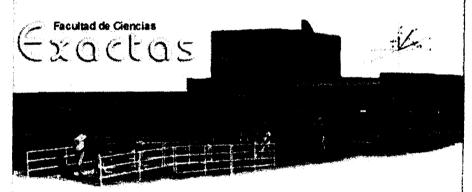
C&S

Departamento de
Computación y Sistemas



INTIA

Investigación en Tecnología Informática Avanzada

WICC 2003

5º Workshop de Investigadores en Ciencias de la Computación

Universidad Nacional del Centro de la Provincia de Buenos Aires

WICC 2003

Anales del V Workshop de Investigadores en Ciencias de la Computación

Depto, de Computación y Sistemas - FCExactas - UNCPBA

22 y 23 de Mayo de 2003

Titulo 💌	Autores 🗪	Págs.	Artic
Presentación		i-iv	[PDF
Listado de Artículos por Área		v-viii	[HTM
Integración de los estándares UML y WfMC para el modelado de workflows	Edgardo Acosta, Marcelo Ariel Uva, Adela Grando	1-5	[PDf
Actualización de Interfaz en Sistemas de Radar	Nelson Acosta, Marcelo Tosini	6-9	[PDF
Desarrollo de un equipo de fútbol de Robots	H. Nelson Acosta, José A. Fernández León, Martín O. Vázquez	10-14	[PDf
Avances en Procesadores de Lenguajes y Proof-Carrying Code	J. Aguirre, R. Medel, M. Arroyo, N. Florio, F.Bavera, P. Caymes Scutari, D. Nordio	15-19	[PDF
Sistemas Inteligentes Distribuidos para resolver problemas de optimización	Hugo Alfonso, Carlos Bermúdez, Natalia Fernández, Gabriela Minetti, Carolina Salto, Natalia Stark	20-22	[PDf
Proceso de Elicitación en Entornos Virtuales de Colaboración: Aspectos Comunicacionales	Gabriela Aranda, Adriana Martín, Claudia Martínez, Nadina Martínez Carod	23-27	[PDI
Arquitectura de Sistemas de Visualización	Jorge Ardenghi, Silvia Castro, Elsa Estévez, Pablo Fillottrani, Sergio Martig, Marisa Sánchez	28-31	[PDF
Migración de Procesos, Memoria Compartida Distribuida y Sistemas Multiagentes	Jorge R. Ardenghi, Javier Echaiz, Rafael B. García, Karina M. Cenci	32-35	[PDF
Procesamiento de Imágenes Satelitales Utilizando PDICalc	L. Arlenghi, A. Vitale, C. Delrieux y G. Ramoscelli	36-40	[PDF
El proyecto AGUSINA	Marcelo G. Armentano, Rubén A. Mansilla	41-45	[PDF
Búsquedas en Bases de Datos no Convencionales	Diego Arroyuelo, Verónica Ludueña, Nora Reyes y Gonzało Navarro	46-50	[PDF
Un Workflow basado en Java para la gestión documental	Ariel Sebastián Arsaute, Gustavo Ignacio Aguirre	51-54	[PDF
Ambientes de programación Paralela/Distribuida para NOW	Andrés Barbieri, Fernando Tinetti, Rodolfo Bertone, Armando De Giusti	55-60	[PDF
Extensión del UML para soportar el Modelado de Sistemas y Aplicaciones de Agentes de Software Móviles	Edgardo A. Belloni	61-66	[PDF
Casos de uso: una propuesta para la reunión	María de los Ángeles Fernández		

de requerimientos	Benassati, Pablo Fillottrani	67-71	[PDF
Administración de Redes Basadas en Políticas	Mario Leandro Bertogna, Rodolfo Del Castillo	72-75	[PDF
Métricas de Performance en Administración de BDD en redes LAN y WAN.	R. Bertone	76-79	[PDF
Planning en agentes inteligentes	Luis S. Berdun	80-83	[PDF
Administración Electrónica de Documentos en Automatización de Oficinas	Marcos Boracchia, Hugo Ramón, Silvia Esponda, Marina Iglesias, María Bernarda Albanesi, Guillermo Ricci	84-88	[PDF
Realidad Virtual para Entrenamiento en Submarinos	Gustavo Boroni, José Marone, Marcelo Tosini, Pablo Vagliati, Marcelo Vénere, Eduardo Avila, Oscar Grasso, David Lagar, Ricardo Leisamón	89-93	[PDF
EEG/MEG Kalman-like Source Estimation	Oscar Norberto Bria	94-98	[PDF
Applying an Ontology on Data Integration	Agustina Buccella, Alejandra Cechich, Nieves R. Brisaboa	99-102	[PDI
Líneas de Investigación en el Laboratorio de Visualización y Computación Gráfica	Silvia Castro, Sergio Martig	103-107	[PDF
Hermes: DSM por software con granularidad fina	Horacio Andrés Lagar Cavilla, Rafael Benjamín García	108-112	[PDF
Programación en Lógica Rebatible. Un enfoque declarativo	Laura Cecchi, Guillermo Simari	113-116	[PDF
Stability for Component Integration Assessment	Alejandra Cechich, Mario Piattini	117-119	[PDF
Aplicaciones Distribuidas: Coordinación y Sincronización	Karina M. Cenci, Jorge R. Ardenghi	120-124	[PDF
Agentes Móviles en Sistemas Distribuidos	Raúl Champredonde, Jorge Ardenghi, Armando De Giusti	125-128	[PDF
Búsquedas por Similitud en Espacios Métricos: el Fqtrie	Edgar L. Chávez Norma E. Herrera, Carina M. Ruano, Ana V. Villegas	129-133	[PDF
Visualización Dinámica de Campos Vectoriales Aplicada a Escurrimientos Hídricos en Llanuras	María Virginia Cifuentes, Marcelo Venere, Alejandro Clausse	134-138	(<u>PD</u> I
Revisando Bases Modales Temporales	María Laura Cobo, Marcelo A. Falappa	139-143	[P <u>D</u> F
Estrategia de búsqueda y seguimiento de objetos sobre el lecho marino con un vehículo submarino autónomo	Hugo Curti, Gerardo Acosta, Oscar Calvo, Maximiliano Suárez	144-148	[PDF
6617: Arquitectura RISC de ancho de palabra de datos parametrizable para implementaciones sobre tecnología FPGA	Julián U. da Silva Gillig, Miguel Ángel Sagreras, Alberto Dams	149-153	[PDF
Software Evaluation Using Quantitative Methods	A. Dasso, A. Funes, C. Salgado, M. Peralta, G. Montejano, D. Riesco, R. Uzal	154-156	[PDF
Translating Concurrent Rsl Into Pvs	A. Dasso, A. Funes, G. Montejano, D. Riesco, R. Uzal	157-158	[PDF
LIDI: Un esquema de las líneas de Investigación y Desarrollo	Armando De Giusti, Patricia Pesado, Marcelo Naiouf, Laura	159-164	[PDf

	Lanzarini		
Optimización de algoritmos sobre arquitecturas paralelas de memoria distribuida. Aplicación al reconocimiento de patrones.	Armando De Giusti, Marcelo Naiouf, Franco Chichizola	165-168	(PDF
Procesamiento Paralelo. Modelos de predicción de performance	Laura De Giusti, Marcelo Naiouf, Oscar Bría	169-172	[PDF
Rebatibilidad y Programación en Lógica Inductiva	Telma Delladio, Guillermo R. Simari	173-177	[PDF
Metodologías y herramientas para la Educación no presencial utilizando tecnología multimedial	Beatriz Depetris, C.C. Guillermo Feierherd	178-182	[<u>PD</u> f
Optimization of Tardiness Related Objectives In Single Machine Environments Via Multirecombined Evolutionary Algorithms	M. de San Pedro, A. Villagra, M. Lasso, D. Pandolfi, G. Vilanova, M. Díaz de Vivar, R. Gallard	183-187	[PDF
An ObjectOriented Bridge among Architectural Styles, Aspects and Frameworks	J. Andrés Díaz Pace	188-191	[PDF
Auditoría de Seguridad de Organizaciones, fortalezas y debilidades de la Norma ISO 17799	Javier F. Diaz, Viviana Harari, Paula Venosa	192-196	[PDF
Experiencia con la implementación de una red IPv6	Francisco Javier Díaz , Miguel Angel Luengo y Matías Robles	197-200	[PDF
Madurez de Courseware Open Source. Análisis comparativo TelEduc - WebCT	Francisco Javier Díaz, María Alejandra Osorio, Ana Paola Amadeo	201-205	<u>[PDF</u>
Transmitiendo video sobre Internet usando software libre	Javier Díaz, Claudia Banchoff Tzancoff	206-209	[PDf
Single System Image: Pilar de los Sistemas de Clustering	Javier Echaiz, Jorge R. Ardenghi	210-214	[PDI
Un resumen de experiencias y el estado de avance en el uso de agentes y sistemas multiagente	Marcelo Errecalde, Guillermo Aguirre, Alfredo Muchut, Fernando Gonzalez, Diego Devia, Cristina Sáez	215-219	[PDf
Metaheurísticas para Optimización en Ambientes Estacionarios	Susana Esquivel y Guillermo Leguizamón	220-222	[PDF
Metaheurísticas para Optimización en Ambientes no Estacionarios	Susana Esquivel y Guillermo Leguizamón	223-227	[PDF
Nueva Generación de Componentes y su Utilización en la Web Semántica	Elsa Clara Estévez, Pablo Fillottrani	228-231	[PDf
Contracciones Kernel: Funciones de Incisión Cuantitativas	Marcelo A. Falappa, Guillermo R. Simari	232-236	[PDF
Non Prioritized Reasoning in Intelligent Agents	Marcelo A. Falappa, Gerardo I. Simari	237-240	[PDF
Integración de técnicas orientadas al cliente y técnicas formales en el desarrollo de software con UML y RUP	Liliana Favre, Cármen Leonardi, Virginia Mauco, Laura Felice, Claudia Pereira, Liliana Martínez	241-245	[PDF
Técnicas de reuso dentro de la Ingeniería del Dominio	Laura Felice, Daniel Riesco	246-250	[PDF
Clasificación y Segmentación Interactivas en	F. Ferramola, G. Ramoscelli y	251-255	[PDF

Imágenes Satelitales	C. Delrieux		
Modelos Topográficos y Mallas Poligonales	Jacqueline Fernández, Roberto Guerrero	256-261	[PDF
Restricciones de Integridad Referencial y Dependencias de Inclusión: Claves para el Enriquecimiento Semántico de una Base de Datos	Viviana E. Ferraggine, Jorge H. Doorn, Laura C. Rivero	262-266	[PDF
Línea de investigación centrada en el aprendizaje por resolución de problemas y el trabajo cooperativo-colaborativo a través de redes usando base datos relacional.	Nancy Figueroa, Fernando Lage, Zulma Cataldi, Gregorio Perichinsky	267-272	[PDF
Formalización de Web Mining como Conocimiento Estructurado	Gabriel R. Filocamo, Carlos I. Chesñevar	273-277	[PDF
CSCW Systems on PvC Environments	Andrés Flores	278-282	[PDF
Formal Foundations for the Unified Modeling Language	A. Funes, A. Dasso, D. Riesco, G. Montejano, R. Uzal	283-286	[PDF
Evaluación de Algoritmos de Ruteo en Redes de Computadoras	Edilma Olinda Gagliardi, Mario Marcelo Berón, Gregorio Hernández Peñalver	287-291	[PDF
Separabilidad Geométrica aplicada a las Búsquedas por Rangos	Edilma Olinda Gagliardi, Gregorio Hernández Peñalver	292-296	[PDF
Agentes Inteligentes para Sistemas Tolerantes a Fallos para Control Industrial, Una nueva perspectiva de control	Arnulfo Alanis Garza, Rafael Ors Carot, Juan José Serrano, Oscar Castillo López, José Mario García Valdez	297-300	[PDI
Aprendizaje y Colaboración en grupos de personas y agentes	Berta García, Lilian Manzur, Guillermo Aguirre, Guillermo Leguizamón	301-305	(PDF
Extendiendo Graphplan con Técnicas de Aprendizaje	Diego García, Alejandro García	306-309	[PDf
Solving unrestricted parallel machine scheduling problems via evolutionary algorithms	C. Gatica, E. Ferretti, R. Gallard	310-314	[PDI
Generating User Profiles for Information Agents	Daniela Lis Godoy	315-319	[PDF
Integrating Defeasible Argumentation and Machine Learning Techniques	Sergio A. Gómez, Carlos I. Chesñevar	320-324	[PDF
The Golog Programming Language and Agency	Sergio Alejandro Gómez	325-328	[PDF
Representación de Versiones de Modelos en el Proceso de Diseño	Silvio Gonnet, Horacio Leone, Gabriela Henning	329-333	[PDf
Construcción de Escenarios Futuros	Graciela D. S. Hadad, Jorge H. Doorn, Gladys N. Kaplan	334-338	[PDf
Checking semantics in UML models	Susana Kahnert, Pablo Fillottrani	339-341	[PDF
Validación de Escenarios Futuros con Prototipos	Gladys N. Kaplan, Jorge H. Doorn, Graciela D. S. Hadad	342-346	[PDf
Estrategias Evolutivas para la Detección de Contornos en Imágenes Digitales	Román Katz y Claudio Delrieux	347-351	[PDF
Aplicaciones de Redes Neuronales a Problemas Teóricos y de Control	Carlos Kavka, Patricia Roggero y Javier Apolloni	352-355	[PDf

WICC 2003 Página 5 de 10

Estrategias evolutivas aplicadas a Redes Neuronales	Laura Lanzarini, Leonardo Corbalán, A. De Giusti	356-360	(PDF
Heuristics for partial and total dynamic w-t problems in single machine environments	M. Lasso, D. Pandolfi, M. de San Pedro, A. Villagra, G. Vilanova.	361-364	[PDI
Uso De la Programación Neurolingüística en el Proceso de Elicitación de Requerimientos	Juan Manuel Luzuriaga, Rodolfo Martínez	365-368	[PDf
Tecnología informática aplicada en Educación. Aplicaciones	María C. Madoz, Gladys Gorga, Armando De Giusti	369-372	[<u>PD</u> F
Abstract argumentation and dialogues between agents	Diego C. Martínez, Alejandro J. García	373-377	[PDF
Diseño de Interfaces Industriales	Martín Larrea, Sergio Martig, Silvia Castro	378-383	[PDF
Herramientas Y Estrategias Visuales Para Ambientes De Aprendizaje Computacionales En La Educación No Presencial	Sergio Martig, Perla Señas	384-388	[PDf
Plataformas para Desarrollo de Sistemas Multiagente. Un Análisis Comparativo	Tulio José Marchetti, Alejandro Javier García	389-393	[PDf
Agentes Móviles Inteligentes para la Web Semántica	Cristian M. Mateos	394-398	[PDf
Agentes en Bases de Datos Distribuidas	I. Miatón, P. Pesado, R. Bertone, A. De Giusti	399-404	[PDF
Comparación de Métricas para Función de Fitness en Estrategias Evolutivas Aplicadas al Problema Inverso de los IFS	Paula Millado, María Laura Ivanissevich y Claudio Delrieux	405-409	[PDF
Es posible la integración de servicios en la Web con .NET?	Lía Molinari, Javier Díaz	410-414	(PDI
Técnicas espaciales, frecuenciales y morfológicas para restauración de huellas dactilares deterioradas	Moler, Ballarin, Blotta, Meschino, Pastore, Inchurregui	415-419	[PDF
El sistema SVED en la enseñanza semi- presencial	Norma Moroni, Perla Señas	420-423	[PDF
Métricas del Paralelismo y Balance de carga en Sistemas Paralelos	Marcelo Naiouf, Armando De Giusti	424-428	[PDF
Lenguaje de Consulta Basado en Conocimiento para la selección de Técnicas Estadísticas y de Data Mining	Héctor Oscar Nigro, Daniel Xodo, José Francisco Zelasco	429-433	[PDF
Identificación de Canal Digital Mediante nLMS Modificado	Wenceslao Novotny, Hilda Noemí Ferrao, Jorge Omar Pérez	434-434	[PDF
Laboratorio de Procesamiento Digital de Información (Lpdi)	Wenceslao Novotny, Hilda Noemí Ferrao, Jorge Omar Pérez	435-435	(PDF
Sobre la Revisión de Planes en Agentes Inteligentes	Gerardo Parra, Guillermo Simari	436-439	[PDF
Taxonomic evidence applying algorithms of intelligent Data mining. Asteroids families	Gregorio Perichinsky, Magdalena Servente, Arturo Carlos Servetto, Ramón García Martínez, Rosa Beatriz Orellana, Angel Luis Plastino	440-446	[PDf
Un Monitor de estado de servidores en un ambiente TCP/IP	Andrea Pérsico, Sonia Flores & Marcela Printista	447-451	(PDF

Sistemas de Gestión Distribuidos	P. Pesado, R. Bertone, M. Boracchia, P. Thomas, A. Pasini, G. Ricci, J. Labattaglia, A. De Giusti.	452-455	[PDF
Managing Conflicts in Aspect-Oriented Software	Jane L. Pryor	456-460	[PDF
Definición de métricas para la complejidad de expresiones OCL de forma metodológica	Luis Reynoso, Marcela Genero, Mario Piattini	461-465	[PDF
Regularidades en Escenarios Futuros	Marcela Ridao, Jorge Doorn	466-469	[PDF
Especificación en RSL de Componentes Basadas en Streams	Daniel Riesco; Mario Berón, Germán Montejano, Walter Dosch	470-474	[<u>PDf</u>
Herramientas de soporte para temas de Comunicación de Datos	Guillermo Rigotti	475-479	[PDF
La utilización de la Web como recurso en el procesamiento del lenguaje natural	Sandra Roger, Alexander Gelbukh	480-482	[PDF
Estimación de tamaño de un proyecto de software utilizando lógica difusa	Fernando Romero	483-485	[PDF
Una propuesta para facilitar la generación de tutoriales	Zulema B. Rosanigo, Alicia Paur, Pedro Bramati, Alfredo Ortega, José P. Cerra	486-489	[PDF
Negociación basada en Argumentación en Sistemas Multi-Agente	Sonia V. Rueda, Alejandro García, Guillermo R. Simari	490-494	[PDF
Nivelación para ingresantes a carreras de Ciencias e Ingeniería de la Computación. Una propuesta de articulación con escuelas de nivel medio.	Sonia V. Rueda, Alejandro García, Guillermo R. Simari	495-499	(PDF
Estimación y Compensación de Movimientos en Video Codificado	Claudia Cecilia Russo, Hugo Ramón	500-504	[PDF
Restauración de Imágenes y Videos en Blanco y Negro	Claudia Russo, Hugo Ramón, Cristian Sánchez, Nestor Estrugo	505-508	[PDF
Paradigmas de programación paralela	Fernando Sáez, Fabiana Piccoli, Marcela Printista, Raúl Gallard	509-513	[PDF
Formalizing E-Business Models with UML	Marisa A. Sánchez	514-516	[PDf
WebLIDI: Desarrollo de un Entorno de Aprendizaje en la WEB	Cecilia Sanz, Alejandra Zangara, Alejandro González, Eduardo Ibañez, Armando De Giusti	517-521	[PDF
Learning Users' Assistance Requirements with WATSON	Silvia Schiaffino	522-526	[<u>PD</u> F
Sobre la construcción de compiladores en Java	Mariano Schmidt, Gerardo Parra	527-530	[PDI
Ambientes de aprendizaje computacionales para la educación en sus diferentes modalidades	Perla Señas	531-535	[PDF
Proceso Ágil para Desarrollo de Software	Arturo Carlos Servetto, Ramón García Martínez, Gregorio Perichinsky	536-540	[PDf
A General Approach to the Implementation of Action Theories	Gerardo I. Simari Diego R. García, Gabriel R. Filocamo	541-545	[PDf

Localización de Errores Dirigida por la Arquitectura en Sistemas Basados en Eventos	Alvaro Soria	546-550	1 <u>09</u>]
An architecture for rational agents interacting with complex environments	A. Stankevicius, M. Capobianco, C. I. Chesñevar	551-555	[PDf
Descomposición en Sumas de Minkowski	María Teresa Taranilla, Gregorio Hernández Peñalver	556-559	[PDf
Una Aproximación hacia la Construcción de Sitios Web Didácticos	Ricardo Tertusio, Jorge Blanco, Mario Berón	560-564	1 <u>09</u>]
3D Requirements Visualization	Alfredo Raúl Teyseyre	565-569	[PDf
Identificación de Objetivos a partir de LEL & Escenarios	Pablo Thomas, Alejandro Oliveros	570-574	[PDF
Álgebra Lineal en Clusters Basados en Redes Ethernet	Fernando G. Tinetti, Mónica Denham, Andrés Barbieri	575-579	[PDf
Costos del Cómputo Paralelo en Clusters Heterogéneos	Fernando G. Tinetti, Antonio A. Quijano	580-584	[PDf
Aplicaciones sobre Plataformas de Redes Neuronales en Tiempo Real	Marcelo Tosini, Nelson Acosta	585-589	[PDf
Organizaciones Inteligentes – Pronósticos y Predicciones	Gustavo Tripodi, Gustavo Illescas	590-594	[PDF
Using AgentBased Technology for Aspect- Oriented Development	Federico Trilnik	595-598	[PDf
Arquitectura de software para Sistemas de Información Ambiental	Adriana Urciuolo, Rodolfo Iturraspe, Ariel Parson, Natalia Esteban	599-603	[PDF
Inferencia de tipos en programas lógicos mediante análisis top-down por interpretación abstracta	Claudio Vaucheret	604-608	[PDF
Adaptación en VHDL de un microcontrolador genérico para el soporte de algoritmos difusos	Martín Vázquez, Nelson Acosta, Daniel Simonelli	609-614	[PDf
Un modelo de objetos para Bills of Materials complejos	Marcela Vegetti, Gabriela Henning, Horacio Leone	615-619	[PDF
Modelos de Datos para Datos Espaciales	Mercedes Vitturini, Pablo Fillottrani, Silvia Castro	620-624	[PDI
Recursos Computacionales Asistenciales Para La Educación No Presencial	Mercedes Vitturini, Laura Benedetti, Perla Señas	625-629	[PDF
Cálculo y Análisis del Pitch en Señales Sonoras de Voz Humana	R.S. Wainschenker, J.H. Doorn, C.F. Legrottaglie, M. Castro	630-633	[PDI
Generación de Mapas Temáticos a partir del Procesamiento de Imágenes Satelitales.	R. S. Wainschenker, G. Ciccimarra, P. Tristan, J. Doorn	634-637	[PDF
Propuesta de un Sistema de Evaluación en la Web para la Educación	Maria Soledad Zangla, Marcela C. Chiarani, y Ma. Margarita Lucero	638-642	[PDF
Segmentación y Registración de Imágenes 3D	José Francisco Zelasco, Patricia Calvo	643-645	[PDF
Reactive Mobility by Failure	Alejandro Zunino	646-650	[PDF
Restauración de Imágenes y Videos en	Claudia Russo, Hugo Ramón,		

Definición de métricas para la complejidad de expresiones OCL de forma metodológica.

Luis Reynoso¹, Marcela Genero², Mario Piattini²

¹ Universidad Nacional del Comahue

Departamento de Ciencias de Computación, Facultad de Economía y Administración

Buenos Aires 1400, Neuquén, Argentina

Teléfono:+ 54 299 4490312 Fax: +54 299 4490313

lreynoso@uncoma.edu.ar, lreynoso@proyectos.inf-cr.uclm.es,

² Universidad de Castilla La Mancha

Grupo de Investigación Alarcos

Paseo de la Universidad 4, 13071, Ciudad Real, España

Teléfono: +926 295 300 Fax: +926 295 354

{Marcela.Genero, Mario.Piattini}@uclm.es

RESUMEN

Dado que los diagramas de clases constituyen "la columna vertebral" del desarrollo de software orientado a objetos (OO), han surgido muchas propuestas de métricas para medir atributos internos de su calidad como la complejidad estructural, el acoplamiento, el tamaño, etc. Pero ninguna de las propuestas existentes considera la complejidad añadida a los diagramas de clases UML al incorporarles expresiones escritas en el "Object Constraint Language" (OCL). Es bien sabido que el lenguaje OCL realmente enriquece a los diagramas de clases ya que los complementa a través de expresiones que especifican propiedades semánticas del modelo, mejorando la precisión del sistema, su documentación, y su comprensibilidad en etapas iniciales del desarrollo. Esto es lo que nos llevó a definir un conjunto de métricas para la complejidad estructural de las expresiones OCL considerando sólo aquellos elementos de OCL que se ven implicados en técnicas de "tracing". Consideramos que las técnicas de "tracing" afectan en gran medida a la complejidad cognitiva y a la comprensibilidad de las expresiones OCL, lo que afectará al mantenimiento de los diagramas de clases UML.

El principal objetivo de este artículo es presentar el estado de trabajo de investigación que se está desarrollando como parte de una tesis doctoral, poniendo especial énfasis en el proceso metodológico utilizado para la obtención de métricas válidas.

Palabras clave

Métricas OO, diagramas de clases, UML, complejidad estructural, complejidad cognitiva, comprensibilidad, mantenibilidad, validación teórica, validación empírica.

1 INTRODUCCIÓN

En la producción de software como en todo ingeniería, es ampliamente proceso de conocido que el uso de métricas en las fases iniciales de ciclo de vida ayuda a diseñadores a tomar mejores decisiones y a predecir atributos de calidad externos, tal como la facilidad comprensibilidad la y mantenimiento [10]. En estas etapas iniciales uno de los artefactos claves es el diagrama de

clases, ya que en ellos se basa todo el trabajo de diseño e implementación posterior. Por ello es necesario prestar especial atención a la calidad de los diagramas de clases. En la literatura actual existen numerosas métricas que pueden aplicarse a diagramas de clases UML en una etapa de alto nivel [9], [11], [2], [8], [13]. La mayoría de estos trabajos se centran en la medición de atributos internos de la calidad como la complejidad estructural, el acoplamiento, el tamaño, etc. Pero ninguna

de las propuestas de métricas existentes considera la complejidad añadida a los diagramas de clases UML al incorporarle expresiones escritas en OCL. Sin lugar a dudas la aparición del lenguaje OCL, definido por OMG, ha resultado fundamental en el desarrollo de software OO utilizando UML, ya que permite obtener un modelamiento preciso con UML, proveyendo al modelador de una notación expresiva para capturar las propiedades esenciales del sistema [14]. OCL realmente enriquece los diagramas UML ya que los complementa con expresiones que especifican propiedades semánticas modelo [12], mejoran la precisión del sistema, su documentación [17], y su comprensibilidad en etapas iniciales del desarrollo.

Según nuestro conocimiento, el hecho de que una clase tenga asociadas expresiones OCL incrementa su complejidad estructural y hace que un diagrama de clases UML sea más difícil de entender y por consiguiente de mantener.

Esto nos llevó a pensar en la necesidad de contar con métricas para medir la complejidad estructural de expresiones OCL.

Briand et al. [4] han definido una base teórica para el desarrollo de modelos cuantitativos que relacionan la complejidad estructural y atributos de calidad externos. Asumimos en este trabajo una representación similar para expresiones OCL. Implementamos la relación entre la complejidad estructural por un lado, y los atributos de calidad externos por el otro (ver figura 1). Nuestra hipótesis es que las propiedades estructurales (tales complejidad estructural) de una expresión OCL tienen un impacto en su complejidad cognitiva. El concepto de complejidad cognitiva significa la carga mental de las personas que tienen que tratar con artefactos (por ej. desarrolladores, personas que realizan o mantenimiento). verificación Una complejidad cognitiva conduce a que una expresión reduzca su comprensibilidad y esto conduce a cualidades externas indeseables, tal como una mantenibilidad menor.

Suponemos que las propiedades estructurales de expresiones OCL, como la complejidad estructural, tienen un impacto en la complejidad cognitiva de los modeladores, debido que al querer comprender expresiones OCL se emplean técnicas cognitivas, tales "chunking" como "tracing" [6].

Por todo lo dicho, el siguiente artículo pretende mostrar dos objetivos alcanzados:

- 1. Definir un conjunto de métricas para la complejidad estructural de expresiones OCL, considerando sólo aquellos elementos de OCL especificados en su metamodelo [16], que afectan al "tracing".
- 2. Presentar el método que comenzamos a utilizar en nuestra investigación para la definición de métricas, con el fin de obtener medidas que sean válidas tanto desde un punto de vista teórico como práctico.

El resto del artículo está organizado de la siguiente manera: en la sección 2 se resume cada una de las etapas de un método de definición de métricas. En la sección 3 se resume la definición de las métricas y su validación teórica. Finalmente, se presentan las conclusiones y aquellas líneas de trabajo que quedan abiertas para una futura investigación.

2 UN MÉTODO PARA LA DEFINICIÓN DE MÉTRICAS

Para obtener métricas válidas es necesario definirlas de manera disciplinada. Por ello, en esta sección describimos un método basado en las propuestas de Calero et al. [5] y Cantone y Donzelli [7]. Este método consta de las siguientes cinco etapas:

 Identificación: En esta etapa se definen los objetivos que se persiguen a la hora de crear la métrica y se plantean las hipótesis de cómo se llevará a cabo la medición. Sobre

La técnica de chunking, una capacidad de la memoria a corto plazo, involucra el reconocimiento de grupos de declaraciones (no necesariamente secuenciales) y extraer de ellas información que es recordada en una única abstracción mental: un chunk.

Las técnicas de tracing involucran el barrido de información, en diferentes direcciones, con el objetivo de identificar chunks relevantes [39] para resolver

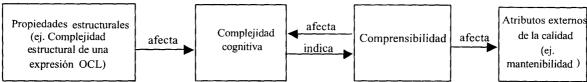


Fig 1: Modelo de complejidad para artefactos producidos en el desarrollo de software OO.

los elementos de esta etapa (objetivos e hipótesis) se basarán todas las etapas siguientes. Como resultado de esta etapa se generan los requisitos que debe satisfacer la métrica.

- *Creación*: Esta etapa está dividida en tres sub-etapas:
- Definición de métricas: El primer paso es la propuesta de métricas. La definición es realizada teniendo cuenta las características del sistema que queremos medir y la experiencia de diseñadores de estos sistemas. En esta etapa se aconseja utilizar una aproximación como GOM (Goal-Question-Metric) [1] para especificación de los objetivos las métricas.
- Validación Teórica: Esta validación nos ayuda a asegurar que las métricas realmente miden los atributos que se pretenden medir. Además nos permite conocer la escala a la que pertenece una métrica y así determinar que operaciones estadísticas se pueden realizar con las valores de las métricas. Hay dos tendencias principales para realizar validación teórica de las métricas: una basada propiedades [3], [18] y otra basada en la teoría de la medida [15], [19], [20].
- Validación Empírica: La meta de esta etapa es probar la utilidad práctica de las métricas propuestas. Existen varias estrategias para realizar estudios empíricos: experimentos, casos de estudio y encuestas.

Esta etapa es una de las más importantes y larga, que abarca un proceso iterativo en el cual las métricas pueden ser redefinidas o descartadas dependiendo de su validación teórica y empírica. Como resultado de esta etapa deberíamos obtener una métrica válida tanto teórica como empíricamente.

• Aceptación: Una vez obtenida una métrica válida, suele ser necesario pasar por una etapa de aceptación de la métrica en la que

- se harán pruebas en entornos reales, de manera que podamos comprobar si la métrica cumple los objetivos deseados dentro del campo de aplicación real.
- Aplicación: Una vez que tengamos una métrica aceptada, la utilizaremos dentro del entorno para la que fue diseñada.
- Acreditación: Es la última etapa del método, que discurre en paralelo con la fase de aplicación y tiene como objetivo el mantenimiento de la métrica, para que pueda ser adaptada al entorno cambiante de aplicación. Como consecuencia de esta etapa, puede ocurrir que una métrica sea retirada, porque ya no resulte útil en el entorno en el que se aplica o que sea reutilizada para reiniciar el método de nuevo.

3. DEFINICIÓN DE MÉTRICAS PARA LA COMPLEJIDAD ESTRUCTURAL DE EXPRESIONES OCL

Debido a la limitación de espacio en esta sección sólo resumiremos el estado de nuestra investigación. En primer lugar hemos definido un conjunto de métricas para la complejidad estructural de expresiones OCL que requieren de los modeladores técnicas cognitivas de "tracing" para su comprensibilidad (ver tabla 1).

Y luego hemos validado teóricamente las métricas propuestas siguiendo el marco formal basado en propiedades propuesto por Briand et al. [3], llegando a la conclusión que las métricas que proponemos son métricas de acoplamiento con excepción de las métricas: DN que es de longitud, WN y NOC que son métricas de tamaño. Además NME cumple ser una métrica de acoplamiento y tamaño.

4. CONCLUSIONES Y TRABAJO FUTURO

En el presente trabajo se ha presentado el

Siglas	Nombre	Definición
NNR	NUMERO DE RELACIONES NAVEGADAS.	El número de relaciones navegadas en una expresión. Una relación es navegada cuando se utiliza en una expresión el nombre de rol del extremo opuesto de una relación que vincula la clase donde se define la expresión con otra clase del diagrama (o eventualmente si el rol es omitido en el modelo, el nombre de la clase asociada al extremo opuesto). Si una relación es navegada dos veces, la contaremos una sola vez.
NAN	NUMERO DE ATRIBUTOS REFERIDOS POR MEDIO DE NAVEGACIONES.	El número de atributos referidos a partir de las navegaciones. Una navegación puede ser utilizada para referir a un atributo de otra clase o interfaz. Los atributos referenciados más de una vez son contados una sola vez.
WNO	NUMERO PONDERADO DE OPERACIONES REFERIDAS POR MEDIO DE NAVEGACIONES.	El número ponderando de operaciones que son referidas a partir de navegaciones. Las operaciones son ponderadas por el número de parámetros actuales de la operación (sólo es necesario especificar los parámetros de entrada y entrada/salida al invocar una operación [16]) y por la cantidad de valores resultantes accedidos (esto es, el resultado de la operación más la cantidad de parámetros de salida ó entrada/salida de la operación).
NNC	NÚMERO DE CLASES Ó CLASES DE ASOCIACIÓN Ó INTERFACES A LAS CUALES SE HA NAVEGADO.	El número de clases o interfaces a las cuales es posible navegar. Si la clase que contiene la expresión contiene una relación reflexiva, y esta relación es navegada, se contará una sola vez a la clase. Además una clase puede ser alcanzable desde una clase inicial a partir de diferentes formas de navegación (es decir siguiendo diferentes relaciones), por ello si una clase es utilizada en más de una navegación esta clase será contada una sola vez.
WNM	NUMERO PONDERADO DE MENSAJES.	El número de mensajes definidos en una expresión [16], donde los mensajes están ponderados en función de sus parámetros.
NPT	NUMERO DE PARÁMETROS CUYOS TIPOS SON CLASES O INTERFACES	Esta métrica es utilizada especialmente en pre- y post-condiciones para un operación, y toma en cuenta los parámetros formales de la operación que son utilizados en la definición de la expresión, cuyos tipos representan clases o interfaces definidas en el diagrama de clases.
NUCA	NÚMERO DE ATRIBUTOS DE UNA CLASE DE UTILIDAD.	El número de atributos referenciados a partir de una clase de utilidad. Una clase de utilidad es un tipo de valor (del inglés 'value type') definido como un nuevo tipo en un modelo UML y utilizado como si fuera un tipo básico [17].
NUCO	NÚMERO DE OPERACIONES DE UNA CLASE DE UTILIDAD.	El número de operaciones referenciadas a partir de una clase utilidad.
WNN	CANTIDAD PONDERADA DE NAVEGACIONES.	Debido a que las navegaciones pueden involucrar la definición de nuevas navegaciones, se pondera con esta métrica a las navegaciones que son definidas en forma recursiva.
DN	PROFUNDIDAD DE LA NAVEGACIONES.	La profundidad de un árbol de navegación. La explicación de la construcción del árbol escapa al propósito de este artículo.
WCO	CANTIDAD PONDERADA DE OPERACIONES COLECCIÓN.	Número de operaciones colección ponderadas.

Tabla 1: Métricas para la complejidad estructural de una expresión OCL, que requieren emplear técnicas de "tracing".

estado de nuestro trabajo de investigación con respecto a la medición de la complejidad estructural de expresiones OCL. Se han aplicado las etapas de Identificación y Creación descritas anteriormente, con excepción de la validación empírica, la cual estamos actualmente planificando con el objetivo de evaluar si las métricas propuestas son realmente útiles en la práctica. Además están pendientes las etapas de Aceptación, Aplicación y Acreditación.

Los actuales avances han sido presentados en

un taller internacional que está en proceso de revisión. También prevemos la publicación de los resultados obtenidos y los futuros, en congresos nacionales e internacionales.

AGRADECIMIENTOS

Esta investigación es parte del proyecto DOLMEN financiado por la Subdirección General de Proyectos de Investigación - Ministerio de Ciencia y Tecnología (TIC 2000-1673-C06-06), por el proyecto VII-J-RITOS2 (Red Iberoamericana de Tecnologías de Software para la Década del 2000) y el proyecto

UNComa 04/E048 (Modelado de Componentes Distribuídos Orientados a Objetos).

REFERENCIAS

- [1] Basili V., Rombach H., The TAME project: towards improvement-oriented software environments. In IEEE Transactions on Software Engineering 14(6) 758-773, 1998.
- [2] Briand L. C., Morasca S., Basili V.. Defining and validating measures for object-based high level design. IEEE Transactions on Software Engineering. Vol. 25 N° 5, 722-743.
- [3] Briand L.C., Morasca S., Basili V., "Property-based software engineering measurement", IEEE Transactions on Software Engineering, 1996, 22, (1) pp. 68-85.
- [4] Briand. L. C., Wüst J., Lounis H. A Comprehensive Investigation of Quality Factors in Object-Oriented Designs: an 21st Industrial Case Study. Int'l Conf. Software Engineering, Los Angeles, 345-354, 1999.
- [5] Calero C., Piattini M. y Genero M., "Method for obtaining correct metrics", Proc. of the 3rd International Conference on Enterprise and Information Systems (ICEIS'2001), 2001, pp. 779-784.
- [6] Cant S.N., Jeffery D.R., Henderson-Seller B. A Conceptual Model of Cognitive Complexity of Elements of the Programming Process. Information and Software Technology, 7, 351-362.
- [7] Cantone G., Donzelli P., "Production and maintenance of software measurement models", Journal of Software Engineering and Knowledge Engineering, 5, 2000, pp. 605-626.
- [8] Cartwright M. An Empirical view of inheritance. Information and Software Technology, Vol. 40 N° 14, 795-799. 1998.
- [9] Chidamber S. and Kemerer C.. A Metrics Suite for Object Oriented Design. IEEE

- Transactions on Software Engineering, 20(6), 476-493, 1994.
- [10] Fenton N. and Pfleeger S., Software Metrics: A Rigorous and Practical Approach. Chapman & Hall, London, 2nd Edition. International Thomson Publishing Inc. 1997.
- [11] Genero M., Piattini M., and Calero C., "Early Measures For UML class diagrams", L'Objet, 6(4), Hermes Science Publications, 2000, pp. 489-515.
- [12] Gogolla M. and Richters M. Expressing UML Class Diagrams Properties with OCL. In Tony Clark and Jos Warmer, editors, Advances in Object Modelling with the OCL, pages 86-115. Springer, Berlin, LNCS 2263, 2001.
- [13] Harrison R., Counsell S., Nithi R.. Coupling Metrics for Object-Oriented Design. Metrics 1998, Metrics 1998, 150-156. 1998.
- [14] Object Modeling with the OCL. The Rationale behind the Object Constraint Language. Lecture Notes in Computer Science 2263. Springer.
- [15] Poels G. and Dedene G., "Distance-based software measurement: necessary and sufficient properties for software measures", Information and Software Technology, 2000, 42, (1), pp. 35-46
- [16] Response to the UML 2.0 OCL RfP (ad/2000-09-03) . OMG Document ad/2002-05-09. Revised Submission, Version 1.5, June 3, 2002.
- [17] Warmer J. and Kleppe A.. The Object Constraint Language. Precise Modeling with UML. Object Technology Series. Addison-Wesley.
- [18] Weyuker E.J., "Evaluating software complexity measures", IEEE Transactions on Software Engineering, 1988, 14(9) pp. 1357-1365
- [19] Whitmire S.A., Object Oriented Design Measurement Ed. Wiley, 1997
- [20] Zuse H., A Framework of Software Measurement Walter de Gruyter, 1998