicate indirectly through intemediaries. The Mediator and Chain of Responsibility
patterns belong to this category.

Figure 23 shows a typical object structure at run-time of a chain of responsibility. The
client issues a request to the first handler in the chain, and the request is passed along the
chain until it reaches an object which can perform the requested action.

Similarly, in the Mediator pattern, mediator objects act as intermediaries between col-
league objects: colleagues do not interact with each other directly, but instead pass re-
quests to other colleagues to the mediator which then forwards them appropriately. A
typical object structure for this interaction is shown in Figue 24.

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Classifying the Behavioural Patterns 82

| e doatds| | dovestnds | | dowsshae |
LaHandler o SO | S ratsuccr J

Figure 23: Object Structure in Chain of Responsibility Pattern

[aColleague
\ e mediator \

|

<
\ aColleague \
| o mediator \

aConcreteM ediator

‘ ® ® o | A
[aColleague
\ mediator e

[aColleague
\ mediator

aColleague \
o mediator \

Figure 24: Object Structure in Mediator Pattern

4.2 Variation encapsulated in and altered by a context

Although all the behavioural patterns in the GoF catalogue encapsulate some aspect that varies
in a program, the patterns in this category do not reflect a specific communication between peer
objects. Instead, they provide behavioural variation in a particular context.

Object changes behaviour within a particular context

One of the simplest forms of object evolution is modelled in the structure of the State and
Strategy patterns in which there is one static aggregation between a context class and an
abstract class and the concrete subclasses of the abstract class represent the behavioural
variations needed in the context class.

In the State pattern, the various subclasses of the abstract State class will have different
behaviour and the appropriate subclass, and hence the behaviour that is appropriate for
the Context class is indicated by the state variable state (see Figure 4).

In the Strategy pattern, alternative implementations of a method are provided by the var-
ious subclasses of the Strategy class and the Context class similarly selects the appropriate
implementation by referring to its strategy state variable (see Figure 5).

A more detailed explanation of how the State and Strategy patterns allow evolution of
object behaviour using a context relation is given in [10].

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Conclusion 83

Behavioural class patterns and patterns used for implementation

The GoF catalogue [5] classifies patterns according to whether they are primarily con-
cerned with classes (class patterns) or objects (object patterns). The behavioural class
patterns basically use inheritance to distribute behaviour between classes [5]. The Tem-
plate Method and Interpreter patterns form this category. Note, however, that some
authors have considered that Interpreter is not application domain independent since it is
used specifically to model language grammars.

Patterns that are used in implementation are intended to solve or improve particular
problems in implemenation. The Template Method and Iterator patterns fall into this
category. The Template Method pattern deals with the implementation of steps of an
algorithm, while the Iterator pattern deals with access to and traversal of the components
of an aggregate object.

5 Conclusion

We have presented an analysis of the essential components and properties of nine of the eleven
GoF behavioural patterns and we have shown how the generic formal model of object-oriented
design described in [4] can be used to formally specify these properties, and hence to formally
specify functions which can check whether or not a particular design fragment matches a partic-
ular pattern. In this analysis we have included not only those properties of the patterns which
are explicitly stated in the GoF catalogue [5] but also those which are implicit in the description,
intent, motivation, and so on of the pattern as well as those which are implicit in the names of
the classes, methods and variables used, and on this basis we have presented extended versions
of the pattern structure which make these additional implicit properties explicit.

All the properties of the patterns are defined in terms of generic properties of the design together
with a renaming mapping which links the design and pattern components appropriately. We
have seen in this work how many of these generic properties are shared by several patterns,
and we therefore expect that the same properties could form the basis for the description of
other object-oriented patterns. We have also seen that the similarity of patterns like State and
Strategy, which have analogous structures but which have different areas of applicability, can be
captured very concisely in our formal model by using a formal renaming.

Many of the behavioural patterns admit one or more variants, including simplifications, such
as degenerate hierarchies, and extensions, such as undo operations in the Command pattern.
We have largely ignored these in this current work, though we have in many cases pointed out
where variants are possible and we have included one such variant, namely the extension of the
Command pattern to include macro commands. We intend to consider these variants more fully
in future work.

We have also restricted our attention to single patterns in isolation, although many of the

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Specification of the TCP Network Connection 84

behavioural patterns are in fact closely related and indeed the GoF catalogue includes several
examples of using a behavioural pattern in combination with another patterns in order to obtain
a refined solution. We believe, however, that the model presented in [4] could be extended with
fairly limited modification to allow us to describe such combinations of patterns and we plan to
investigate this.

Finally, we hope to be able to use our general model together with the specifications of the

individual patterns as the basis for designing a software system which could support both the
use of and the identifiation of patterns in object-oriented designs.

A Specification of the TCP Network Connection

object S : STATE

value
TCPConnection : G.Class_Name,

TCPState : G.Class_Name,
TCPEstablished : G.Class_Name,
TCPListen : G.Class_Name,
TCPClosed : G.Class_Name,
Client : G.Class Name,
ActiveOpen : G.Method Name,
PassiveOpen : G.Method_Name,
Close : G.Method Name,

Send : G.Method_Name,
Acknowledge : G.Method_Name,
Synchronize : G.Method_Name,
ProcessOctet : G.Method Name,

ChangeState : G.Method_Name,

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Specification of the TCP Network Connection 85

Transmit : G.Method_Name,

ClientMethod : G.Method Name,

var_state : G.Variable Name,

var_context : G.Variable Name,

connection : G.Variable Name,

state : G.Variable Name,

octetstream : G.Variable_Name,
uniquelnstanceEstablished : G.Variable_Name,
uniquelnstanceListen : G.Variable_Name,
uniquelnstanceClosed : G.Variable Name,

Ctn_vbles : VariableRenaming = [var_state — S.state],
Ctn_req_mtd : Method Renaming = mk_Method_Renaming(S.Request, []),
Ctn_mtd : Method_and _Parameter_Renaming =

[

ActiveOpen — Ctn_req mtd,
PassiveOpen — Ctn_req_mtd,
Close +— Ctn_req_mtd,

Send — Ctn_req_mtd,
Acknowledge — Ctn_req_mtd,
Synchronize — Ctn_req_mtd

]’

Ctn_Class Renaming : ClassRenaming =
mk_ClassRenaming(S.Context, Ctn_mtd, Ctn_vbles),

Cli_Class_Renaming : ClassRenaming =
mk_ClassRenaming(S.Client, [], []),

Sta_han mtd : Method Renaming = mk_Method_Renaming(S.Handle, []),
Sta_mtd : Method_and Parameter_ Renaming =

[

Transmit — Sta_han mtd,

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Specification of the TCP Network Connection 86

ActiveOpen — Sta_han mtd,
PassiveOpen +— Sta_han_mtd,
Close +— Sta_han_mtd,

Send — Sta_han_mtd,
Acknowledge — Sta_han_mtd,
Synchronize — Sta_han_mtd

]’

Sta_Class_Renaming : ClassRenaming =
mk_ClassRenaming(S.State, Sta_mtd, []),

Con_Class_Renaming : ClassRenaming =
mk_ClassRenaming(S.ConcreteState, Sta_mtd, []),

State_Renaming : Renaming =
[

TCPConnection — {Ctn_Class_Renaming},
TCPState — {Sta_Class_Renaming},
TCPEstablished — {Con_Class Renaming},
TCPListen — {Con_Class Renaming},
TCPClosed — {Con_Class_Renaming},
Client — {Cli_Class_Renaming}

Iy

one_inv_meth _body :
G.Variable Name x G.Method Name x G.W{_Variable Name —
M.Method _Body
one_inv_meth_body(v, m, p) =
M.implemented
([1, (M.mk_Invocation(v, M.mk_Actual Signature(m, (p))))),

assign_param_meth body :

G.Variable Name x G.Wf{_Variable Name — M.Method_Body
assign_param_meth body(v, p) =

M.implemented([{v} — M.Request_or_Var_from_Variable(p) |, ()),

meth_body_AOctn : M.Method_Body =
one_inv_meth _body(var_state, ActiveOpen, G.self),

meth_body POctn : M.Method_Body =
one_inv_meth body(var_state, PassiveOpen, G.self),

meth body Cctn : M.Method Body =
one_inv_meth_body(var_state, Close, G.self),

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Specification of the TCP Network Connection 87

meth body_Sctn : M.Method Body =
one_inv_meth_body(var_state, Send, G.self),

meth_body_Akctn : M.Method Body =
one_inv_meth body(var_state, Acknowledge, G.self),

meth_body_Syctn : M.Method Body =
one_inv_meth_body(var_state, Synchronize, G.self),

meth_body_ChgSt : M.Method_Body =
assign_param_meth_body(var_state, state),

method_with_body : M.Method Body — M.Method
method_with _body(b) = M.mk_Method((), {}, b),

method_with body_param :
M.Method _Body x G.W{_Formal Parameters — M.Method
method_with_body_param(b, p) = M.mk_Method(p, {}, b),

Ctn_Class_Methods : M.Class_Method =
[
ActiveOpen — method_with_body(meth_body_AOctn),
PassiveOpen +— method_with_body(meth body POctn),
Close — method_with_body(meth_body_Cctn),
Send — method_with body(meth_body_Sctn),
Acknowledge — method_with_body(meth_body_Akctn),
Synchronize — method_with_body(meth_body Syctn),
ProcessOctet —
method_with_body_param
(empty_method_body, (G.var(octetstream))),
ChangeState —
method _with body_param
(meth_body_ChgSt, (G.paramTyped(state, TCPState)))

]’

Ctn_Class : C.W{_Class =
C.mk Design_Class({var_state}, Ctn_Class_Methods, G.concrete),

par_tran : G.Wf Formal Parameters =
(G.paramTyped(connection, TCPConnection), G.var(octetstream)),

par_ctn : G.Wf Formal Parameters =
(G.paramTyped(connection, TCPConnection)),

cha_ctn : G.W{_Formal Parameters =

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Specification of the TCP Network Connection 88

(

G.paramTyped(connection, TCPConnection),
G.paramTyped(state, TCPState)

>’

meth_body_defined : M.Method_Body = M.defined,
empty_method_body : M.Method Body = M.implemented([], ()),

meth body_CSctn : M.Method Body =
one_inv_meth_body(connection, ChangeState, state),

Sta_Class_Method : M.Class_Method =
[

Transmit — method_with_body_param(meth_body_defined, par_tran),
ActiveOpen —

method_with_body_param(meth_body_defined, par_ctn),
PassiveOpen +—>

method_with body_param(meth body_defined, par_ctn),
Close — method_with_body_param(meth_body_defined, par_ctn),
Synchronize +—

method_with_body_param(meth_body_defined, par_ctn),
Acknowledge —

method_with_body_param(meth_body_defined, par_ctn),
Send — method_with body_param(meth_body_defined, par_ctn),
ChangeState — method_with_body_param(meth_body_CSctn, cha_ctn)

]’

Sta_Class : C.Wf_Class =
C.mk Design_Class({}, Sta_Class_Method, G.abstract),

meth body TEst : M.Method Body =
one_inv_meth_body(connection, ProcessOctet, octetstream),

meth body_to_Lis : M.Method Body =
M.implemented

(
(1,
(
M.mk_Invocation
(
G.self,
M.mk_Actual_Signature
(ChangeState, (connection, uniquelnstanceListen))

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Specification of the TCP Network Connection 89

)
)’

Est_Class_Method : M.Class_Method =
[

Transmit — method_with_body_param(meth_body_TEst, par_tran),
ActiveOpen —

method_with_body_param(empty_method_body, par_ctn),
PassiveOpen +—>

method with body_param(empty_method _body, par_ctn),
Close — method_with_body_param(meth_body_to_Lis, par_ctn),
Synchronize +—

method_with_body_param(empty_method_body, par_ctn),
Acknowledge —

method_with_body_param(empty_method_body, par_ctn),
Send +— method_with body_param(empty_method _body, par_ctn)

]’

meth_body_to_Est : M.Method_Body =
M.implemented

(
(1,
(
M.mk_Invocation
(
G.self,
M.mk_Actual_Signature

(

ChangeState, (connection, uniquelnstanceEstablished)

)

)
)’

Lis_Class_Method : M.Class_Method =
[

Transmit — method_with_body_param(empty_method _body, par_tran),
ActiveOpen —

method_with_body_param(empty_method_body, par_ctn),
PassiveOpen +—>

method with body_param(empty_method _body, par_ctn),
Close — method_with_body_param(empty_method_body, par_ctn),
Synchronize +—

method_with_body_param(empty_method_body, par_ctn),
Acknowledge +—

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Specification of the TCP Network Connection 90

method_with_body_param(empty_method_body, par_ctn),
Send — method_with_body_param(meth_body_to_Est, par_ctn)

]’

Clo_Class_Method : M.Class Method =
[
Transmit — method_with_body_param(empty_method_body, par_tran),
ActiveOpen — method_with_body_param(meth_body_to_Est, par_ctn),
PassiveOpen +—>
method_with body_param(meth_body_to_Lis, par_ctn),
Close — method_with_body_param(empty_method_body, par_ctn),
Synchronize +—
method_with_body_param(empty_method_body, par_ctn),
Acknowledge —
method_with_body_param(empty_method_body, par_ctn),
Send +— method_with body_param(empty_method _body, par_ctn)

]’

Est_Class : C.W{_Class =
C.mk Design_Class({}, Est_Class_Method, G.concrete),

Lis_Class : C.Wf_Class =
C.mk Design_Class({}, Lis_Class_Method, G.concrete),

Clo_Class : C.Wf_Class =
C.mk Design_Class({}, Clo_Class_Method, G.concrete),

agg rel : R.Wf Relation =
R.mk Design_Relation
(
R.aggregation(R.mk_Ref(var_state, G.one, G.one)),
TCPConnection,
TCPState

)’

ass_rel : R.W{f Relation =
R.mk _Design_Relation
(
R.association(R.mk_Ref(var_context, G.one, G.one)),
Client,
TCPConnection

)’

inh1 rel : R.Wf Relation =
R.mk Design Relation(R.inheritance, TCPState, TCPEstablished),

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

Specification of the TCP Network Connection

91

inh2 rel : R.Wf Relation =
R.mk_Design_Relation(R.inheritance, TCPState, TCPListen),

inh3_rel : R.Wf_Relation =
R.mk_Design_Relation(R.inheritance, TCPState, TCPClosed),

Rel set : R.Wf_Relation-set =
{agg_rel, inhl rel, inh2 rel, inh3 rel, ass rel},

Class_Map : C.Classes =
[

Client — Cli_Class,
TCPConnection +— Ctn_Class,
TCPState — Sta_Class,
TCPEstablished — Est_Class,
TCPListen — Lis_Class,
TCPClosed +— Clo_Class

]’

State_DS : DS.W{ Design_Structure = (Class_Map, Rel set),
State_Pat Ren : Design Renaming = (State_DS, State_Renaming),

meth body_Cli : M.Method Body =
M.implemented

(
[,
{

M.mk_Invocation
(var_context, M.mk_Actual Signature(ActiveOpen, ()))

)
)’

Cli_Class_Method : M.Class_Method =
[ClientMethod +— method_with_body(meth_body_Cli)],

Cli_Class : C.Wf_Class =
C.mk Design_Class({}, Cli_-Class_Method, G.concrete)

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

References 92

References

[1] Kent Beck, James O. Coplien, Ron Crocker, Lutz Dominick, Gerard Meszaros,
Frances Paulisch, and John Vlissides. Industrial Experience with Design Pat-
terns. Technical report, First Class Software, AT&T, Motorola Inc, Siemens
AG, Bell Northern Research, Siemens AG, and IBM Research. http://wwwl.bell-
labs.com/user/cope/Patterns /ICSE96/icse.html.

[2] Paul Dyson and Bruce Anderson. State Patterns, EuroPLoP 96 Writers Workshop, Pat-
tern Languages of Program Design 8 (PLoPD3), chapter 9, pages 125-142. Addison-Wesley,
1998.

[3] Ammon H. Eden, Joseph Gil, and Amiram Yehudai. A Formal Language for Design Pat-
terns. Technical report, The Department of Computer Science, School of Mathematics, Tel
Aviv University of Israel. http://www.math.tau.ac.il/~eden/bibliography.html.

[4] Andres Flores, Luis Reynoso, and Richard Moore. A Formal Model of Object-Oriented
Design and GoF Design Patterns. Technical Report 200, UNU/IIST, P.O. Box 3058, Macau,
July 2000.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: El-
ements of Reusable Object-Oriented Software. Addison Wesley Professional Computing
Series. Addison Wesley, 1995.

[6] Ralph Johnson. Design Patterns in the Standard Java Libraries. In Proceedings of the
Asia Pacific Software Engineering Conference: Keynote Materials, Tutorial Notes, pages
66-101, 1999.

[7] Henry Lieberman. There’s more to menu systems than meets the screen. In SIGGRAPH
Computer Graphics, pages 181-189, July 1995.

[8] Marco Meijers. Tool Support for Object-Oriented Design Patterns. Master’s thesis, De-
partment of Computer Science, Utrecht University, The Netherlands, August 1996.

[9] The RAISE Language Group. The RAISE Specification Language. BCS Practitioner Series.
Prentice Hall, 1992.

[10] Linda M. Seiter. Design Patterns for Managing Evolution
Master’s thesis, College of Computer Science, Northeastern University, September 1996
ftp://ftp.ccs.neu.edu/pub/people/lieber/theses/seiter/thesis.ps.

[11] Linda M. Seiter, Jens Palsberg, and Karl J. Lieberherr. Evolution of Object Behavior using
Context Relations. In SIGSOFT 96, pages 46-57. ACM, 1996.

[12] John Vlissides. Pattern Hatching: Design Patterns Applied. Software Patterns Series.
Addison-Wesley, 1998.

[13] John M. Vlissides and Mark A. Linton. Unidraw: A Framework for Building Domain-
Specific Graphical Editors. ACM Transactions on Information Systems, 8(3):237-268, July
1990.

Report No. 201, May 2000 UNU/IIST, P.O. Box 3058, Macau

