
Departamento de Tecnoloǵıas y Sistemas de Información

Universidad de Castilla La-Mancha
Tesis Doctoral

A Measurement-based Approach for Assessing
the Influence of Import-Coupling on the

Maintainability of OCL Expressions

Doctorando:

Luis Reynoso
Directores:

Dr. Mario Piattini Velthuis
Dra. Marcela Genero Bocco

2

Departamento de Tecnoloǵıas y Sistemas de Información
Universidad de Castilla La-Mancha

Paseo de la Universidad, 4. 13701, Ciudad Real

November, 2007
Ciudad Real, Spain.

3

Dedication

To my mother, Emilia, for her confidence in me, her support, her vision and her
strength which helped me grow up.
To all my family, my sisters, Norma and Miriam, my brother in law, Jose, my
nephew, Pablo and my nieces, Natalia, Brana, Hanna and Luba. They are always
close to me.
I am forever grateful to all my friends for their kindness and care while I was abroad
on study.

4

.

5

Acknowledgements

I am deeply indebted to my supervisors and mentors, Marcela Genero and Mario
Piattini. Thanks to their training I have learnt many concepts and I have improved
this dissertation and its results. Marcela, thank you so much for your generosity
and all your ideas and comments!. Mario, thank you for your valuable help and time
that you always share with all of us!.
I would also like to express my gratitude to all those who gave me the possibility
to complete this thesis: Jose Carsi from Valencia University (Spain), Macario Polo
Usaola from Castilla La-Mancha University (Spain), Cristina Cachero from Alicante
University (Spain), Luis Alvarez from Austral University (Chile) for their assistance
in teaching courses and running experiments.
I would like to thank all the members of Alarcos Research Group, they gave me the
feeling of being at home at work. I will always be interested in collaborating with
all of you. I would also like to thank all the doctorate students who worked and
shared with me in the Alarcos’ laboratory.
I want to thank my colleagues of the Department of Computer Science at the Uni-
versity of Comahue for giving me permission and support to do this post-graduated
study. In particular, I am very grateful to Ing. Jorgelina Georgetti, the headmaster
of the Department, who provides me her help to give many courses and running
experiments in the university I belong. She has always been concerned in helping
all the teachers and making the group more cohesive. I would also like to thank
Alejandra Cechich and Laura Sanchez, because beside them I have learned to carry
out research. Her academic supervision has been really important for me.
I wish to thank the Goverment of the province of Neuquén (Argentina) who partially
gave me the financial support to study for four years.

6

Contents

1 Introduction 21
1.1 Ph.D. Thesis Framework . 24
1.2 Goal, Objectives and Hypothesis . 26
1.3 Ph.D. Thesis Outline . 27

2 Research Method 29
2.1 Overview of the Method . 30
2.2 Identification (M1) . 32
2.3 Creation (M2) . 36

2.3.1 Measure Definition (C1) . 38
2.3.2 Theoretical Validation (C2) 42
2.3.3 Psychological Explanation (C3) 48
2.3.4 Empirical Validation (C4) . 59

2.4 Contribution to the Dissertation . 65

3 State of the Art 67
3.1 The Object Constraint Language . 67

3.1.1 Utility of OCL . 70
3.2 Coupling Measurement . 73

3.2.1 Coupling Framework Criteria 74
3.2.2 Proposal of Coupling Measures 77

3.3 Measures for UML Models . 85
3.3.1 Measures for UML Use Case Diagrams 87
3.3.2 Measures for UML Class Diagrams 89
3.3.3 Measures for UML Statecharts Diagrams 93
3.3.4 Conclusions about Measures for UML models 94

3.4 Contribution to the Dissertation . 96

4 A Proposal of Measures 97
4.1 Identification (M1) . 97

4.1.1 Select the Entity of Study (I1) 97
4.1.2 Determine the Quality Focus (I2) 98

8 CONTENTS

4.1.3 State the Goal (I3) . 99
4.1.4 Determine the Structural Properties to be Studied (I4) 99
4.1.5 Identifying Abstractions for Coupling (I5) 101
4.1.6 Refine the Goal into Questions (I6) 103
4.1.7 State General Hypotheses (I7) 104

4.2 Concepts Related to the Measured Attributes 104
4.2.1 OCL Concepts Related to Coupling 105
4.2.2 OCL Concepts Related to Length 109
4.2.3 OCL Concepts Related to Size 110

4.3 Definition in Natural Language (D2) 111
4.3.1 Measures for Length . 111
4.3.2 Measures for Coupling . 114
4.3.3 Measures for Size . 121

4.4 Contribution to the Dissertation . 123

5 Formal Definition of the Measures 125
5.1 Select a Formal Language for the Formal Definition (D3) 125
5.2 OCL Metamodel (D1) . 126

5.2.1 OCL Metamodel Metaclasses 127
5.2.2 Samples of Abstract Syntax Tree 140

5.3 Formal Definition of the Measures (D4) 143
5.3.1 Implemented Strategy . 144
5.3.2 Implementing the Accept Operations 145
5.3.3 A Visitor Class for Obtaining the Value of OCL measures . . . 149

5.4 Contribution to the Dissertation . 157

6 Theoretical Validation 159
6.1 Use Property-based Frameworks (T1) 159

6.1.1 Applying Generic Properties (P1,P2) 160
6.1.2 Applying Context-dependent Properties (P3,P4,P5) 161

6.2 Use Framework based on the Measurement Theory (T2) 168
6.3 Contribution to the Dissertation . 171

7 Psychological Explanation 177
7.1 Relate the Cognitive Theory to the Software Artifact and Measures

(PE2) . 178
7.1.1 Dimensions of OCL Expression Comprehension 178
7.1.2 The Application of the Cant et al.’s Model 181

7.2 Applying Qualitative Methods (PE3) 186
7.2.1 Overview of the Verbal Protocol Analysis Technique 188
7.2.2 A Think Aloud Experiment 191

7.3 Contribution to the Dissertation . 203

CONTENTS 9

8 Empirical Validation 207
8.1 How the Experiments were Conducted 209
8.2 A First Experiment . 210

8.2.1 Definition (EF1) . 210
8.2.2 Planning (EF2) . 211
8.2.3 Operation (EF3) . 213
8.2.4 Analysis and Interpretation (EF4) 215
8.2.5 Presentation and Package (EF5) 218
8.2.6 Conclusions of the First Experiment 218

8.3 First Family of Experiments . 219
8.3.1 Experiment Preparation (F1) 219
8.3.2 Context Definition (F2) . 219
8.3.3 Design Framework of the First Family of Experiments (F3) . . 220
8.3.4 Data Analysis and Interpretation (F5) 223
8.3.5 Conclusions of the First Family of Experiments (F6) 238

8.4 Second Family of Experiments . 238
8.4.1 Experiment Preparation (F1) 238
8.4.2 Context Definition (F2) . 239
8.4.3 Design Framework of the Second Family of Experiments (F3) . 241
8.4.4 Data Analysis and Interpretation (F5) 244
8.4.5 Conclusions of the Second Family of Experiments (F6) 251

8.5 Third Family of Experiments . 253
8.5.1 Experiment Preparation (F1) 253
8.5.2 Context Definition (F2) . 253
8.5.3 Design Framework of the Third Family of Experiments (F3) . 254
8.5.4 Data Analysis and Interpretation (F5) 256
8.5.5 Conclusions of the Third Family of Experiments (F6) 264

8.6 Contribution to the Dissertation . 267

9 Conclusions 269
9.1 Analysis of Achievement of Objectives 269
9.2 Main Contributions and Conclusions 271
9.3 Contrast of Results . 277

9.3.1 Book Chapter . 277
9.3.2 International Journals . 277
9.3.3 International Conferences . 278
9.3.4 National Conferences . 280
9.3.5 International Workshops . 280
9.3.6 Latinoamerican Conferences 281

9.4 Future Research Lines . 282

Bibliography 285

10 CONTENTS

Appendixes 312

A Acronyms and Definitions 313
A.1 Acronyms . 313
A.2 Important Definitions . 314

B Frameworks for the Theoretical Validation 315
B.1 Briand et al.´s Frameworks . 315

B.1.1 The Original Framework of Briand et al. [BMB96] 315
B.1.2 An Adaptation of Briand et al.´s Framework 318

B.2 DISTANCE Framework . 323
B.2.1 Proximity Measurement . 325
B.2.2 A Constructive Measurement Procedure 327
B.2.3 Template for Measure Definition 332

C Experimental Process 335
C.1 A V Model of the Experimental Process 335
C.2 Steps of the Experimental Process . 337

C.2.1 Definition . 337
C.2.2 Planning . 337
C.2.3 Operation . 345
C.2.4 Analysis and Interpretation 346
C.2.5 Presentation and Package . 347

C.3 Replication of Experiments . 347

D Experimental Material 351
D.1 Material of the 1st Experiment . 351
D.2 Material of the 1st Family of Experiments 359
D.3 Material of the 2nd Family of Experiments 371
D.4 Material of the 3rd Family of Experiments 390
D.5 A Sample of the Debriefing Questionnaire 399

List of Figures

1.1 Relationship between PIM, PSM and Code 22
1.2 Relationship between Structural Properties, Cognitive Complexity,

and External Quality Attributes [BWIL99], [BWSL99], [BWL01],
[ISO01] . 25

2.1 Method for Measure Definition . 32
2.2 Identification Step (M1) . 33
2.3 Creation Step (M2) . 36
2.4 Measure Definition Step (C1) . 39
2.5 Theoretical Validation Step (C2) . 42
2.6 Theoretical Validation with Property-based Frameworks (T1) 44
2.7 Theoretical Validation with DISTANCE Framework (T2) 47
2.8 Psychological Explanation (C3) . 50
2.9 Landscape Model of Program Comprehension 53
2.10 Dimensions of Comprehension in Mental Models 56
2.11 Empirical Validation Step (C4) . 61
2.12 Conduct a Family of Experiments (E2) 63
2.13 Conduct an Individual Experiment (F4) 65

3.1 Example of an Invariant . 69

4.1 Coupling Connections . 102
4.2 An Example of a Class Diagram . 106
4.3 Part of the Loyal and Royal Class Diagram 108
4.4 Example for Illustrating DN Measure 113
4.5 A Class Diagram used for Exemplifying NIO Measure 115
4.6 A Class Diagram used for Exemplifying NII Measure 121

5.1 The Basic Structure of the Abstract Syntax Kernel Metamodel for
Expressions . 128

5.2 Abstract Syntax Metamodel for ModelPropertyCallExp 132
5.3 The Abstract Syntax of If Expressions 134
5.4 The Abstract Syntax of OclMessages 136
5.5 The Abstract Syntax Metamodel for Literal Expression 139

12 LIST OF FIGURES

5.6 Abstract Syntax Metamodel for Let Expression 140
5.7 Metamodel Objects for a Sample Design 142
5.8 Situation of OCL Expression used as Definition or Invariant 142
5.9 AST Built for an OCL Invariant . 143
5.10 Portion of Class Diagram about Flights 144
5.11 2nd AST Built for an OCL Invariant 145
5.12 Implemented Strategy for Obtaining Measures Values 146

6.1 DU-interaction . 164
6.2 Design Used for Explaining the Briand et al.´s Theoretical Validation 166
6.3 Two UML/OCL Models used with the DISTANCE Framework 169

7.1 A Sample of a Landscape Model Modeled for an OCL Expression
within a UML/OCL Model . 183

7.2 Data Transformation in Verbal Protocols 189
7.3 Sample of an OCL Expression used in a Warm Up Session 195
7.4 Coded Protocols of Subject 1 . 198
7.5 Coded Protocols of Subject 2 . 202
7.6 Tracing and Chunking Techniques . 204
7.7 Coded Protocols of Subject 3 . 205

8.1 Overview of the Experiments Conducted 208
8.2 Mean COM and MOD Time (1st Family of Experiments) 223
8.3 Mean COM and MOD Efficiency (1st Family of Experiments) 224
8.4 Estimated Marginal Means in a Profile Plot for COM Time (1st Fam-

ily of Experiments) . 228
8.5 Estimated Marginal Means in a Profile Plot (1st Family of Experiments)233
8.6 Average Range’ Plot of COM and MOD Subjective Complexity (1st

Family of Experiments) . 235
8.7 Descriptive Analysis (2nd Family of Experiments) 245
8.8 Descriptive Statistics of Mean Values of DVs (3rd Family of Experi-

ments) . 258

9.1 Main Categories of the Mental Model of Subjects dealing with OCL
Expressions . 275

9.2 Language and Domain Knowledge Affect Subject Efficiency Dealing
with OCL Expressions . 276

B.1 A Modular System . 316
B.2 (a) DD-interaction (b) DS-interaction 321
B.3 Calculation of IC with Nongeneric Modules Only 324

C.1 A Representation of the Experimental Process in a V model 336
C.2 Overview of the Experimental Process 338

LIST OF FIGURES 13

C.3 Different Experimental Designs . 342
C.4 Experimental Principles . 344
C.5 Decision Tree for Analysis Techniques 348

D.1 1st Object, 1st Experiment . 351
D.2 2nd Object, 1st Experiment . 353
D.3 3rd Object, 1st Experiment . 355
D.4 4th Object, 1st Experiment . 357
D.5 1st Object, 1st Family of Experiments 359
D.6 2nd Object, 1st Family of Experiments 362
D.7 3rd Object, 1st Family of Experiments 365
D.8 4th Object, 1st Family of Experiments 368
D.9 1st Object, 2nd Family of Experiments 371
D.10 2nd Object, 2nd Family of Experiments 373
D.11 3rd Object, 2nd Family of Experiments 376
D.12 4th Object, 2nd Family of Experiments 378
D.13 5th Object, 2nd Family of Experiments 380
D.14 6th Object, 2nd Family of Experiments 382
D.15 7th Object, 2nd Family of Experiments 384
D.16 8th Object, 2nd Family of Experiments 386
D.17 9th Object, 2nd Family of Experiments 388
D.18 1st Object, 3rd Family of Experiments 390
D.19 2nd Object, 3rd Family of Experiments 392
D.20 3rd Object, 3rd Family of Experiments 394
D.21 4th Object, 3rd Family of Experiments 395
D.22 5th Object, 3rd Family of Experiments 396
D.23 6th Object, 3rd Family of Experiments 398

14 LIST OF FIGURES

List of Tables

3.1 Levels in the UML Metamodel . 71
3.2 Types of Connections . 74
3.3 Options for Coupling Connections at the Attribute and Method Levels 76
3.4 Options for Coupling Connections at the Class Level 76
3.5 Coupling Measures (Part I) . 78
3.6 Coupling Measures (Part II) . 80
3.7 Coupling Measures . 81
3.8 A Survey of Coupling Measures . 83
3.9 A Survey of Coupling Measures . 84
3.10 Overview of Empirical Validation Studies for Coupling Measures . . . 86
3.11 Use Case Proposal for Project Management 87
3.12 Use Case Proposal for Improving Requirements Engineering Process . 88
3.13 CK Measures . 89
3.14 Measures for the Structural Complexity of UML Class Diagrams . . . 91
3.15 Summary of Proposals of Measures for UML Class Diagrams 92
3.16 Summary of Measures for Statechart Diagrams 95

4.1 Goal of OCL Expression Measures . 99
4.2 Type of Connections for OCL Expression Measures 104
4.3 Predefined Iterator Expressions . 110
4.4 Measures for OCL Expressions of UML/OCL Models. 112

5.1 A Visitor Class . 149

6.1 Distance-based Definition of NAN Measure 172
6.2 Abstract Function for the Measures (Part 1) 173
6.3 Abstract Function for the Measures (Part II) 174
6.4 Abstract Function for the Measures (Part III) 175
6.5 Theoretical Validation of Measures According to Briand et al.´s Frame-

works [BMB99],[BMB96],[BMB97] 176

7.1 Measures for OCL Expressions within UML Models 182
7.2 OCL Concepts which Involve Tracing or Chunking 186
7.3 Measures for OCL Expressions of UML/OCL Models 187

16 LIST OF TABLES

7.4 Intercoder Agreement . 193
7.5 Coded Categories . 194
7.6 Example of a Verbal Protocol from a Pilot Subject 196
7.7 Coding Categories from Subject 1 . 197
7.8 Coding Categories from Subject 2 . 199
7.9 Coding Categories from Subject 3 . 200

8.1 Goal of the First Experiment . 211
8.2 Measure Values for each UML/OCL Model (1st Experiment) 213
8.3 Spearman Correlation between Measures and COM Time (1st Exper-

iment) . 216
8.4 Spearman´s Correlation between Measures and COM SubComp (1st

Experiment) . 216
8.5 Subject Profile (1st Family of Experiments) 220
8.6 Synopsis of Hypotheses and the Statistical Test Applied (1st Family

of Experiments) . 222
8.7 A 2 × 2 Factorial Design (1st Family of Experiments) 222
8.8 Shapiro Wilk Normality Test for COM and MOD Time (1st Family

of Experiments) . 224
8.9 ANOVA with Repeated Measures for the UNC Experiment (1st Fam-

ily of Experiments, 1st Experiment) 226
8.10 Analysis of the Shapiro Wilk Normality and Number of Test Dis-

carded for Incompleteness (1st Family of Experiments) 227
8.11 Quantity of Outliers Detected for COM/MOD Time (1st Family of

Experiments) . 227
8.12 The Analysis Results of ANOVAs COM/MOD Time (1st Family of

Experiments) . 228
8.13 Summary of the Results (1st Family of Experiments) 228
8.14 ANOVA with Repeated Measures of MOD Time (1st Family of Ex-

periments) . 229
8.15 Shapiro Wilk Normality Test Results for COM and MOD Efficiency

(1st Family of Experiments, 1st Experiment) 230
8.16 ANOVA with Repeated Measures (1st Family of Experiments, 1st

Experiment) . 230
8.17 Shapiro Wilk Normality Test Results for COM and MOD Efficiency

(1st Family of Experiments) . 230
8.18 Quantity of Outliers Found in Each Experiment (1st Family of Ex-

periments) . 231
8.19 Analysis Results of ANOVAs COM/MOD Efficiency (1st Family of

Experiments) . 231
8.20 Summary of the Results of Hypothesis (1st Family of Experiments) . 231
8.21 ANOVA with Repeated Measures (1st Family of Experiments) 232

LIST OF TABLES 17

8.22 Summary of the Average Range of COM and MOD Subjective Com-
plexity (1st Family of Experiments) 234

8.23 Summary of the Average Range (W of Kendall) of COM and MOD
Subjective Complexity (1st Family of Experiments) 234

8.24 Summary of the W of Kendall (1st Family of Experiments) 234

8.25 Summary of the Results (1st Family of Experiments) 239

8.26 Measures Used for Measuring IV (2nd Family of Experiments) 240

8.27 Measure Values for each Model (2nd Family of Experiments) 241

8.28 Subject Profile (2nd Family of Experiments) 241

8.29 Synopsis of Hypotheses and the Statistical Test Applied (2nd Family
of Experiments) . 243

8.30 Mean COM/MOD Eff and COM/MOD Time during the Time (2nd

Family of Experiments) . 247

8.31 Correlation between Measures and COM/MOD Eff (2nd Family of
Experiments) . 248

8.32 Correlation between Measures and COM/MOD Eff for the Family
(2nd Family of Experiments) . 249

8.33 Correlation between Measures and COM/MOD SubComp (2nd Fam-
ily of Experiments) . 249

8.34 Correlation between Measures and COM/MOD SubComp for the
Family (2nd Family of Experiments) 250

8.35 Correlation between Subjective Complexity (SubComp) and COM/MOD
Time, COM/MOD Eff (2nd Family of Experiments) 251

8.36 Subject Profile (3rd Family of Experiments) 254

8.37 Synopsis of Hypotheses and the Statistical Test Applied (3rd Family
of Experiments) . 257

8.38 Mean COM/MOD Eff and COM/MOD Time (3rd Family of Experi-
ments) . 259

8.39 Correlation between Measures and COM/MOD Eff (3rd Family of
Experiments, 1st Experiment) . 260

8.40 Spearman Correlations between Measures and COM/MOD SubComp
(3rd Family of Experiments, 1st Experiment) 261

8.41 Correlation between SubComp and COM/MOD Time, and between
SubComp and COM/MOD Eff (3rd Family of Experiments, 1st Ex-
periment) . 262

8.42 Correlation between Measures of Import-coupling and COM/MOD
Eff (3rd Family of Experiments) . 263

8.43 Correlation between Measures of Import-coupling and COM/MOD
SubComp (3rd Family of Experiments) 264

8.44 Synopsis of Hypotheses and the Statistical Tests Applied (3rd Family
of Experiments) . 266

18 LIST OF TABLES

B.1 Required Inputs and Expected Results 331
B.2 Template for Distance-based Definition of Measures 332

C.1 Template for Experiment Definition 339
C.2 Experiment Context Characterization [WRH+00] 341

Summary

Although the combination of UML and OCL languages provides the expres-
siveness needed to capture all model constraints, their combined use do not
necessarily guarantee that a ’good’ model will be produced. In order to assess
the quality of OCL expressions within UML models, the availability at early
stages of reliable indicators are essential. A huge amount of measures have
been defined for measuring quality characteristics of UML models, but all of
them have only been focused on the model elements expressed by diagram-
matic notation, without considering OCL facilities. This thesis is focused on
assessing the influence of import-coupling on OCL expressions maintainability
(modifiability and comprehensibility) through a methodological definition of
a set of measures for OCL expressions. This influence is indeed produced due
to the fact that structural properties of OCL expressions affect the cognitive
complexity of modelers, and high cognitive complexity leads to the OCL ex-
pression to exhibit undesirable external qualities such as a low maintainability.
For that reason, its is important to explain the measures considering not only
the structural properties of OCL expressions but the cognitive complexity of
modelers through a psychological explanation for obtaining a precise defini-
tion.
In this Ph.D. thesis new kinds of coupling measures are defined in terms of
core concepts of OCL: navigations, collections operations and contextual ob-
jects. Moreover, we define the measures through a thoughtful formal definition
and a theoretical and empirical validation. For their theoretical validation
the adaptation of existing frameworks of coupling measures was needed and is
carefully presented. Regarding their empirical validation, we ascertain through
three families of experiments if any relation exists between OCL measures,
and two maintainability sub-characteristics. The empirical results reveal that
there is empirical evidence that import-coupling is strongly correlated with
the comprehensibility and modifiability of OCL expressions, and coupling, the
most relevant characteristic in an object oriented system, is still a crucial as-
pect that should be carefully considered when OCL expressions are defined in
UML/OCL combined models.

Chapter 1

Introduction

We are likely witnessing the birth of a paradigm shift, software development will
shift its focus from code to models [WK03]. Within this change, the two initiatives
being built under supervision of the Object Management Group (OMG), the Model-
Driven Development (MDD) [AK03] and the Model-Driven Architecture (MDA)
[OMG03a], consider that models are the backbone of the Object-Oriented (OO)
system development, emphasizing the importance of building good models. Models
will constitute the basis of software development focusing on producing a platform-
independent model (PIM) and then transforming it to a platform-specific model
(PSM) and code (Fig. 1.1). A PIM captures the main concepts of the domain
relevant to the system creating an abstract description of some portion of the real
world. This model forms the foundation for all later implementation using platform-
specific constructors (PSM), so, PIM model is a major determinant of the quality
of the overall OO software system design. We believe that the quality of PIM
models is crucial because they could have an influence on the quality of the software
product which is finally delivered. In truly model-driven software engineering the
quality of the models used is of great importance as it will ultimately determine
the quality of the software systems produced. In particular, it is widely believed
that the system quality is highly dependent on many decisions made early in its
development, specifically when artifacts and their constraints are defined. Errors
introduced as early stages are usually more expensive to correct than implementation
stage’ errors, being desirable to prevent, detect and correct errors as early as possible
in the development process [QT06].

The appearance of the Unified Modelling Language (UML) [OMG03c] as a mod-
elling language has been a quantum leap for building higher quality PIM models. As
experience with UML grew and the issues and needs of software modeling became
better understood, new requirements for UML emerged. This led to the issuing of
formal requests for the first major revision of the standard, greater clarity of the

22 CHAPTER 1. INTRODUCTION

.

...................

...................

....................

.....................

.....................

.........................

............................

................................

...................................

.......................................
.

............................
..............

.........................
..............

.....................
..............

...................
.............

................
............

.............
............

...........
...........

...........
..........

..........
..........
.

.........
.........
..

PIM

I I

I

I

first
transformation

PSM PSM

Code Code

second
transformation

I I

I I

Figure 1.1: Relationship between PIM, PSM and Code

specification, and some new modeling capabilities. However designers realize that
although UML has became a standard language for OO software system specifica-
tion, many design decisions, constraints and essential aspects of software systems
cannot be expressed in a UML diagram [WK03], [CKM+02] through diagrammatic
notations. So, a new language emerged, to be used as a textual add-on to UML dia-
grams, the Object Constraint Language (OCL) [OMG03b], and modelers improved
the quality of their UML models specifying them in a combination of the UML and
OCL languages, i.e., through a UML/OCL combined model. Nowadays, OCL is
recognized as an essential language in building consistent and coherent PIM models
and helping to raise the level of maturity of the software process [WK03].

A UML/OCL combined model is considered a complete, detailed, consistent and
precise description of a system, its OCL expressions are written referencing to
the model features, constraining, querying and defining their semantic properties.
Warmer et al. argue in [WK03] that without OCL expressions the model would
be severely underspecified. Nonetheless, although the use of both languages, UML
and OCL, is a necessary condition for obtaining solid and precise models, it is not
sufficient for obtaining models of high quality because several factors influence their
quality; for example low coupling is a concern that should be present in all modeling
tasks [Nun03]. Coupling is one of the earliest indicators of design quality and it is
considered one of the more complex software attributes in OO systems [BDW99].
Its role as an essential indicator of the dimension of the structural property has
historically been described and discussed [DS05]. Within coupling it was empirically
shown that the extent to which the rest of the software system depends on the soft-
ware part (i.e. the export-coupling) shows a much weaker impact on development
effort than the extent to which a software part depends on the rest of the software
system (i.e. the import-coupling) [BW01], [BWDP00], [BWL01]. Moreover, import-

23

coupling has shown to be a strong, stable indicator of fault proneness of classes
[BWSL99]. So, we believe that import-coupling should be carefully considered in
studying OCL expressions.

Nevertheless despite of the direction of coupling, import-coupling or export cou-
pling [Ari02], scanty information of coupling is available at early stages of software
development using only UML graphical notations, and many times, many coupling
decisions are made during implementation [WK03]. However, the availability of
more coupling information of a model at early stages (e.g. to decide which classes
should undergo more intensive verification or validation) would be useful. We believe
that a UML/OCL model reveals more coupling information than a model specified
using only UML, due to the fact that OCL navigation defines coupling between
the objects involved [WK03], and the coupled objects are usually manipulated in
an OCL expression through collections and its collection operations (to handle its
elements) for defining constraints between the objects.

So, we have studied OCL expressions as a crucial add-on to the UML diagrams, due
to the fact OCL gives expressiveness and coupling information to a UML model.
Although expressiveness of the modeling technique used (e.g. the notation, etc.)
affects one of the most important characteristics of a model, its comprehensibility
[Sel03], and it was also empirically proved that OCL has the potential to significantly
improve UML-based model comprehension and maintainability [BLYP04], we believe
OCL expressions themselves can be difficult to write and maintain [GL05].

Software maintenance, is an important part of the software lifecycle, typically ac-
counting for at least 50 percent of the total lifetime cost of [GB01], and maintenance
depends, in part, on comprehension [CW00]. Mohan et al. consider that program
comprehension is responsible for up to half the total cost of software maintenance
[MG04]. Consequently, it is desirable to reduce the cost of software maintenance
whilst preserving the quality of the software system, and maintainer´s comprehen-
sion [GB01].

The aim of this thesis is focussed on assessing if import-coupling has an influence on
OCL expressions maintainability (mainly in modifiability and comprehensibility).
In order to evaluate the influence we define a set of measures for OCL expressions.
The rigorous definition of these measures was achieved by means of a method of
measure definition proposed in [CPG01], which mainly consists of the following steps:
measure definition, theoretical validation and empirical validation. We extended
and refined this method in order to identify and create the measures in a more
precise way.

The definition of measures for assessing the coupling in OCL expression maintain-
ability constitutes an important contribution to UML/OCL modeling activities. In
fact, over the past ten years there has been a wealth of literature on measures
capturing the quality of UML models but none of these measures can be applied

24 CHAPTER 1. INTRODUCTION

to UML/OCL models. The measures that can be found in the literature can be
applied to UML class diagrams [BD02], [BMB99], [BDM97], [CK94] use case dia-
grams [Mar98], [SW98], [Sae03], statecharts diagrams [Der95], [CS02], [CLGO+04],
[CLGO+05], [CLGPM06]. They emphasize that the usage of measures for UML
models can help designers make better decisions which is gaining relevance in soft-
ware measurement area. However, there are no measures to capture quality aspects
of OCL expressions.

The set of measures for OCL expressions will support the modeling activity of
modelers due to the fact the availability of early indicators of the essential coupling
information at early phases of the development will help the modeler to assess the
quality of the model that is finally delivered.

We started to study if import-coupling information obtained from OCL expres-
sions affects the maintainability of the delivered model, based on the hypothesis
that import-coupling (a structural property [DS05]) of an OCL expression within a
UML/OCL model (software artifacts) can influence the cognitive complexity of mod-
elers, and a high cognitive complexity leads to OCL expressions exhibit undesirable
external qualities [ISO01], such as less comprehensibility or reduced maintainabil-
ity. This hypothesis is based on the more relevant theoretical basis for developing
quantitative models where a strong effect of measures on external quality attributes
exists [BWIL99], [BWSL99], [BWL01], [ISO01]. The mechanism causing this effect
is assumed to be the cognitive complexity [CES01], [GEMM00] see Fig. 1.2, i.e. the
mental burden of the individuals (modelers, developers, testers, etc.) who have to
deal with the artefacts.

1.1 Ph.D. Thesis Framework

This Ph.D. Thesis has been developed within the following framework:

• MESSENGER means ’MEjora de los SiStemas ElectróNicos de GEstión de
Relaciones’. This project is financed by the Conserjeŕıa de Ciencia y Tec-
noloǵıa of Junta de Comunidades de Castilla La Mancha (Ref. PCC-03-003-1).
The intention of this project is the definition of set of techniques for improving
relationships management of electronic systems, in order to assure its secu-
rity and quality. The project goal will be pursued after the definition and
validation of suitable techniques and measures, as well as the definition of a
methodology and its corresponding control indicators to audit these systems.

• CALIPO stands for ’Calidad en Portales’ (Quality of Portals). This project
is financed by Ministerio de Educación y Ciencia (Ref TIC 2003-07804-C05-
03). It started in 2003 and was completed in 2006. Portals had evolved from

1.1. PH.D. THESIS FRAMEWORK 25

External Quality
Attributes - ISO
9126

Functionality

Reliability

Efficiency

Portability

Usability

Maintainability
• comprehensibility

• modifiability

Cognitive
Complexity

Structural
Complexity

size

length

coupling

· · ·

affects
I.

.......................................

......................................

....................................
..................................

.................................
...............................

..........................
...

......................
.......

..................
...........

.................
............. II i

nd
ica

tes affects
.

......................................

.....................................

...................................
..................................

................................
..............................

..........................
...

......................
.......

...................
...........

.................
.............

Figure 1.2: Relationship between Structural Properties, Cognitive Complexity, and
External Quality Attributes [BWIL99], [BWSL99], [BWL01], [ISO01]

simple web pages providers and corporative databases to support intelligent
management, application and collaborative process. The goal of this project is
to assure the quality of portals, which also depends on multiple factors, which
will be managed by the project. It is widely recognized that static HTML web
sites which have been prevalent in Internet for the last decade have been substi-
tuted by dynamic web sites which have advanced capabilities in databases and
analytic applications. The project defines a model of portal quality. Within
the model are included those aspects that are inherent to a portal such as
datawarehouses and databases, portal security, XML language, metadata, web
services, portal component and portal customization integration.

• This Ph.D. thesis has been funded by the network VII-J-RITOS2 financed by
CYTED. This project is financed by the Ministerio de Educación y Ciencia.
It started in January 2001 and was completed in 2006.

• COMPETISOFT (Mejora de Procesos para Fomentar la Competitividad de la
Pequen�a y Mediana Industria -PYMES- del Software de Iberoamérica) project
(506PI0287). This project is financed by CYTED (Programa Iberoamericano
de Ciencia y Tecnoloǵıa para el Desarrollo). The aim of the project is to

26 CHAPTER 1. INTRODUCTION

increase the competitiveness level of the ibero-american PYMES which pro-
duce software through the creation and diffusion of a common methodological
framework. The framework will have the facility to be applied to the spe-
cific needs and will constitute the basis to state a well-known evaluation and
certification mechanism of software factories in Iberoamerica.

• ESFINGE stand for ’Evolución de Software Factories mediante INGenieŕıa del
software Emṕırica’. This project is financed by the Ministerio de Educación y
Ciencia (Ref TIN 2006-15175-C05-05). It started in October 2006 and will be
completed at the end of 2009. The project goals are: to define measures and
indicators for different abstraction levels of models and software architectures,
to obtain a set of measures threshold values and to develop software tools for
their automatic computation. Besides, this project aims to define a framework
for systems evolution and reengineering of software factories using a MDSD-
based approach as well as the definition of an environment for software testing
based on metamodels and the definition of a software environment for the
improvement and evolution of business process models. The definition and
validation of techniques and measures for the development of model-based
security software (PIM, PSM, etc) is also another goal of the project.

In these projects the specification of ’good quality’ models is crucial. Building a
UML/OCL combined model as a PIM it is possible to produce a PSM in terms
of the constructors that are available in one specific technology [WK03], such as
databases, web-based systems, electronic systems (ECRM systems), etc. Clear in-
dicators of the quality characteristics of OCL expressions within UML/OCL models
will help the aforementioned projects to achieve correct and coherent specifications
of the domain specific systems they deal with.

Luis Reynoso enjoyed during the development of the thesis a postgraduate grant
from the agreement between the Government of Neuquén (Argentina) and YPF-
Repsol.

1.2 Goal, Objectives and Hypothesis

The main goal of the Ph.D. Thesis can be defined as:

ASSESSING THE INFLUENCE OF IMPORT-COUPLING ON
THE MAINTAINABILITY OF OCL EXPRESSIONS THROUGH A
MEASUREMENT-BASED APPROACH

1.3. PH.D. THESIS OUTLINE 27

And, on the basis of the main objective, a series of partial objectives have arisen:

1. Analyse the existing measures for UML models and measures for coupling.

2. Extend and refine the method for the definition of valid measures.

3. Propose a set of measures for measuring the structural properties of OCL
expressions within UML/OCL models.

4. Carry out the formal definition of the proposed measures.

5. Perform the theoretical validation of the proposed measures using the most
suitable frameworks.

6. Describe the rationale of the measures using a psychological explanation from
a cognitive point of view.

7. Perform the empirical validation of the proposed measures to find early indi-
cators of OCL maintainability.

Therefore, in view of these objectives, this is the hypothesis that we propose:

IT IS FEASIBLE TO ASSESS THE INFLUENCE OF IMPORT-
COUPLING ON THE MAINTAINABILITY OF OCL EXPRES-
SIONS THROUGH A MEASUREMENT-BASED APPROACH

1.3 Ph.D. Thesis Outline

The rest of the chapters of this dissertation will present the following content:

• Chapter 2: Research Method. The research method that underpin the
definition of import-coupling measures is outlined in chapter 2. Each of the
steps of the research method that we have applied, extended and refined for
the definition of valid measures is presented in the second chapter.

• Chapter 3: State of the Art. This chapter attempts to address an intro-
duction to the OCL language and its utility, and more importantly, it describes
a thorough study of the existing measures for coupling and UML diagrams.

28 CHAPTER 1. INTRODUCTION

• Chapter 4: Measures Proposal. This chapter presents a thorough defini-
tion of measures for OCL expressions we propose, detailing the intent pursued
by each measure and illustrating the calculation of their values through exam-
ples. In this chapter we provide an informal definition of the measure using
natural language.

• Chapter 5: Formal Definition of Measures. The fifth chapter refers to
the formal definition of the measures using OCL upon the OCL metamodel.

• Chapter 6: Theoretical Validation. The theoretical validation of the
proposed measures following different approaches are applied: a property-
based approach and a measurement-theory based one. In the former approach,
we adapt a framework of coupling measurement before using it.

• Chapter 7: Psychological Explanation. This chapter gives a plausible
explanation of the rationale behind the measures based on cognitive theo-
ries. This explanation is underpinned through the application of cognitive and
mental models of modelers dealing with OCL expressions.

• Chapter 8: Empirical Validation. This chapter covers the empirical vali-
dation of the proposed measures through a detailed description of the experi-
mental process followed in the experiments we carried out.

• Chapter 9: Conclusions. In this chapter we will detail the main contribu-
tions of this PhD thesis, the results obtained in the different studies performed
and the research lines that are still open for further research.

• Bibliography and Appendixes. The bibliography used in this dissertation
is listed before the appendixes. Various appendixes are presented at the end
of this dissertation. The first corresponds to the acronyms and important def-
initions used in this dissertation. The second complements the theoretical val-
idation of chapter 6. The third provides more details about experimentation.
The fourth presents the experimental material we handed to the experimental
subjects.

Chapter 2

Research Method

As Briand et al. argue in [BMB02] a large number of measures have appeared for
capturing software attributes in a quantitative way. However, few measures have
successfully survived the initial definition phase and are actually used in industry.
The most relevant problems related to the validity of many measures [BMB02],
[CD99] are summarized next:

• Measures are not always defined in the context of some explicit and well-
defined measurement goal of industrial interest they help reach, e.g., reduction
of development effort or faults present in the software products [BMB02].

• Even if the goal is made explicit, the experimental hypotheses are often not
made explicit, e.g., what do you expect to learn from the analysis and can you
believe it? [BMB02]

• Measurement definitions do not always take into account the environment or
context in which they will be applied, e.g., would you use a complexity measure
that was defined for non-OO software in an OO context? [BMB02]

• A reasonable theoretical validation of the measure is often not possible because
the attribute that a measure aims to quantify is often not well defined, e.g., are
you using a measure of complexity that corresponds to your intuition about
complexity (attribute)? [BMB02]

• A large number of measures have never been subject to an empirical valida-
tion, e.g., how do you know which measures of size predict effort best in your
environment? [BMB02]

• Many software attributes are still poorly understood and this often yields to
fuzzy defined, not reusable measures [CD99]

30 CHAPTER 2. RESEARCH METHOD

The above problems are inherent to any young discipline, especially one that is
human intensive. Software measurement is currently in the phase in which ter-
minology, principles, and methods are still being defined and consolidated. The
human-intensive nature of software engineering makes its measurement closer to
that of the social sciences rather than that of the physical sciences. The phenomena
that are studied involve a number of variables that depend on human behaviour and
can not be controlled easily [BMB02].

In order to avoid many of the aforementioned problems, measures should be defined
following a methodological and disciplined steps. Having in mind this idea many
frameworks or methods were defined and validated, however as Kitchenham et al.
remark in [KPF95] there is much work to be done to complete a framework for mea-
surement validation, as well as to achieve consensus within the research community
on the framework accuracy and usefulness. Besides, new trends in software require
a continuous analysis of the frameworks, for instance consider the measurement of
new software artifacts such as OCL or the formal definition of the measures upon
a metamodel. A continuous analysis of the measurement frameworks and methods
will allow to extend and refine a method making it more precise and robust.

In this chapter we will describe a method we used to get valid and reliable measures.
In fact, the method represents an extension and refinement of a previous method,
defined by Calero et al. [CPG01] and the MMLC (Measure Model Life Cycle)
[CD00]. The high level steps of the previous method for defining measures were
not modified, however they were refined and new sub-steps were added, such as
the ’Formal Definition of Measures’, ’Psychological Explanation of Measures’, etc.
The refinement of the method focused on studying the relationships between several
steps as it is also precisely described in the following sections.

Section 2.1 describes an overview of the method whereas sections 2.2 and 2.3 des-
cribe the two more intensive steps, identification and creation. The contribution of
this chapter to the dissertation is summarized in section 2.4.

2.1 Overview of the Method

We modeled the method for defining and validating measures using UML activity
diagrams. So, we will consider the method as divided in several activities which
should be performed to obtain reliable and consistent measures. The main activities
are briefly described in this section and they represent the main steps of the original
method. An overall picture of the method is shown in Figure 2.1, beginning with the
definition of the measures goals and finishing with the acceptance of these measures
in real projects.

The main activities of the method are:

2.1. OVERVIEW OF THE METHOD 31

• Identification (Figure 2.1, Activity M1): This initial activity has the purpose
to define the measurement goals. In order to achieve the goals questions are
specified, abstractions are identified and general hypotheses are planned. Mea-
surement goals should be clearly connected to an industrial goal, responding to
the software organization needs. This premise is emphasized by the most com-
monly cited methods in literature for measure definition, the Goal-Question-
Metric (GQM) paradigm [BW84], [BR98], [SB99] or even improvements on it,
the Measurement Model Life Cycle (MMLC) [CD99] or the GQM/MEDEA
[BMB02].

The Identification activity is crucial because all the following activities will
be based upon its results. In Figure 2.1 the rake in the bottom corner of
M1 activity indicates that the activity is described by a more finely detailed
activity diagram, see section 2.2.

• Creation (Figure 2.1, Activity M2): Using the creation activity measures are
defined based on clear measurement goals, questions, abstractions and general
hypotheses specified in the previous activity. The definition also includes a for-
mal definition. Besides, measures are theoretically and empirically validated,
and a plausible psychological explanation of the effort of the subjects dealing
with the software artifacts being measured is provided. This activity, likely the
longest and the more complex, is further broken down into four sub-activities
which are explained in section 2.3.

• Acceptation (Figure 2.1, Activity M3): The aim of this activity is the system-
atic experimentation of the measure. This is applied to a context suitable to
reproduce the characteristics of the application environment, with real projects
and real users, to verify its performance against the initial goals and stated
requirements. After this activity is performed measures can be accepted or
rejected. For that purpose, a decision node follows the Acceptation activity.
The branching is based on whether measures are accepted or rejected. Even
if the measure is rejected it should not be discarded but undergo the method
from the creation activity.

• Application (Figure 2.1, Activity M4): The accepted measure is used in real
projects in industrial environments.

• Accreditation (Figure 2.1, Activity M5): The goal of this activity is the
maintenance of the measure, so it can be adapted to application changing envi-
ronments. As the original method explains [CPG01] the accreditation activity
represents a dynamic step that proceeds simultaneously with the application
activity. So, a fork and a join bar in the diagram of Figure 2.1 denotes the
beginning and the end of a parallel activity, respectively. As a result of this

32 CHAPTER 2. RESEARCH METHOD

step the measure can be withdrawn or reused for a new measure definition
process.

Method for Measures Definition•→

............................
............. M1. Identification→ → → →

Goals Questions Abstractions Empirical Hypotheses→ → → →
............................
............. M2. Creation→

Created Measures→
→............................

............. M3. Acceptation

�

→

→
→→

...........................
............. M4. Application →→...........................

............. M5. Accreditation→→
→

�→

•©

→

→

[rejected measure] [accepted measure]

[accepted measure]

[reused measure]

Figure 2.1: Method for Measure Definition

Hereafter, we will describe in detail the core steps Identification and Creation.
Whenever an activity is explained its identification number will be show on its right.

2.2 Identification (M1)

As we previously described the identification activity is the most important one,
since it influences all other activities. The UML activity diagram for the Identifica-

2.2. IDENTIFICATION (M1) 33

tion activity is depicted in Figure 2.2.

It is advisable to be able to achieve the definition of clear measurement goals to
avoid coming up with a measure definition that does not actually achieve our desired
aim, i.e. we should follow a goal-oriented definition of measures. As it is described
by Pfleeger in [PJCK97] a commonly used model which can guide us in deriving and
applying a goal-oriented definition is the GQM paradigm. The paradigm was sug-
gested by Basili and Weiss [BW84], [SB99] (later expanded by Basili and Rombach
[BW84], [BR98]), and it is used to define appropriate measures for the organization’s
maturity levels and setting up a measurement program.

Identification (M1)•→
............................
............. I1. Select the entity of study→

software artifact→

............................
............. I2. Determine the Quality

focus→
→ →

.....
................ I4. Determine the structural

properties to be study→...........................
............. I3. State the Goal(s)

at a conceptual level

.....
................ I5. Identify abstractions for

measuring the structural properties→

Abstractions

→Goals

→
→
→

............................
............. I6. Refine the Goal(s) into
questions in a operation level→ Questions

�→

→

............................
............. I7. State General Hypotheses→ Empirical Hypotheses→

•©

[questions does not fit
the goals]

[questions fit the goals]

Figure 2.2: Identification Step (M1)

This paradigm has been widely applied as a way to define what measures to col-

34 CHAPTER 2. RESEARCH METHOD

lect, both in empirical studies and for management [Car93]. In our case, the GQM
paradigm is used in the measure definition in such a way: each measure is deduced
using a top-down perspective and analyzed and interpreted using a bottom-up per-
spective [SB01]. Goals are stated in a conceptual level, which in turn are refined in an
operational, tractable way, into a set of quantified questions [MB00]. Subsequently,
measures should provide the information to answer these questions (at a quantitative
level). Moreover, the GQM paradigm provides a template and guidelines to define
measurement goals and refine them into concrete and realistic questions, which sub-
sequently lead to the definition of measures [BMB02]. Although the definition of
measures according to GQM questions is part of the creation activity, the selection
of goals (and questions) are two of the main purpose of the identification activity.
So, the GQM paradigm phases are split in different activities within the proposed
method.

The GQM paradigm is the most widely used paradigm, however several authors
have argued that GQM has some important limitations [Car93], [BMB02], and is
not enough, by itself, to define effective measures. For instance, Card recommended
that the use of GQM must be supplemented with another activity to select specific
practical measures, and he also suggests that one effective supplemental activity is
modeling. Developing a model, that is defining the objects being measured, makes
it possible to select measures for effect rather than desire [Car93], and help us
to describe the relationships between measurable things. Likewise, Briand et al.
[BMB02] provides a mechanism for generating models as an extension of the GQM
paradigm, called GQM/MEDEA, proposing a practical guideline to design and reuse
technically sound and useful measures. In both approaches, the modelling of the
measured artifact and also abstractions for the captured attribute being measured
were included as complementary activities for the GQM paradigm. So, our method
takes into account all these remarks from the measurement literature.

In order to define measurement goals the following activities should be performed:

• Select the entity of study (Figure 2.2, Activity I1): According to ISO 9126
[ISO01] an entity is an object (for instance, a product, process, project or
resource) that is to be characterized by measuring its attributes.

• Determine the quality focus (Figure 2.2, Activity I2): Generally the qual-
ity focus corresponds to the quality attributes (abstract properties of a entity)
used in the measurement process. In determining such attributes, quality mod-
els1, such as the ISO 9126 [ISO01], Kim [Kim99], McCall [MRW77], Boehm
[BBK78], suggest ways to describe different quality characteristics of software
products, such as distinguishing usability from maintainability [FP98].

1A quality model according to ISO [ISO01] is the set of characteristics and relationships between
them, which provide the basis for specifying quality requirements and evaluating quality.

2.2. IDENTIFICATION (M1) 35

• State the GQM goal(s) at a conceptual level (Figure 2.2, Activity I3):
The two previous activities are used to state the GQM Goal(s), which is (are)
defined using the following template: Analyze the ’object of study’ in order
to ’purpose’ with respect to ’quality focus’ from the point of view of ’point of
view’. In other words, a GQM goal specifies what objects are measured for
what purposes from which viewpoints with respect to which focuses [Sae03].

Once the goal(s) is defined it should be refined into a set of questions. Nevertheless,
before addressing the definition of questions, which in fact allows that GQM goals
to be quantified, it is necessary to consider the structural properties [DS05] of the
software artifact to be studied:

• Determine the structural properties to be studied (Figure 2.2, Activity
I4): We need to define the properties (or internal attributes) that we intend
to measure because we usually interpret software data at that attribute level
[KPF95]. That is, should we study the coupling, cohesion, size, length, etc. of
the software products?.

• Identify abstractions for measuring the structural properties (Fig-
ure 2.2, Activity I5): In helping to clearly identify the structural properties
we should take into account the definition of abstractions for measuring the
structural properties as recommended by Briand et al. [BMB02] and Card
[Car93]. For instance in the case of coupling being the structural property to
be studied, the abstraction should identify the different kinds of connections
that constitute coupling, the locus of impact of coupling, the granularity of
coupling, etc. [BMB96].

• Refine the goal(s) into questions at an operation level (Figure 2.2, Ac-
tivity I6): Once the structural properties have been selected and abstractions
for measuring them are defined GQM questions can be established. Questions
should fit the GQM goals otherwise they should be redefined or discarded.
This situation is modeled through a decision using a diamond notation in the
UML activity diagram of Figure 2.2.

• State General Hypotheses (Figure 2.2, Activity I7): Finally, general hy-
potheses should be stated relating structural properties and the quality focus.
The definition of precise, testable research hypotheses are required before any
empirical study be performed. An Empirical hypothesis is a statement be-
lieved to be true about the relationship between one or more attributes of the
object of study and the quality focus. In other words, empirical hypotheses
relate (independent) attributes of some entities (e.g. software properties or
software complexity) to other (dependent) attributes of the same or different
software product or activities [BMB02].

36 CHAPTER 2. RESEARCH METHOD

2.3 Creation (M2)

The creation activity relies on four sub-activities. An overview of them is depicted
in Figure 2.3 and it is briefly explained below. Subsections 2.3.1, 2.3.2, 2.3.3, 2.3.4
describe them in detail.

Creation (M2) •→

�→
............................
............. C1. Measure

Definition→Goals

Questions →→

Abstractions→

Empirical Hypotheses→

Created Measures
[defined]→

→ →

............................
............. C2. Theoretical

Validation

............................
............. C3. Psychological

Explanation→
Type of scale

→ →

Created Measures
[theoretically validated]

Plausible Explanation

→→ →
→

�→

............................
............. C4, Empirical

Validation→

�→

→→

[decision = modify]

[decision =
accepted]

Created Measures
[empirically validated]→•©

Figure 2.3: Creation Step (M2)

• Measure Definition (Figure 2.3, Activity C1): In order to clearly define a
measure, it is important to tackle two important issues: a clear specification

2.3. CREATION (M2) 37

of what is captured by the measure and its purpose, and a formal specification
of the measure (i.e. how it is defined). Considering the former issue, measures
are defined taking into account the goal(s) and questions provided by the
identification activity.

Regarding the latter issue, in the measure´s literature different approaches
were applied for defining measures: natural language, mathematical approaches,
and formal languages. The measures should be defined in a consistent and
coherent way to avoid misunderstanding and misinterpretation of its meaning.

• Theoretical Validation (Figure 2.3, Activity C2): Once a measure has been
defined it is necessary to verify whether it fulfills the properties that are asso-
ciated with the attribute it purposes to measure [MB00]. This task is called
theoretical validation, internal validation or formal validation. In the context
of an empirical study, the theoretical validation of measures establishes their
construct validity, i.e. it proves that they are valid measures for the constructs
that are used as variables in the study. The theoretical validation is also useful
to determine the scale type of the measure, and helps us to know when and
how to apply measures, for instance the scale of the type is useful to identify
the statistical techniques which should be applied.

• Psychological explanation (Figure 2.3, Activity C3): Ideally, we should
be able to explain how the subjects deal with the entities that are the focus
of our measurement activities. As Cant et al. [CJHS92] remark measuring
structural properties should affect attributes of human comprehension. As a
reference discipline in this step, cognitive psychology can be used to obtain
a plausible explanation of the effort of the subjects dealing with the software
artifact being measured. This explanation is also useful to provide a clear
interpretation of the results of empirical studies. The psychological explana-
tion can be carried out at the same time with the theoretical validation and
it is directly strengthened when qualitative methods are applied in empirical
studies [Sea99].

• Empirical validation (Figure 2.3, Activity C4): This activity investigates
whether the measure is actually effective in practice, i.e. the study assesses
whether the measures are related to some external attribute. This task is called
empirical validation or external validation. This activity takes into account
the empirical hypothesis provided by the identification activity. The purpose
of this activity is to prove the practical utility of the proposed measures.

The activity of creating measures is evolutionary and iterative and as a result of the
feedback, the method could refine, reject or define new measures. We identify two
situations where a review of the creation activity should be performed. The first is
after finishing the Theoretical Validation activity due to the fact: (1) the measure

38 CHAPTER 2. RESEARCH METHOD

may not theoretically valid or (2) the measure can be theoretically valid but does not
capture an expected attribute (the attribute that the measure aims to quantify). The
second situation is after the empirical validation is performed. Different situations
can arise: a measure could not be empirically valid, several measures can capture
the same dimension of a concept, derived measures need to be defined as a more
precise indicator of independent variables, etc. These two situation were modeled
through the bottom two diamond decisions in the UML activity diagram shown in
Figure 2.3.

2.3.1 Measure Definition (C1)

When measures are defined the most important goal is that they should provide, at
a quantitative level, the information to answer the stated GQM questions. However,
the activity of defining measures is not an easy task. Initially measures must be
defined using natural language, then they should be formally defined. Nevertheless
both activities have their own preconditions, which constraints the order in which
they should be performed:

• Select a Metamodel of the Software Artifact (Figure 2.4 (a), Activity
D1): The definition of a measure has to be clear and detailed enough so that
any concept of the software artifact (the object of study) mentioned in the
natural language definition should be quantifiable, i.e able to be measured
[BMB96]. To fulfil this purpose a metamodel of the software artifact being
measured should be selected as a previous activity of any measure definition.
As it is defined in [JA97] a metamodel constitutes the set of characteristics
selected to represent a software or software piece and the set of their relation-
ships, and they are proposed for the description of the software to which the
measurement method will be applied.

Using a metamodel we should scrutinize that any concept mentioned in the
measure definition using natural language should also be an element of the
selected metamodel. This step, Selection or definition of the more suit-
able metamodel was also considered in [JA97] where Jacquet et al. describe
a high-level model for Measurement process.

• Definition in Natural Language (Figure 2.4 (a), Activity D2): In the
definition activity, it is assumed that many measures can be defined. Here,
the Definition in Natural Language occurs iteratively for each measure. The
activity has a rake in its bottom corner. The description as a sub-activity is
modelled in Figure 2.4 (b) and explained in subsection 2.3.1.1.

• Select a Formal Language for the Formal Definition (Figure 2.4 (a),
Activity D3): Previous to any formal definition of measures we should select a

2.3. CREATION (M2) 39

formal language to perform the activity. The selection of the formal language
may be carried out in parallel with activities D1 and D2.

Def. in Natural Language (D2)

•→

............................
.........
........
......... N1. Define what is captured by

the measure

→

→Metamodel

→

............................
.........
........
......... N2. Verify the definition captures
how the measure value is obtained→

............................
............. N3. Define the intent pursed by

the measure→

�→Questions →

C

[Yes]
[No]

Does measures provide the
information to answer
GQM’s questions?

............................
............. N4. Name the measure and select

a suitable acronym→

•©
(b)

Measure Definition (C1)

•→
→

............................
............. D1. Select a Metamodel

of the software artifact

→
→Formal Language

→

............................
............. D3. Select a Formal Language

for the Formal Definition

→

Questions → Metamodel→

............................
.............D2. Definition in Natural

Language→
→

�→
⊕⊕ C

[Yes]
[No]

Are the defined measures complete
enough to answer the GQM-questions?

C
Had all the measures been

formally defined?

→ →
...........................
............. D4. Formal Definition

of a Measure→

�→ →

Created Measures
[defined]→

•©
(a)

[No]

[Yes]

Figure 2.4: Measure Definition Step (C1)

• Formal Definition of a Measure (Figure 2.4 (a), Activity D4): We will
be able to formally define a measure once (1) the first measure being defined
using natural language (Activity D2 of Figure 2.4(a)), and (2) both, meta-
model and formal language were selected. These preconditions are modelled
in Figure 2.4 (a) through the last join. The whole activity finishes when the
last measure was formally defined, being that condition evaluated in the last
diamond of Figure 2.4 (a). The formal definition of the measures should be
consistent with the definition of the measure in natural language. Further-
more, the formal specification should be coherent with the natural language

40 CHAPTER 2. RESEARCH METHOD

description which explains the way in which measure values should be ob-
tained. Although this activity is not further detailed in a subactivity we will
explain it in section 2.3.1.2 the underlying reasons of introducing this activity
as part of the method.

2.3.1.1 Definition in Natural Language (D2)

The activity defines the measures using natural language and involves the following
activities:

• Define what is captured by the measure (Figure 2.4 (b), Activity N1):
The definition of the measure should include a clear description in natural
language of what is captured by the measure.

• Verify the definition captures how the measure value is obtained
(Figure 2.4 (b), Activity N2): Each concept and relationship mentioned in
the definition must be quantifiable. Besides, the measure definition should
describe precisely how the value of a measure is obtained.

• Define the goal pursued by the measure. (Figure 2.4 (b), Activity N3):
The measure intent should be consistent with the GQM question to which the
measure provides information. Besides, the measure intent should be described
considering the cognitive complexity of modelers dealing with the aspects and
concepts captured by the measure. Whether the measure intent does not
provide information to answer the questions, i.e. if it does not fit our desired
aims, we should review its definition or eventually discard it. This decision is
represented in the bottom diamond of Figure 2.4 (b) and it verifies that each
measure intent is aligned with the GQM-questions.

• Name the measure and select a suitable acronym (Figure 2.4 (b), Ac-
tivity N4): The last activity of a measure definition is to name the measure
and select a suitable acronym.

Many measures can be defined in order to answer different GQM-questions. And
it is also possible that a set of measures can be used to answer a GQM-question.
This set should be complete enough to answer that specific GQM-question. So,
the method allows the creation of different measures to answer a GQM-question,
and verifies that each GQM-question can be answered with a set of measures. This
situation is modelled in the left diamond of Figure 2.4 (a).

Applying the GQM paradigm we ensure that the obtained measures are useful,
simple and direct. However the paradigm is not intended to define measures at a level
of detail suitable to ensure that they are trustworthy, in particular, whether or not

2.3. CREATION (M2) 41

they are repeatable (i.e., whether the measurement of an attribute was repeated by
a different person the same result would be produced each time) [KPF95]. In order
to ensure repeatability, software measures need to be fully defined and specified, not
simply named. This is one of the purpose of a formal definition of measures.

2.3.1.2 Formal Definition of a Measure (D4)

The purpose of this activity is to formally define the measures. Many difficulties
arise when the measure is defined in an unclear or imprecise way, for example Baroni
[Bar02] remarks:

• experimental findings can be misunderstood due to the fact that they may be
not clear what the measure really capture,

• measures extraction tools can arrive at different results. Kitchenham et al.
remark [KAKB+06] that most data collection problems arise from poor defi-
nitions of software measures. Data validation, data storage and data analysis
problems arise.

• and experiments replication is hampered.

These are also common problems when we evaluate or consider the methods used
in defining measures. Most of the existent measures differ in the degree of formality
used in their definition. Two extreme approaches were used, informal and rigorous
definitions. However none of these approaches have been widely accepted. On
the one hand, measures using an informal definition, such as measures defined in
natural languages, may be ambiguously defined, and everybody knows that the
use of this practice could introduce misinterpretations and misunderstanding. At
the other extreme, in a rigorous approach, some authors have used a combination
of set theory and simple algebra to express their measures [CK94], [HS96]. This
approach was not popular because the majority of members of OO community may
not have the required background to understand the underpinning of the complex
mathematical formalism used. An example of how the use of natural language
introduces ambiguity in the measure definition is considered in [Bar02] referring
to the definition of the measure Number of Times a Class is Reused, proposed by
Lorenz and Kidd [LK94]. This measure is defined as the number of references to a
class. We agree with Baroni et al. [Bar02] that it is not clear what references are
and how the measure should be computed, and many questions arise as: Should
internal and external references be counted? Should references be considered in
different modules, packages or subsystems? Does the inheritance relationship count
as a reference?.

42 CHAPTER 2. RESEARCH METHOD

An important contribution to solve these problems related to the formality degree
used to define measures is the use of a formal language (e.g. OCL) upon a metamodel
of the software artifacts to be measured.

For example, any measure defined for UML features can use this approach, we can
provide a formal definition of the measures using OCL upon the UML metamodel.

2.3.2 Theoretical Validation (C2)

As previously described, the theoretical validation is carried out to assess whether a
measure actually measures what it claims to measure. In other words, it shows that
a measure is really measuring the attribute it is purporting to measure [BEM95].

There are two main tendencies in measures validation which represent the most
widely knowledged frameworks to be applied. Both tendencies constitute the more
important activities in the theoretical validation and are modelled in Figure 2.5:

• Use Property-based Frameworks (Figure 2.5, Activity T1): Weyuker
[Wey88]; Briand et al. [BMB96], Morasca and Briand [MB97].

• Use Frameworks based on Measurement Theory (Figure 2.5, Activity
T2): Poels and Dedene [PD00]; Zuse [Zus97]; Whitmire [Whi97].

Theoretical Validation (C2)•→
→ →Abstractions→

............................
............. T1. Use Property-based

Frameworks

............................
............. T2. Use Frameworks based

on the Measurement Theory→ → →

Type of Scale

→

Created Measures
[theoretically validated]→

•©
Figure 2.5: Theoretical Validation Step (C2)

The use of property-based frameworks is not in contradiction with measurement
theory [BMB02]. Similarly the measurement theory is not in contradiction with
property-based frameworks. So, the activity of the theoretical validation using differ-
ent frameworks can be performed simultaneously. The activity T2 which represents

2.3. CREATION (M2) 43

the application of the measurement theory also helps us to determine the scale type
of a measure. Both activities, T1 and T2, show in its right side a rake meaning that
they are further broken down, and are explained in following two subsections.

Property-based approaches propose a measure property set that is necessary but
not sufficient ([BMB96]; Poels and Dedene [PD00]). They can be used as a filter to
reject proposed measures [KS97], but they are not sufficient to prove the validity of
the measure.

2.3.2.1 Property-based Frameworks (T1)

Two situations arise when choosing the more suitable property-based framework to
be use for theoretical validation:

• There are frameworks that can easily be applied to software entities of dif-
ferent level of design [BMB96]. However others can be applied to high level
design-software such as [BMB99]. So, we should take into account the software
engineering stage where measurement is applied.

• The theoretical validation is close related to the I3 and I4 activities of the
identification step (Figure 2.2). In fact, using the framework we should be able
to prove the measure captures the attribute that it claims, i.e. the attribute
of the structural properties (coupling, cohesion, etc.) as it is considered in
[DS05] should be evaluated according to a set of mathematical properties to
assure that the measure is valid.

Any application of a framework for a theoretical validation of a measure requires:

• The instantiation of the theoretical framework.

• The verification of the mathematical properties of the measure using the pre-
vious instantiation.

However, not always a framework is straightforwardly applied. Sometimes a frame-
work is sufficient for our needs, but other times we must extend a framework in
order to handle more complex situations or more complex software artifacts. For
example, the application of the Briand et al.’ property-based framework [BMB96]
includes the definition of what is considered a system, a module, a modular system,
etc. This is what we call framework instantiation in our method. Sometimes this
correspondence or mapping is straightforward, and the verification of the generic
properties of the framework is clear. However, we must be sure that such instanti-
ation does not hide any problem [BMB02]. Sometimes, it is necessary that the set
of properties associated with an attribute (e.g. coupling) be expanded adding new

44 CHAPTER 2. RESEARCH METHOD

properties, which formalize the additional knowledge about the characteristic of the
measure for that attribute in a specific context, allowing to adapt the attributes of
the generic properties to a specific quality focus. These properties which are believed
true in a measurement context are called context-dependent properties [BMB02].
It is only necessary to define context-dependent properties when these properties
are not implied by generic properties. For example, Briand et al. [BMB99] define
generic properties (appendix B, section B.1.1 defines the generic properties for size
and length) whereas Briand et al. [BMB96] define context-dependent properties for
coupling in an object-oriented context for a ADA’ high level designs (see appendix
B, section B.1.2). These two possibilities, the application of generic properties or
context-dependent properties are modelled in Figure 2.6:

• Generic Properties: P1 and P2 activities correspond to the application of
generic properties:

� Instantiation of the Framework (Figure 2.6, Activity P1).

� Validate a Measure using Generic Properties (Figure 2.6, Activity
P1). The activity consists of the verification of the mathematical prop-
erties of the measure using the previous instantiation.

Use Property-based Frameworks (T1)

•→

�→ →

C

[Yes] [No]

Does a generic property apply to the
attribute that the measure aims to

quantify?

............................
............. P1. Instantiate the

Framework

............................
............. P3. Define the context→ →

............................
............. P4. Refine the properties
(context-dependent properties)→

............................
............. P5. Validate a measure using
the context-dependent properties

............................
............. P2. Validate a measure

using generic properties

� →→→

•©
Figure 2.6: Theoretical Validation with Property-based Frameworks (T1)

• Context-dependent Properties: P3, P4 and P5 activities are used in the
case where context-dependent properties have been defined:

2.3. CREATION (M2) 45

� Define the context (Figure 2.6, Activity P3): It includes the definition
of the context where the properties will be applied.

� Refine the properties (Figure 2.6, Activity P4): It defines the refine-
ment of the properties (i.e. context-dependent properties).

� Validate the measure using the context-dependent properties
(Figure 2.6, Activity P5): It implies the validation of a measure using
these refined properties.

2.3.2.2 Frameworks based on the Measurement Theory (T1)

As we previously described there are many frameworks grounded in Measurement
theory [KLST06], [Rob79]. In this subsection we briefly describe the DISTANCE
framework of Poels and Dedene [PD00]. A detailed explanation of the framework is
included in appendix B, section B.2.

2.3.2.2.1 DISTANCE Framework This theory, originating from the disci-
pline called Philosophy of Science, is a normative theory prescribing the conditions
that must be satisfied in order to use mathematical functions as ’measures’. Mea-
surement theoretic approaches to software measure validation, such as DISTANCE,
propose methods to verify whether these conditions hold for software measures.

The measure construction procedure prescribes five activities. The procedure is
modelled by the activity diagram of Figure 2.7 and it is triggered by a request
of defining a measure for a property that characterize the elements of some set of
objects. The activities are the DISTANCE procedures which are briefly summarized
below. For notational convenience, let P be a set of objects that are characterized
by some property pty for which a measure needs to be constructed.

• Find a Measurement Abstraction (Figure 2.7, Activity MT1): The objects
of interest must be modelled in such a way that the property for which a
measure is needed is emphasized [Zus97]. A suitable representation, called
measurement abstraction hereafter, should allow to what extent an object is
characterized by the property to be observed. By comparing measurement
abstractions, we should be able to tell whether an object is more, equally, or
less characterized by the property than another object. The outcome of this
activity is a set of objects M that can be used as measurement abstractions
for the objects in P with respect to the property pty. Let abs: P → M be the
function that formally describes the rules of the mapping.

• Define Distances between Measurement Abstractions (Figure 2.7, Ac-
tivity MT2): This activity is based on a generic definition of distance that

46 CHAPTER 2. RESEARCH METHOD

holds for elements in a set. To define distances between elements in a set,
the concept of an elementary transformation function is used. This is a ho-
mogeneous function on a set representing an atomic change of an element in
some prescribed way. By applying an elementary transformation function to
an element of a set, the element is transformed into another element of the set
by changing it. Moreover, this change is atomic, meaning that it cannot be
subdivided into a series of ’smaller’ changes. Elements of a set can be changed
in multiple ways. The second activity of the DISTANCE procedure requires
that a set Te of elementary transformation functions be found that is sufficient
to change any element of M into any other element of M. If such a set Te is
found, then the distance between two elements of M is defined as a shortest
sequence of elementary transformations (i.e. applications of the elementary
transformation functions in Te) to transform one element into the other. In
general, there are multiple sequences of elementary transformations to go from
one element to another. For the notion of distance used by the procedure,
only the shortest sequences are taken into account, i.e. those that require the
minimum number of elementary transformations.

• Quantify distances between Measurement Abstractions (Figure 2.7,
Activity MT3): This activity requires the definition of a distance measure for
the elements of M. Basically this means that the distances defined in the pre-
vious activity are now quantified by representing (i.e. measuring) them as the
number of elementary transformations in the shortest sequences of elementary
transformations between elements. Formally, the activity results in the defi-
nition of a measure (in the mathematical sense) δ:M × M → < that can be
used to map (the distance between) a pair of elements in M to a real number.

• Find a Reference Abstraction (Figure 2.7, Activity MT4): This activ-
ity requires a kind of thought experiment. We need to determine what the
measurement abstraction for the objects in P would look like if they were char-
acterized by the theoretical lowest amount of pty (again, on condition that
the property is a quantity). If such a hypothetical measurement abstraction
(i.e. an object in M) can be found, then this object is called the reference
abstraction for P with respect to pty. The idea of DISTANCE is now to use
this reference abstraction as a reference point for measurement. More par-
ticularly, DISTANCE uses the distance between the measurement abstraction
of an object p in P and the reference abstraction of P as a formal definition
of the property pty of the object p. This means that the larger the distance
between the measurement abstraction and the reference abstraction, the more
the property characterize the object (i.e. the greater the amount of pty in p).
Let ref : P → M be the function that describes the rules of the mapping.

• Define a measure for the property (Figure 2.7, Activity MT5): The final

2.3. CREATION (M2) 47

activity consists of defining a measure for pty. Since properties are formally
defined as distances, and these distances are quantified with a measure func-
tion, the formal outcome of this activity is the definition of a function µ: P→
< defined such that ∀ p ∈ P: µ(p) = δ(abs(p), ref(p)).

Use Frameworks based on
the Measurement Theory (T2)•→

............................
............. MT1. Find a Measurement

Abstraction→ →
M: Set of Measurement Abstraction abs: Abstract Function→ →

............................
............. MT2. Define Distances between

Measurement Abstractions→

Te: Set of Elementary Transformation Types→

→............................
............. MT3. Quantify Distances between

Measurement Abstractions→

δ: M×M→ <, A Measure Function→

→............................
............. MT4. Find a Reference

Abstractions→

ref : P→M, Reference function→

→→............................
............. MT5. Define a Measure for

the Property→

µ:P→<, Measure function→

•©
Figure 2.7: Theoretical Validation with DISTANCE Framework (T2)

48 CHAPTER 2. RESEARCH METHOD

2.3.3 Psychological Explanation (C3)

Structural properties of software artifacts influence the cognitive complexity of soft-
ware engineers dealing with the artifacts [BWIL99], [BWSL99], [BWL01]. Cognitive
complexity is defined as the mental burden of a person dealing with a software ar-
tifact. So, we believe that the mental burden will impact on the software quality
attribute that is currently studied as a GQM-goal. The understanding of the cogni-
tive complexity of modelers dealing with software artifact has two benefits: (1) it is
useful to define the rationale behind each measure definition, indeed some traditional
measures are supported by the fact that they are clearly related to cognitive limita-
tions [Kle00], (2) will provide us the theoretical knowledge to explain the obtained
results in empirical studies.

So, a plausible explanation of the measures from a psychological point of view,
such as the understanding of the cognitive demands that software places on soft-
ware engineers [GEMM00] is necessary, otherwise as it is argued in [SB82] we only
surface features of the software measured. It has been argued that a detailed cog-
nitive model is a necessary basis for developing software product measures [DS05].
Understanding cognitive psychology theories, we could justify the influence of struc-
tural properties on external quality attributes (such as maintainability) through the
study of cognitive complexity. In fact as Darcy et al. argue in [DS05] the consid-
eration of multiple theoretical perspectives, including human cognition, provides a
solid foundation upon which to derive an integrative model relating internal and
external attributes of software quality.

Glasberg [GEMM00] argues that one way to operationalize cognitive complexity is
to equate it with the ease of comprehending the software artifact that is measured.
Moreover, if we are able to describe and to understand how software engineers
comprehend the software artifacts that are measured, we will be able to interpret
and to analyze the empirical studies performed with subjects dealing with those
artifacts.

Cognitive models and mental models are two important theoretical basis for pro-
gram comprehension. Nevertheless, as Darcy et al. argue [DS05], some of the
programming comprehension models are sufficiently generalizable so that they can
also be used to understand and explain maintenance cognition.

We had identified the following activities in order to obtain a plausible explanation:

• Select the Cognitive Theory to Use in a Plausible Explanation (Figure
2.8, Activity PE1): The selection of a cognitive psychology theory should
be carefully justified, and the selection will be dependent on the software
artifact (object of study) to be measured and the GQM-goal pursued in the
measurement process.

2.3. CREATION (M2) 49

• Relate the Cognitive Theory to the Software Artifact and Measures
(Figure 2.8, Activity PE2): Once the cognitive theory is selected and each of
its elements are described, it is useful to use the cognitive theory to explain
how the subjects deal with the measured artifacts and also to establish a
relationship between the elements of the theory and the concepts captured in
each measure.

• Use Qualitative Methods to Understand Cognitive Complexity (Fig-
ure 2.8, Activity PE3): Human cognition become more relevant considering
that in last years software engineering empiricists are beginning to address the
human role in software development in a serious way. Seaman argues [Sea99]
that in order to delve into the complexity of human role in software engi-
neering rather than abstract it away, qualitative methods should be used. It
could be argued that human behaviour is one of the few phenomena that is
complex enough to require qualitative methods to study it. Nevertheless we
have included an activity PE3 in which qualitative methods should be applied
in order to really understand the cognitive complexity of software engineers
dealing with a measured software artifact. A thorough study about qualita-
tive methods for data collection and analysis which may be incorporated into
empirical studies of software engineering is presented in [Sea99]. The most
common qualitative methods employed are observations, in-depth interviews
and focus groups [TB84].

Due to the fact that cognitive complexity constitutes one of the most important
aspects that underpin the influence of structural properties on external quality at-
tribute in the following subsection we explain it in detail.

2.3.3.1 The Cognitive Complexity

Cognitive complexity is defined as the mental burden of the individuals (developers,
testers, inspectors, maintainers, etc) who have to deal with the component [EMM01].
The concept of cognitive complexity is crucial in measuring software products, be-
cause many empirical work hypothesize that high cognitive complexity leads to a
component exhibiting undesirable external qualities, such as reduced maintainability
[Ema01].

In general, the cognitive complexity occurs in the context of finite short-term mem-
ory (STM), long-term memory (LTM) which is practically unlimited in capacity
though fades over time, and long-term working memory (LT-WM) which is used to
represent acquired expertise [KR02]. When processing information in general, con-
cepts are first stored in STM. Groups of related concepts are grouped into chunks
and stored in LTM. Depending on the familiarity of information encountered, the

50 CHAPTER 2. RESEARCH METHOD

Psychological Explanation (C3)

•→

............................
............. PE1. Select the Cognitive Theory to Use in a

Plausible Explanation→

............................
............. PE2. Relate the cognitive theory to

the software artifact and measures→
→

�→
⊕⊕ C

[Yes]
[No]

Are the selected cognitive theory
enough for giving a plausible

explanation of the cognitive complexity?

C
The qualitative methods are
enough to understand how
software engineers deals with

software artifacts?

→

→
............................
............. PE3. Use qualitative methods to

understand cognitive complexity→
�→ →

•©
Plausible Explanation→

[No]

[Yes]

Figure 2.8: Psychological Explanation (C3)

experience with the domain comes into play (LT-WM), determining ones ease of
comprehension. Here we describe, salient aspects of STM, LTM and LT-WM:

• STM capacity was measured by Miller at 7 +/- 2 concepts, however perfect
recall was only achieved 50% of the time [Mil56]. Broadbent later found that 4
was the greatest number of unfamiliar concepts that could be reliably recalled
[Bro75]. One consequence of STM limitations is that text that contains a high
concentration of unfamiliar concepts usage will be more difficult to correctly
understand [Gop91]. On the other hand, when a concept is repeatedly recalled,
it becomes easier to recall again and can be easily assimilated.

• LTM consists of concepts and associations between concepts represented as
schemes or patterns. The performance of LTM depends on the density of asso-
ciations between concepts therein. LTM fades over time. Moreover, activities
that rely on remembering something that is seldom repeated is inherently risky.
While a dense association between concepts in LTM improves LTM perfor-
mance [EK95], a dense association between concepts in text hinders absorption
when the concepts or associations are unfamiliar [Gop91].

2.3. CREATION (M2) 51

• LT-WM is used to represent cognitive skill or expertise. When an individ-
ual has many years of problem solving experience in the same domain, they
can quickly solve problems that normally take much longer [EK95]. One of
the consequences of expertise is that individuals highly familiar with obscure
knowledge or methods will perform much more efficiently in their domain of
expertise than novices. This makes subjective evaluations of methods and pro-
cedures more difficult to assess when the holder of the opinion is very familiar
with them [KR02].

The concept of knowledge of the limitations of the human information processing
capacity has also been used as a helpful underpinning for establishing measures
threshold values. Therefore, several authors have argued that when the interacting
concepts overflow short-term memory, this will lead to an increase in external quality
aspect, for instance comprehensibility. The implication of this is that a certain
amount of concepts does not affect cognitive burden, until a non-zero threshold is
exceeded. This was the reasoning applied by El Emam in [Ema01] for coupling
measures. However, the issue of OO thresholds has been discussed and evaluated
in [BEGR00], [EBG+02], and as expected, no evidence supporting thresholds was
found [GEMM00].

Nevertheless, cognitive complexity is the main factor determining the comprehen-
sion of software artifacts, such source code, UML models, or even OCL expressions.

2.3.3.2 Selected Theory for OCL Cognitive Complexity (PE1)

In this section we present the theory we used in a plausible psychological explanation
of the measures we presented in chapter 4. Due to some traditional measures are
supported by the fact that they are clearly related to cognitive limitations [Kle00]
we started the explanation considering the concept of cognitive complexity and the
capacity of human memory. However as our hypothesis is that import-coupling, as
a structural property, influences the cognitive complexity of the modelers during
OCL expressions comprehension in maintainability of OCL expressions, we based
our reasoning on the comprehension of OCL expressions using two main topics: men-
tal models and cognitive models. The former concept describes a subject´s mental
representation of the software artifact to be understood whereas a cognitive model
describes the cognitive processes and temporary information structures in the sub-
ject´s head that are used to from the mental model [Sto05]. Understanding cognitive
psychology theories, for instance to explain which are the mental model of model-
ers during comprehension or the cognitive process of modelers, we could justify the
influence of import-coupling (a structural property) on the maintainability of OCL
expressions.

During the comprehension of OCL expressions within UML models many cognitive

52 CHAPTER 2. RESEARCH METHOD

dimensions are opportunistically used, and their theory will be also discussed in this
section.

Siau [Sia99] proposes the use of cognitive psychology as a reference discipline in
method engineering and the study of information modeling. In general the under-
standing attributes of cognitive process can lead to new software measures that allow
the prediction of human performance in software development [RK03] for assessing
and improving the maintainability of software artifacts.

2.3.3.2.1 Cognitive Complexity Model

In order to carefully explain how OCL expressions are comprehended and how the
navigation is a valuable help in guidance of comprehension we have applied the Cant
et al. [CJHS92] Cognitive Complexity Model (CCM). In this section we will first
explain the CCM for software complexity which give a general framework to explain
the process of OCL comprehension and we apply it in chapter 6.

The CCM was defined by Cant et al. [CJHS92] and gives a general cognitive theory
of software complexity that relates to the impact of structure on understandability
[Ema01]. Although the study of Cant et al. [CJHS92] has been considered a rea-
sonable point of departure for understanding the impact of structural properties on
understandability of code and the coding process, we believe that this model can
also be applied to UML developers when they try to understand OCL expressions.
The basis of the CCM is the definition of two cognitive techniques applied in pro-
gram comprehension. Besides, the cognitive complexity model can be described
qualitatively in terms of a landscape model.

2.3.3.2.1.1 Cognitive Techniques The underlying rationale for the CCM ar-
gues that comprehension consists of two techniques or processes: chunking and
tracing, that are concurrently and synergistically applied in problem solving. Cant
el al. [CJHS92] argue that both techniques have implication for software complexity:

• Chunking technique: a capacity of short term memory, involves recogniz-
ing groups of statements (not necessarily sequential) and extracting informa-
tion from them which is remembered as a single mental abstraction: a chunk
[CJHS92].

• Tracing technique: involves scanning, either forward or backward, in order
to identify relevant chunks [Ema01], resolving some dependencies.

Cant et al. [CJHS92] argue that it is difficult to determine what constitutes a
chunk since it is a product of semantic knowledge. For our purposes we will con-
sider an OCL expression as a chunk unit, whilst the comprehension of an operation,

2.3. CREATION (M2) 53

an attribute or a relationship along with their associated OCL expressions are also
considered chunks. Henderson-Sellers [HS96] notes that tracing disrupts the process
of chunking. Tracing has been observed as a fundamental activity in program com-
prehension [RK03]. The comprehension of a particular chunk is the sum of three
components: (1) the difficulty of understanding the chunk itself; (2) the difficulty of
understanding all the dependencies on the chunks upon which a particular chunk de-
pends, and (3) the difficulty of tracing these dependencies to those chunks [Ema01].
Tracing is applied when a method calls for another method to be used in a different
class, or when an inherited property needs to be understood [Ema01]. UML mod-
elers or developers also commonly perform these cognitive techniques during the
understandability of OCL specifications.

2.3.3.2.1.2 Landscape Models In the CCM model Cant et al. explain that
when a programmer is primarily chunking, there are control and variable depen-
dencies that, to be resolved, require the programmer to perform a certain amount
of tracing forward or backward to find the relevant sections of code. Having found
that code, programmers will once again chunk to comprehend it. Conversely, when
programmers are primarily tracing, they will need to chunk to understand the effect
of the identified code fragments. The effects of chunking and tracing difficulty on
complexity can be demonstrated graphically by modeling the various programmer
tasks as landscape (see Figure 2.9). In this visualization of the chunking and tracing
cognitive processes, each chunk is delineated by a pair of markers at a single level.

A

x1 x4

x2 x3

B 1st level

2nd level

3rd level

◦ ◦

C
◦

F
◦

G
◦

D
◦

E
◦

Figure 2.9: Landscape Model of Program Comprehension

For example, in Figure 2.9, at the top-level there is a single chunk visible, delineated
by the two markers (A and B); at the second level there are two chunks delineated
by the two pairs of markers (C,D and D,E); and at the lowest level there is a single
chunk: F,G. Note that although the chunk CD is interrupted by a lower-level chunk,
its integrity remains as a result of its semantic integrity. The complexity of the
top-level chunk is thus represented by the sum of the two line segments Ax1 and
x4B; the overall system complexity being visualized by the total distance between
the end points of the chunk: A and B.

54 CHAPTER 2. RESEARCH METHOD

The ’vertical drop’ (e.g., x1C) represents visually the work required in tracing the
relevant code section. The length of time and amount of work required to solve
the dependency is a function of the aggregate depth and breadth of the dependency
valley. The total depth of the nested valley depends on the length of the chain
of dependencies that must be traced to satisfy the programmer´s enquiry, and the
difficulty of performing the tracing involved in each link of the chain. In addition,
the number of ’steps’ involved indicates the number of chunks that need to be con-
sidered. The total breadth of the nested valleys is determined by the effort required
to understand each chunk in the dependency chain.

2.3.3.2.2 Mental Models

A mental model is a predictive representation of real world systems. In other words,
people create internal representations of objects and information in the world, and
they use these mental representations to reason about, explain, and predict the
behavior of external systems [RLW04]. So, mental models (also referred to as
schemes) play an important role in software comprehension and correspondingly in
comprehension-related tasks, such as modification and debugging. Many studies
were performed largely with procedural applications [CW99b], [CW00]. However,
recently a number of studies have tested elements of the above mental model struc-
ture on OO software.

Software comprehension is an essential part of software maintenance because soft-
ware that is not comprehended cannot be changed [RW02]. It is also considered as
an important part of the entire software engineering [KM02].

In this section we describe the more important dimensions of program comprehen-
sion which were used as a basis to explain the comprehension of OCL expressions
within UML models. Mental models are part of one of these dimensions, the dimen-
sion of direction of comprehension.

A summary of the scope and direction dimensions and the most important mental
model representations are shown in Figure 2.10.

2.3.3.2.2.1 Dimension of Scope of Comprehension The scope of compre-
hension refers to the breadth of familiarity with the program gained by the program-
mer during comprehension activities [CW00]. Littman et al. [LPLS87] found two
strategies used by programmers concerning scope of comprehension, systematic
and as-needed. Erdos et al. [ES98] propose partial comprehension as the only
feasible approach when systems are large or when deadlines have to be met.

Using the systematic strategy, the programmer attempts to gain a broad under-

2.3. CREATION (M2) 55

standing of the program before carrying out modifications. The goal is to understand
the design of the original programmer so that modifications fit with the existing
code. On the other hand, using the as-needed strategy, the programmer attempts to
minimize the amount of code that has to be understood. The programmer does not
attempt to understand the overall design of the program but concentrates instead
on the functioning of selected local parts of the code that are critically involved in
the modification. Littman et al. [LPLS87] found that programmers who used the
systematic approach carried out modifications more successfully. The authors argue
that programmers using the systematic strategy were more successful because their
systematic study increased their ability to detect interactions between the code cen-
tral to the modification and code elsewhere in the program [CW00]. Nevertheless,
maintenance programmers are in practice faced with enormously complex programs
that cannot be understood in their entirety. Erdos et al. [ES98] argue that main-
tenance programmers only comprehend those sectors affected by the maintenance
request. This cognitive activity is called partial comprehension.

2.3.3.2.2.2 Dimension of Direction of Comprehension Rilling et al. ex-
plain in [RK03] that traditionally the following cognitive models are used to group
approaches of how programmers comprehend software. Three well-known strategic
approaches are: the bottom-up, top-down2 and opportunistic cognitive models.

• The bottom-up theories of comprehension propose that understanding is
built from the bottom up, by reading source code and then mentally chunking
or grouping these statements into higher level abstractions. These abstrac-
tions are aggregated further until a high level understanding of the program is
attained [SFM99]. Three bottom-up cognitive models are, the work of Shnei-
derman and Mayer´s cognitive framework [SM79], the Pennington´s model
[Pen87], and the Burkhardt et al.´s model [BDW02]. These models are de-
scribed in detail below.

• The top-down approach is applying a goal-oriented approach by utilizing
domain/application specific knowledge that is used to identify parts of the
program that are relevant to achieve the goal in leading to the identification
of the relevant source code artifacts.

• While the top-down and bottom-up models have been very influential, today
mixed models of program comprehension are increasingly studied, showing
that software engineers switch between these different models depending on
the problem-solving task [SV98], [MV96]. This opportunistic approach can
be described as exploiting both top-down and bottom-up cues as they become

2Both top-down and bottom-up comprehension models have been used in an attempt to define
how a software engineer understands software systems.

56 CHAPTER 2. RESEARCH METHOD

•
sy
ste

m
a
tic

•
a
s-n

e
e
d
e
d

•
p
a
rtia

l

S
cop

e
of

C
om

-
p
reh

en
sion

P
rogram

M
o
d
el

•
E
le
m
e
n
ta
ry

O
p
e
ra
tio

n
s

•
C
o
n
tro

l
F
lo
w

S
itu

ation
M
o
d
el

•
M
a
in

G
o
a
ls

•
D
a
ta

F
lo
w

P
en
n
in
gton

et
al.

P
rogram

M
o
d
el

•
E
le
m
e
n
ta
ry

O
p
e
ra
tio

n
s

•
C
o
n
tro

l
F
lo
w

•
E
le
m
e
n
ta
ry

F
u
n
c
tio

n
s

S
itu

ation
M
o
d
el

E
x
p
an

d
ed

•
p
ro
b
le
m

o
b
je
c
ts

•
re
l.a

m
o
n
g
p
ro
b
l.o

b
j.

•
re
ifi
e
d
o
b
je
c
ts

•
m
a
in

g
o
a
ls

•
c
lie

n
t-se

rv
e
r
re
l.

•
d
a
ta

fl
o
w

re
l.

B
u
rk
h
ard

t
et

al.

b
ottom

-u
p

p
lan

-b
ased

act

•
stra

te
g
ic

p
la
n
s

•
ta
c
tic

a
l
p
la
n
s

•
im

p
le
m
.
p
la
n
s

•
d
isc

o
u
rse

ru
le
s

S
olow

ay

top
-d
ow

n
m
ix
tu
re

D
irection

of
C
om

p
reh

en
sion

D
im

en
sion

s
of

C
om

p
reh

en
sion

F
igu

re
2.10:

D
im

en
sion

s
of

C
om

p
reh

en
sion

in
M
en
tal

M
o
d
els

2.3. CREATION (M2) 57

available. Mayrhauser and Vans [MV96] observed that the use of bottom-up
and top-down comprehension varies with the domain knowledge and language
knowledge. If the former is higher programmers take a top-down approach, if
the latter is low programmers are more bottom-up in comprehension.

• Bottom-up Direction of Comprehension: Within the work of Shneider-
man and Mayer´ cognitive framework [SM79] the authors differentiate between
syntactic and semantic knowledge of programs. Syntactic knowledge is lan-
guage dependent and concerns the statements and basic units in a program.
Semantic knowledge is language independent and is built in progressive layers
until a mental model is formed which describes the application domain. The
final mental model is acquired through the chunking and aggregation of other
semantic components and syntactic fragments of text.

In the Pennington´s model, the author researched the role of programming
knowledge and the nature of mental representations in program comprehen-
sion. She observed that programmers first develop a control- flow abstraction
of the program which captures the sequence of operations in the program.
This model is referred to as the program model and contains text structure
knowledge. Pennington defined text structure knowledge in terms of the mi-
crostructure of the program text: elementary operations, generally consisting
of single lines of code, and control flow between these operations. Once the
program model has been fully assimilated, the situation model is developed.
The situation model encompasses knowledge about data-flow abstractions and
functional abstractions (the program goal hierarchy, the function of the pro-
gram). The development of the situation model requires knowledge of the
application domain and is also built from the bottom-up.

The existence of these two program abstractions during comprehension, (the
program and situation model) and also the formation of the program model
before the domain model was also studied by Bergantz and Hassell [BH91].

Burkhardt et al.´s model [BDW02] is based on the model of Pennington´s
model. It expands the original model to take into account additional factors.
The Program model is expanded to consider the representation of larger units
such as routines, known as macrostructure or Elementary Functions. These
functions correspond to units in the program structure, i.e., routines attached
to objects. Likewise, the Pennington´s situation model is expanded to include
aspects of objects and their relationships, as well as client server relationships
of objects, as defined below:

� Problem Objects: These objects directly model objects of the problem
domain.

58 CHAPTER 2. RESEARCH METHOD

� Relationships between Problem Objects: These consist of the in-
heritance and composition relationships between objects.

� Reified Objects: An example of a computing, or reified, object is a
string class, which is not a problem domain object per se. Reified objects
are represented at the situation model level in as much as they are neces-
sary to complete the representation of the relationships between problem
objects, i.e., they bundle together program-level elements needed by the
domain objects.

� Main Goals: The main goals of the problem correspond to functions
accomplished by the program viewed at a high level of granularity.

� Client server Relationships: Communication between objects corre-
sponds to client server relationships in which one object processes and
supplies data needed by another object. These connections between ob-
jects are the links connecting units of complex delocalized plans. Client
server relationships represent those delocalized connections.

� Data Flow Relationships: Communication between variables corre-
sponds to data flow relationships connecting units of local plans within a
routine.

• Top-down Direction of Comprehension: Soloway et al. [SBGE82] present
a top-down theory of program comprehension, they treat comprehension as a
plan-based activity. Plans are schematic knowledge about how to carry out
stereotypical actions in a program. Plans exist at different levels. Strategic
plans are global plans for the solution of a problem; tactical plans are language
independent specifications of algorithms for solution of local parts of a prob-
lem; implementation plans are plans for carrying out a tactical plan in a given
programming language. Also, discourse rules are programming conventions
that govern how plans are expressed and combined. Program understanding
begins with the programmer hypothesizing a high-level program goal, then
breaking it down into more specific subgoals that should be present in a pro-
gram having a given high-level goal. Having identified expected goals and
subgoals, the programmer must determine whether they exist in the program.
The programmer uses knowledge of stored plans and discourse rules to try to
satisfy the subgoals and ultimately the top-level goal [CW00]. Brooks [Bro83]
also proposed a top down theory of program comprehension, his theory is hy-
pothesis driven and he theorizes that programmers use increasingly specific
hypotheses to derive the functionality of the code. His proposal is centered on
beacons as knowledge structures.

2.3. CREATION (M2) 59

2.3.3.2.2.3 Dimension of Guidance of Comprehension Burkhardt et al.
[BDW98b] distinguish several approach used to guidance reading and comprehen-
sion3. One of these approaches was called relationship among classes. This approach
involves reading the program in a manner which highlights the relationships among
classes. Two specific types of guidance are possible reflecting composition and inhe-
ritance relationships in a program. We will use this dimension to conceptualize and
introduce a guidance approach used in OCL comprehension: Navigation. The nav-
igation of relationships within OCL expressions (see definition in 4.2.1) constitutes
one of the most important guidance to comprehend them.

Using another meaning or sense of navigation, Mosemann et al. [MW01] describes
different methods of navigation4 as a process of program comprehension, where
navigation is conceptualized as the process of collecting information about pieces of
the program.

However, we consider this dimension as a relevant aspect of cognitive models instead
of mental model, because it is more related to a cognitive process than a mental
representation.

2.3.4 Empirical Validation (C4)

In order to thoroughly prove that a measure is useful, it is not reliable to use common
wisdom, intuition, speculation, or proof of concepts as sources of credible knowledge
[BSL99]. It is necessary to place the measures under empirical validation. Empirical
validation is an on-going activity [BEM95] performed to demonstrate the usefulness
of a measure, in other words, it addresses the following question: Is the measure
useful in the sense that it is related to other variables in expected ways? [BEM95].
Through empirical validation we can also demonstrate with real evidence that the
measures we have proposed serve the purpose they were defined for. This phase is
necessary before any attempt to use measures as objective and early indicators of
quality.

So, empirical validation is crucial for the success of any software measurement
project [Sch92], [KPF95], [BSL99]. However, in general there exists insufficient
empirical evidence supporting the usefulness of a vast number of proposed measures
[BWIL99]. For that reason, Briand et al. argue [BAC+99] that empirical studies in
software engineering need to be better performed, analyzed, and reported.

3This third dimension, the guidance of reading & comprehension, was mentioned along with
the scope and direction of comprehension dimensions, however it was not used as a new dimension
in the recent mental model defined in [BDW02], nevertheless many of the concepts mentions as
guidance where included when the situation model of the new model was defined. We only use the
concept of guidance of comprehension as a term to refer a facilitator activity in OCL expression
comprehension.

4Here, navigation has another sense or meaning, is not used as OCL navigation.

60 CHAPTER 2. RESEARCH METHOD

The empirical validation is used to obtain objective information concerning the use-
fulness of the proposed measures, because it may occur that a measure was valid
from a theoretical point of view, but not to have practical relevance to a specific
problem. Therefore, empirical studies are necessary to confirm and understand the
implications of the measurement of our products. This is achieved by means of
hypotheses in the real world, above and beyond pure theory, which must be verified
using empirical data. Empirical hypotheses were defined as part of the I7 activity
of the identification step (see Figure 2.2). That hypotheses should be empirically
validated through a set of refined hypothesis through different studies. Empirical hy-
potheses relate (independent) attributes of some entities (e.g. structural properties)
to other (dependent) attributes of the same or different activities [BMB02].

We identified the following high level activities in order to carry out any empirical
validation:

• Select a Strategy to Carry Out the Validation (Figure 2.11, Activity
E1): There are three major strategies or types [Rob93], [WRH+00] of empirical
investigations:

� experiment, i.e. a means of testing, using the principles and proce-
dures of experimental design, whether the hypothesis about the expected
benefit of a tool or method can be confirmed;

� case study, i.e. a trial use of a tool or method on a full scale project;

� survey, i.e. the collection and analysis of data from a wide variety of
projects.

• Conduct the Strategy through a Family of Studies (Figure 2.11, Ac-
tivity E2): Having selected the strategy, the validation should be run using
a family of studies, i.e. a family of experiments, a family of case studies, a
family of surveys, etc. A family of studies are really useful and necessary
to draw more credible conclusions [PPV00], and contribute to obtain more
solid findings and expected results. In this thesis we will focus on families of
experiments so section 2.3.4.1 describes them in detail.

To perform any empirical strategy such as an experiment, survey or case study,
several steps have to be taken and they have to be in a certain order [WRH+00].
Thus a process for how to perform the experiments is needed. Processes are im-
portant as they can be used as checklists and guidelines of what to do and how to
do it. Only careful planning can guarantee successful empirical studies. When an
empirical study is not conducted appropriately or is not precisely reported many
problems arise with regard to extracting crucial information from them or even to
integrate study results into a common body of knowledge: (1) it is difficult to locate
relevant information, (2) important information is often missing, etc. [JP05].

2.3. CREATION (M2) 61

Empirical Validation (C4)

•→

............................
............. E1. Select a strategy to

carry out the validation

Empirical Hypotheses

→
→

→

............................
............. E2. Conduct the strategy

through a family of studies→

�
→

→

Created Measures
[empirically validated]→
•©

Figure 2.11: Empirical Validation Step (C4)

Text books on empirical software engineering such as Wohlin et al. [WRH+00]
and Juristo et al.[JM01] define a process which is focused on experiments, never-
theless the same basic steps must be performed in any empirical study. Thus, these
basic processes may be used for other types of studies being conducted. Various
improvements have been achieved to standardize a consistent format for controlled
experiments: [Sin99], [JP05], [KPF95], [KAKB+06], [BSH86]. However, the liter-
ature about how to carry out a family of experiments is scarce, Ciolkowoski et al.
[CSB02] explains the more relevant steps in running families of experiments.

Due to the fact that the empirical validation of this Ph.D. thesis was performed
using experiments we will describe them in more detail in the following section.

2.3.4.1 Families of Experiments (E2)

Experiments can be viewed as part of common families of experiments, rather than
being isolated events [BSL99]. Common families of studies can contribute to impor-
tant and relevant results that may not be suggested by individual experiments.

For individual empirical studies, we know quite well how to proceed, and the exper-
imental process is briefly defined in section 2.3.4.2 and defined in detail in appendix
C. However, we do not know what steps are necessary for experiment families. In
this section, we present an initial process that allows to systematically define an ex-
periment family according to Ciolkowski et al. [CSB02], integrated with the process
of conducting its experiments and modelled through a UML activity diagrams.

62 CHAPTER 2. RESEARCH METHOD

A family of experiments is more than a composite of individual studies. Figure 2.12
depicts the process for defining an experiment family [CSB02].

The identified activities include:

• Prepare the Family of Experiments (Figure 2.12, Activity F1): It is nec-
essary to define one or more goals to allow effective analysis afterwards. To
guarantee that the data can be compared across all studies of the experiment
family, all studies adopt the same experimental framework, including a com-
mon GQM [BW84], [BR98], [SB99] plan for measurement.

• Define the Experimental Context (Figure 2.12, Activity F2): It is possible
to conduct an analysis that identifies factors across environments and across
experiments. That is, the family has to define common measurement frame-
work (or context definition). The relatively low and arbitrary reporting on
context variables is a hindrance for metastudies, which are needed to identify
which context factors influence which kinds of performance [SHH+05].

The subjects’ variables which are more commonly reported of controlled ex-
periments in software engineering are: gender, age, education, programming
experience, task-related experience and task-related training [SHH+05].

• Setting the Design Framework of the Family (Figure 2.12, Activity F3):
Additionally, a design framework for the individual studies has to be defined.
Furthermore, a set of experimental material has to be created that can be used
by the individual experiments.

• Conduct an Individual Experiment (Figure 2.12, Activity F4): Having
defined the design framework of the family, the individual experiments can be
conducted. Thereby, the same steps are required as in conducting an individual
study that is not part of a family. However, the experiment family helps to save
effort for the preparation. Individual experiments use the family framework:
The preparation of the individual study uses the context definition, design
framework, as well as the experimental material from the experiment family.

After the individual experiment is conducted, a local analysis of experimental
data is run. To be able to include specific questions, individual experiments can
extend the family framework; for example, they can measure more variables,
or use additional material, as long as they include the common framework.
Moreover, these extensions may help the experiment family in exploring other
variables not considered before.

• Perform a Family Data Analysis (Figure 2.12, Activity F5): Finally, a
plan for analysis of the experiment family’s results has to be defined. The

2.3. CREATION (M2) 63

final step is to use the data of all studies within the experiment family to
conduct the family’ data analysis (e.g., analysis on how the context influences
the performance of a technique).

• Define Conclusions for the Family (Figure 2.12, Activity F6): After the
family data analysis was performed general conclusions can be obtained.

Conduct a Family of Experiments (E2)

•→
............. F1. Prepare the Family of

Experiments→ → Goal of the Family →
............................
............. F2. Define the

Experimental Context

............................
............. F5. Perform the

Family Data Analysis

→

...........................
............. F6. Define conclusions

for the family

→
→

............................
............. F3. Setting the design

framework of the family→ →
→

Family’s Hypotheses→

→

Empirical Hypotheses

Experimental Material→...........................
............. F4. Conduct an

individual experiment →→�→

→

⊕⊕

→

•©

Figure 2.12: Conduct a Family of Experiments (E2)

The process introduced above shows that experiment families promise to save prepa-
ration costs while increasing the benefits of running them. Obviously, defining an
experiment family requires more effort than preparing an individual study. We
have to describe context variations more systematically than for individual studies.
Thereby, context factors of interest have to be defined, maybe using interviews to
create questionnaires. Another cost factor is that the design framework has to be
defined in such a way that limited variation is possible for individual studies. This
also requires more work than for individual studies.

Although the effort for preparing an experiment family is quite high, the benefits
are large:

• Researchers who want to participate in the experiment family save work be-
cause they can reuse the framework and experimental material. Furthermore,
reusing a framework also helps raise the quality of the studies [CSB02].

• Individual studies possess added value when they are part of an experiment
family because they are analyzed with respect to the whole experiment family,

64 CHAPTER 2. RESEARCH METHOD

not only with respect to their own context. That is, experiment families allow
to learn more effectively from individual empirical studies, because studies
add to a body of knowledge, instead of providing information limited to one
context [CSB02].

• Experiment families allow to answer questions that are beyond the scope of
individual experiments, such as which context factors influence the results.
Thus, they allow to generalize findings across studies.

2.3.4.2 Conduct Individual Experiments (F4)

Experiments are launched when we want to have control over the situation and
want to manipulate behaviour directly, precisely and systematically. They constitute
formal, rigorous and controlled investigations. The objective is to manipulate one or
more variables and control other variables at fixed levels. In an experiment the key
factors are identified and manipulated. Experiments are appropriate to investigate
different aspects, such as to:

• Confirm theories, i.e. to test existing theories.

• Confirm conventional wisdom, i.e. to test peoples conceptions.

• Explore relationships, i.e. to test that a certain relationship holds.

• Evaluate the accuracy of models, i.e. to test that the accuracy of certain
models is as expected.

• Validate measures, i.e. to ensure that a measure actually measures what it is
supposed to.

The strengths of an experiment is that it can investigate in which situations the
claims are true and it can provide a context in which certain standards, methods
and tools are recommended for use. We should be able to draw conclusions about
the relationship between the cause and the effect for which we stated a hypothesis
(which we want to corroborate by means of experiments), only if the experiment is
properly set up [WRH+00]. Experiments require a great deal of care and planning
if they are to provide meaningful, useful results [FP98].

A characterization of the most important proposals for guidelines on reporting
empirical controlled experiments is included in [JP05]. Nevertheless, the following
steps are common in most of the aforementioned proposals.

• Definition (Figure 2.13, Activity EF1): In this phase the foundation of the
experiment is properly laid, it is defined in terms of problem, objective and
goals. Here, the hypothesis has to be stated clearly.

2.4. CONTRIBUTION TO THE DISSERTATION 65

Conduct an Experiment (F4)

•→

............................
............. EF1. Definition

............................
............. EF5. Presentation and

Package→

............................
............. EF2. Planning

............................
............. EF4. Analysis and

Interpretation

............................
............. EF3. Operation→ →

→
→

•©
→→
→

→→
→

→
→→

Goal of the Family

Family’ Hypotheses

Material of the Family

Goal of the Experiment

Experiment’s Hypotheses

Material of the Experiment

Figure 2.13: Conduct an Individual Experiment (F4)

• Planning (Figure 2.13, Activity EF2): In this phase the design of the ex-
periment is determined, the instrumentation is chosen, and the threats to the
experiment are evaluated.

• Operation (Figure 2.13, Activity EF3): In this phase the experiment is run,
and should be conducted according to its design. The measurements are col-
lected.

• Analysis and Interpretation (Figure 2.13, Activity EF4): The data col-
lected during the previous phase is analysed, interpreted and evaluated.

• Presentation and Package (Figure 2.13, Activity EF5): Presenting and
Packaging the findings is an important task in order to document the experi-
ment and to facilitate its replications.

Appendix C describes in detail these steps according to [WRH+00].

As Basili et al. [BSL99] remarks experimentation in software engineering is neces-
sary but difficult. One reason for this is the large number of variables of context,
which means that to create a cohesive understanding of the experiment results re-
quires a mechanism to explain the studies and incorporate the results.

2.4 Contribution to the Dissertation

The assessment of the influence of import-coupling on the maintainability of OCL
expression takes a measurement-based approach. For that reason, in this chapter
we defined a method for measure definition. The method is based on a previous

66 CHAPTER 2. RESEARCH METHOD

method [CPG01], [CD00] and includes the best practice and experience of different
authors and methods of measurement.

The more important refinements and extensions of the method described in this
chapter were included in the Identification (M1) and Creation (M2) steps. We have
identified more than forty activities that further break down the high level activities
of the method. We carefully detailed the refined and extended method through UML
activity diagrams, allowing a better and complete understanding of the method.
The method has been strengthened not only in the order of its steps but also in the
specification of their object flows and decision nodes between activities.

The chapter provides the research method that will be applied in the development
of this thesis. The activities described in this chapter are applied from chapter four
to eight.

Chapter 3

State of the Art

This chapter begins with an introduction of OCL and its utility (section 3.1). Then,
a broad and thorough review of most relevant existing works related to coupling
measures (section 3.2) and related to measures for UML models (section 3.3) is
presented. Last section, 3.4, describes the contribution to the dissertation.

3.1 The Object Constraint Language

OCL is part of the UML, the Object Management Group (OMG) standard for OO
analysis and design, and it is publicly available in [OMG03b].

OCL is underpinned by mathematical set theory (OCL provides built-in collections
and a set ot theoretical concepts like cardinality, set comprehension, projection,
algebra operators, etc.), predicative logic (consider logical operators and quantifiers
such as exists and all) [BeA03a] and operational semantics [Baa00]. It was first
developed in 1995 during a business modelling project within IBM. This project
was heavily influenced by Syntropy ideas, but unlike Syntropy, OCL does not use
unfamiliar mathematical symbols [WK99].

In UML 1.1, OCL appears as the standard for specifying restrictions in one or more
values of an OO model. It was designed for usability, the language should be easy
to use, easy to learn and easy to understand [WK99] and to be easily grasped by
anybody familiar with OO modeling. OCL was available to modelers to increase the
meaning that UML diagrams, and it was also used to give added precision to the
definition of UML. In parallel to the release of UML 2.0 a new version of the OCL
has recently been adopted by the OMG. In this version the understanding is that
far more additional information should be included in a model than constraint alone
[WK03]. In this version there was a chance to react to many criticisms that the OCL
does not have any formal basis for itself [HZ04]. The main differences between OCL

68 CHAPTER 3. STATE OF THE ART

2.0 and OCL 1.4 can be found in [HZ04], [Tch02]. In this thesis we had used the
Final Adopted Specification of OCL 2.0 [OMG03b], although we know that the last
version of OCL 2.0 is the Proposed Available Specification (FTF Report) of OCL
[OMG05b], the former specification was the last version of OCL when we started to
define the measures and carried out the experiments.

OCL is a textual specification language defined to solve different problems:

• UML is limited in its expressiveness, and many constraints cannot be defined
using only UML graphical features [CKM+02], [WK03].

• Frequently the system properties and constraints that cannot be defined using
UML diagrams are defined using natural languages and this leads to misinter-
pretations, misunderstanding [WK99], and ambiguities [OMG03b].

• The use of formal methods can help to alleviate this problem, in order to
specify correctly the system behavior, but the use of formal methods by the
object technology community’ members requires a strong mathematical back-
ground, and formal methods are not a subject with which the average business
or system modelers are familiar [OMG03b].

• To provide precise information in the definition of standards, like the UML
standard itself, then use of a precise language is required.

OCL was defined as a textual add-on to the UML diagrams [CKM+02]. Its main
elements are OCL expressions that represent declarative and side effect-free tex-
tual descriptions that are associated to different features of UML diagrams. OCL
expressions add precision to UML models beyond the capabilities of the graphical
diagrams of UML. Although OCL is considered in [OMG03b] to be a formal lan-
guage easy to read and write, the misuse of the language can lead to complicated
written OCL expressions. Warmer and Kleppe [WK99] give some tips and hints in
writing OCL expressions (these recommendations are still valid although OCL has
been modified through different versions). Furthermore, they recognize that the way
OCL expressions are defined has a large impact on readability, maintainability and
the complexity of the associated diagrams.

It is important to introduce several concepts related to an OCL expression:

• Each OCL expression is written in the context of an instance of a specific
type. This instance, self, provides a point of reference for interpretation of the
expression, and is commonly referred to as the contextual instance.

• The context in which an expression is written is introduced through the key-
word context. Any OCL expression starts with the definition of the context,

3.1. THE OBJECT CONSTRAINT LANGUAGE 69

Person
age: Integer
birthdayHappens()

work˙with

<<invariant>>
{ self.age > 0 }

Figure 3.1: Example of an Invariant

that involves the keyword context followed by the name of a type (the con-
textual type), then any specification of self within the OCL expression will be
associated with the type declared in the context declaration.

• OCL expressions in UML class diagrams are used most importantly: to specify
invariants on classes and types in the class diagram, to specify constraints on
operations and methods, to describe pre- and post conditions on operations,
to specify initial values and derivation rules for attributes, to specify query
operations, and to introduce new attributes and operations [OMG03b].

• Invariants, preconditions and postconditions are constraints stereotyped re-
spectively by <<invariant>>, <<precondition>> and <<postcondition>>.
Although it is common for stereotypes to be attached to a UML feature using
a graphical notation such as a note box, as shown in Figure 3.1 , the quantity
of OCL expressions defined for a class diagram is significantly higher and this
clutters the understandability of the UML diagram. For that reason all the
OCL expressions shown in this chapter will be written in textual form and will
not be shown using a note box.

Example 3.1.1 An invariant definition for the Person class is:

context Person inv:
self.age > 0

The keyword inv means that the OCL expression, which comes after the colon, is
an invariant expression. In fact, the inv keyword denotes the stereotype <<invari-
ant>>. This expression means that all the values of any instance of the class Person
must not be zero or lower. self.age uses a dot notation to refer to a property age
of the object represented by self, however it is possible that self will be implicit in
the expression (in the example is possible to simply write age instead of self.age).
In general, whenever a property called property is specified without the object to

70 CHAPTER 3. STATE OF THE ART

which it applies -in the form of property instead of object.property-, the object is left
out, or it is implicit in the specification of the property property.

Example 3.1.2 This example introduces a postcondition restriction for the Birth-
dayHappens operation of Person class. It is a postcondition as the post keyword is
used, which in turn refers to a <<postcondition>> stereotype. This postcondition
means that the age of a person is incremented by one when the birthday of a person
had happened (age@pre is used to refer to the previous value of age just before the
execution of BirthdayHappens).

context Person::BirthdayHappens()
post: age = age@pre + 1

Before giving more examples we will introduce two important concepts used in the
following sections:

• Properties: an attribute, an association-end, and side-effect-free operation or
method are considered properties of an object [OMG03b]. The way an object
property is specified in an OCL expression is by using a dot notation. Ob-
ject.property1 refers to a property1 of object wherever object is a valid reference
to an object. To illustrate this concept see example 3.1.3.

Example 3.1.3 In the following expression the work˙with property is used in
an expression, meaning that a person cannot work with himself or herself. In
this case work˙with represents an association-end property.

context Person inv:
not self.work˙with->exists(self)

• Classifier: a classifier is a UML metaclass which represents a type, a class, an
interface, an actor (of a use case diagram), an association (acting as types) and
datatypes [OMG03b]. Each classifier defined within a UML model represents
a distinct OCL type [OMG03b].

3.1.1 Utility of OCL

OCL is used for different domain and in different levels of the metamodelling ar-
chitecture. As it is widely knowledged a metamodelling approach or Meta-Object
Facility (MOF) metamodel consist of four layer (Table 3.1 gives an overview of the
four layers). Some examples of how OCL is used in metamodelling are:

3.1. THE OBJECT CONSTRAINT LANGUAGE 71

Table 3.1: Levels in the UML Metamodel
Level Layer Description

M3 meta-metamodel Language for metamodels
M2 metamodel Language for models
M1 model Language for information domains
M0 user objects Specific information domain

• M1 layer. In modelling systems (M1 layer) OCL constraints convey a number
of benefits, including precision and design documentation, resulting in better
(unambiguous) communication among the involved parts, such as designers,
users, programmers, testers and managers and, since OCL is a typed language,
it is possible to check constraints for validity during modeling [BeA03a]. In
this way OCL is suitable as a lightweight replacement for formal specification
languages [HZ04] (like Z, VDM, OBJ, etc.).

• M2 layer. Within UML standard itself, OCL is also used to specify well-
formedness rules applied to the UML metamodel [Ric02] and to few other
OMG standards being applied on the meta-level [HZ04].

• M3 layer. Within an Meta Object Facility (MOF) OCL is used to specify
rules for describing metamodels in various domains [Ric02].

OCL is also used along with different domains and software tools [CBCS04], some
examples are:

• In Model Driven Engineering: The MDA is a framework that is intended
to support the development of software through the transformation of models
to executable applications [JCF03]. The essence of MDA approach is that
models form the basis of software development. The use of OCL in the MDA
approach is crucial. OCL is recommended to be used in MDA process for
building PIM [WK03], [MEJ+03]. Using a combination of UML and OCL is
possible to build solid and consistent models for MDA [WK03], that is the
reason many authors argue that OCL is one of the most interesting candi-
date languages for appling the contract principle of design for specification of
platform-independent description of software components [HZ04], [WK03].

• In Model Transformation: A key facilitator of the MDA is a standard to
express model transformations. On modelling transformation rules for MDA,
OCL can be used in for different purposes: OCL constraints are used to define
the relationship between the abstract and concrete metamodels in a declar-
ative manner [GJG04], [GL05], [TFS06]. Here, the OCL constraints play

72 CHAPTER 3. STATE OF THE ART

both the role of transformation invariant and rule postcondition. Cariou et
al. [CMSD04] focuses on the specification of model transformation contracts.
They investigate the way to define transformations contracts using standard
UML and OCL features.

OMG have initiated the standardization of a transformation initiatives, the
MOF 2.0 Query/Views/Transformations (QVT) [OMG05a] which will provide
a standard language for transformation between MOF-based models. The ini-
tiative proposed a pattern-based language with ability to define the transfor-
mation partially with a graphical notation and refinement in a textual notation
[GO05]. It includes a new pattern matching language and use of OCL as the
query language. For QVT the current proposal suggests to use the declarative
OCL at least for the querying part.

Patrascoiu [Pat04] proposes the YATL transformation language to do model-
to-model transformations. It is a hybrid textual language that uses OCL
expressions for querying UML models and new imperative constructions to
create target instances. Bezivin et al. [BBDV03] propose the textual ATL
transformation language that builds on OCL. Sendall [Sen03] suggests VMT
as a graphical UML-to-UML transformation language, which is based on graph
matching for source and result selection, metamodel rules, OCL constraints
and UML activity models to compose transformations.

Examples of the use of OCL in model transformation:

� OCL is used in the XMI proposal to define the XMI stream production
rules. The production rules specify how a model can be transformed into
a XML document conforming to the XMI proposal.

� Formal object-oriented specifications are generated in OCL and class di-
agrams from the use case model of a system through a clearly defined
sequence of model transformations. [Rou03]

• In Metamodelling: OCL is used in metamodelling facilities for specifying
stereotypes and tagged values constraints [SW01], [MRRR02], it is also used
for modeling ontologies [WCH02]

• In Testing: As it is widely acknowledged early test development and specifi-
cation enhance the quality and robustness of software [BKW04]. The specifi-
cation of assertions using OCL [SSR04], [MV04], [VS02], [SC02], [NF06] and
its corresponding implementations contribute to the software testing.

• In Reverse Engineering: OCL is used for defining a mapping between two
models in reverse engineering of UML interaction diagrams [BLM03].

3.2. COUPLING MEASUREMENT 73

• In Real Time Applications: OCL is used and also extended for mod-
elling real-time applications and temporal constraints. For example: To define
the well-formedness rules of the abstract model in real-time reactive systems
[Mut00], and one extension of OCL that enables modelers to express state-
related time-bounded constraints [Fla02] and its semantics [FM02], etc.

• In Business Domain: OCL is used in the specification and validation of
transactional business software [CW04]. Another approach [HHW04] ensure
unambiguity defining well-defined constraints for different business environ-
ments through the templates based on an extended version of OCL.

• In Several Domain Applications: OCL is used in a wide range of domain-
application, for example: In specifying the object interface in multimedia
systems [Aag98], in geographical information systems [CWD00], [FCTJ01].

• In Programming Languages: Integration of enhancements of OCL in some
specification languages can be found in [Ham99] where OCL are integrated in
C++, in [Ham04], [BKW04] in Java.

3.2 Coupling Measurement

Software engineering best practices promote that a high quality software design
among many other principles, should obey the principle of low coupling [BDW99].
Currently available evidence suggests that coupling measures are good predictors
for the maintainability of components in OO systems [DJ03], [Ari02].

In the last fifteen years, a considerable number of studies have been carried out into
coupling measures. A general consensus in the software engineering community is
that too much coupling is harmful in terms of system structure and increase system
complexity [HCN98a]. Stevens et al. [SMC99] gave an initial definition of coupling
in the context of structured development techniques, defining it as the measure of
the strength of association established by a connection from one module to another.
Therefore, the more inter-related as set of modules are, the more difficult these
modules are to understand, change and correct and thus the more complex the
resulting software system [BDW99].

Briand et al. [BDW99] make a serious attempt to improve the understanding of
OO coupling measurement integrating existing three previous frameworks into a
unique theoretical framework. The three frameworks were Eder et al. [EKS94],
Hitz and Montazeri [HM95], and Briand et al. [BDM97]. The objective of the
unified framework are manifold, however two important purposes are: to support
the comparison and selection of existing coupling measures and facilitate a more
rigorous decision making regarding the definition of new coupling measures.

74 CHAPTER 3. STATE OF THE ART

Acronym Client item Server Item Description

aC attribute a of a
class c

class d, d 6= c class d is the type of a

MpC methodm of a class
c

class d, d 6= c class d is the type of a parameter of
m, or the return type of m

MvC methodm of a class
c

class d, d 6= c class d is the type of a local variable
of m

MipC methodm of a class
c

class d, d 6= c class d is the type of a parameter of
a method invoked by m

Ma methodm of a class
c

attribute a of a
class d, d 6= c

m references a

MiM methodm of a class
c

method m’ of a
class d, d 6= c

m invokes m

CC class c class d, d 6= c high-level relationships between
classes

Table 3.2: Types of Connections

3.2.1 Coupling Framework Criteria

The framework of Briant et al. [BDW99] for coupling consists of six criteria, each
criterion determining one basic aspect of the resulting measure.

3.2.1.1 Criterion 1. Type of connection

Connection is a generic term defined as an occurrence of a given type of coupling
[BDW99]. For instance, a method invocation represents a connection in a coupling
measure. Once we choose the type of connection we are effectively choosing the
mechanism that constitutes coupling between two entities.

The Table 3.2 (from [BDW99]) summarizes the possible types of connections, i.e.
links between a client and a server item (attribute, method or class). The items are
listed in the columns ’client item’ and ’server item’ respectively. Description column
explains the type of connection. The first column lists a short way to refer to each
type of connection.

3.2.1.2 Criterion 2. Locus of impact

As Dagpinar et al. [DJ03] argue it is important to make a distinction between the
server and client entity from a perspective of a maintenance. For this purpose,
Briand et al. [BDM97] paid attention to the locus of impact: whether the class
is a user (i.e. a client) or used (i.e. a server) in the coupling relationship. These
relationships are called import-coupling (IC) and export-coupling (EC), respectively:

3.2. COUPLING MEASUREMENT 75

• IC: Import-coupling analyses attributes, methods, or classes in their role as
clients (users) of other attributes, methods, or classes.

• EC: Export-coupling analyses the attributes, methods, and classes in their role
as servers to other attributes, methods, or classes.

After performing a survey of measures Dagpinar et al. recognize that few empirical
studies differentiate between export-coupling and import-coupling [DJ03].

3.2.1.3 Criterion 3. Granularity

The granularity of the measure is the level of detail at which information is gathered.
The granularity of the measure is determined by two factors:

• the domain of the measure, i.e., what components are to be measured: The
possible domains for the coupling measures vary from smaller domains, such
as the class level or attribute, to larger domains like the sets of classes and the
system level.

• how exactly the connections are counted: Available options for this
decision can be restricted by the domain of the measure.

For measures defined at the method or attribute level, two options are listed
in Table 3.3, where the difference between options A and B is that multiple
connections between two items are counted separately in option A, and counted
as one in option B.

At a class level, there are four options to count connections (see table 3.4) The
difference between options D) and E) is that if, for instance, two methods of a
class reference the same attribute, the references are counted separately (once
for each method) according to D), and counted as one for the class according
to E).

Measures defined for sets of classes or the system can be constructed by adding
up the number of connections of the relevant classes, counted according to one
of the options C) to F).

3.2.1.4 Criterion 4. Stability of server

Two different categories of class stability are defined: unstable classes and stable
classes. Unstable classes are those which are subject to development or modification
in the project at hand, whereas stable classes are not subject to change in the project
at hand.

76 CHAPTER 3. STATE OF THE ART

option Description Import-coupling exam-
ple

Export-coupling exam-
ple

A count individual con-
nections

for each method, the num-
ber of references to at-
tributes

for each attribute the num-
ber of references to the at-
tribute

B count the number of
distinct items at the
other end of the con-
nections

for each method, the num-
ber of attributes referenced

for each attribute the num-
ber of methods that reference
the attribute

Table 3.3: Options for Coupling Connections at the Attribute and Method Levels

option Description Import-coupling ex-
ample

Export-coupling ex-
ample

C add up the number of con-
nections counted as in A) for
each method or attribute of
the class

the total number of
attribute references by
methods in the class

the total number of refer-
ences to attributes of the
class

D add up the numbers of con-
nections counted as in B) for
each method or attribute of
the class

add up the number of
attributes referenced by
each method of the class

add up or for each at-
tribute of the class: the
number of methods that
reference the attribute

E count the number of distinct
items at the end of connec-
tions starting from or ending
in methods or attributes of
the class

the number of attributes
referenced by the meth-
ods of the class

the number of methods
referencing attributes of
the class

F for a class c, count the num-
ber of other classes to which
there is at least one connec-
tion

the number of classes
which have an attribute
that is referenced by a
method of class c

the number of classes
which have a method that
reference an attribute of
class c

Table 3.4: Options for Coupling Connections at the Class Level

This criterion has not been commonly addressed in the definition of measures for
coupling. Probably due to stability of a server class is a subjective concept which is
difficult to measure automatically [BDW99]. We believe that this criterion is more
appropriate to use in empirical studies than in definition stages.

3.2.1.5 Criterion 5. Direct or Indirect connections

We have to decide whether to count direct connections only or also indirect con-
nections. For example, if a method m1 invokes a method m2, which in turn invokes
a method m3, we can say that m1 indirectly invokes m3. Methods m1 and m3 are
indirectly connected.

Indirect coupling, that has not been studied and suggested that its existence may

3.2. COUPLING MEASUREMENT 77

be the source of unnecessary maintenance costs. An important work about indirect
coupling was developed by Yang et al. [YTB05] they build a prototype for detecting
indirect coupling but they recognize that in order to determine whether there is a
correlation between indirect coupling and maintainability, they really like to have a
measure that is at least an interval scale one.

3.2.1.6 Criterion 6. Inheritance

Two important issue should be considered in this criterion:

3.2.1.6.1 Inheritance based vs. non-inheritance-based coupling First,
we have to decide whether to count inheritance-based coupling and/or non-inheritance-
based coupling. Inheritance- based coupling analyses connections between classes
that are related via inheritance. Likewise, noninheritance- based coupling refers to
connections between classes that are not related via inheritance.

3.2.1.6.2 How to assign methods and attributes to classes The final ques-
tion is to decide to which class an attribute or method belongs. We have to decide,
if inherited methods and attributes belong to the inheriting class or not. We distin-
guish two cases:

• When we compute the coupling of a class, we have to determine what are the
methods/attributes of the class, and therefore contribute to the coupling of
the class. The available options are:

� only methods and attributes implemented in the class contribute to the
coupling of the class

� all methods and attributes implemented or declared in the class con-
tribute to the coupling of the class

• When we count the frequency of connections according to option F) (i.e., for a
given class, we count the number of other classes it is connected to), we have
to assign the items at the other ends of the connections to a class.

3.2.2 Proposal of Coupling Measures

The number of coupling measures that have been proposed for object-oriented prod-
ucts is very large. In this section we give a review of the most important coupling
measures defined in the literature.

78 CHAPTER 3. STATE OF THE ART

Name Definition Source

CBO Coupling Between Object classes. This includes inheritance-based coupling
(coupling between classes related via inheritance).

Chidamber and
Kemerer, (1994
[CK94]

CBO′ Same as CBO, except that inheritance-based coupling is not counted. Chidamber and
Kemerer, (1991)
[CK91]

RFC∞ Response Set for Class. The response set of a class consists of the set M of
methods of the class, and the set of methods directly or indirectly invoked
by methods in M.

Chidamber and
Kemerer, (1991)
[CK91]

RFC1 Same as RFC∞, except that methods indirectly invoked by methods in M
are not included in the response set this time.

Chidamber and
Kemerer, (1994)
[CK94]

MPC Message Passing Coupling. The number of method invocations in a class. Li and Henry
[LH93]

DAC Data Abstraction Coupling The number of attributes in a class that have
as their type another class.

DAC′ The number of different classes that are used as types of attributes in a
class.

ICP Information flow- based Coupling. The number of method invocations in a
class, weighted by the number of parameters of the invoked methods.

Lee et al., (1995)
[LLWW95]

IH-ICP Information flow- based Inheritance Coupling. As ICP, but counts invoca-
tions of methods of ancestors of classes (i.e., inheritance-based coupling)
only.

NIH-ICP Information- flow-based Noninheritance Coupling. As ICP, but counts in-
vocations to classes not related through inheritance.

NPAVG measures the average number of parameters per method (not including in-
herited methods).

Lorenz et al.
[LK94]

CDM Coupling Dependency measure Binkley et al.
[BS98]

Table 3.5: Coupling Measures (Part I)

• Chidamber and Kemerer [CK91] gave an initial definition of coupling as any
evidence of a method of one object using methods or instance variables of
another object. This measured through a coupling measure named Coupling
Between Object classes (CBO’). Within the CBO measures, which was empiri-
cally validated in [BBM96], a class A is coupled to class B if A uses B’s member
functions and/or instance variables. CBO’ counts the number of classes to
which a given class is coupled.

• In a later work, Chidamber and Kemerer introduced a new version of CBO’,
CBO, which includes inheritance-based coupling. So, CBO’ measures ’non-
inheritance based coupling’ [CK91] whereas CBO explicitly includes ’coupling
due to inheritance’ [CK94].

Several authors acknowledged the need to differentiate between inheritance-
based and non-inheritance-based coupling. Lee et al. [LLWW95] proposed
three measures that considers inheritance aspects: NIH-ICP counts non-inheri-
tance-based coupling only, IH-ICP counts inheritance based coupling only.
ICP is the sum of IH-ICP and NIH-ICP, thus treats both types of coupling
equal.

The suite of measures by Briand et al. [BDM97] also provides measures which

3.2. COUPLING MEASUREMENT 79

count inheritance-based and non-inheritance based coupling separately.

• Li and Henry [LH93] proposed more fine-grained extensions of the CK cou-
pling measure via measures like Message Passing Coupling (MPC) and Data
Abstraction Coupling (DAC) [SK03]. A distinction is made between coupling
with other classes, and coupling as a result of messages sent to self (i.e., an
instance of a class type).

• Briand et al. defines in [BDM97] a suite of measures to quantify the level
of class coupling during the design of object-oriented systems. Same of the
defined measures are language specific due to different OO design mechanisms
provided by the C++ language are considered (e.g., friendship between classes,
specialization, and aggregation) and ancestors. A complete suite of measures
of coupling measures is included in [BDW99]. Table 3.6 defines each of these
measures.

• Dagpinar et al. [DJ03] defines a set of measures (see Table 3.7) that are
mainly based on measures defined by Briand el al [BDM97], with the following
modifications:

� A separation has been made in order to distinguish between indirect and
direct coupling.

� Relationship names have been changed from antecedent class, friend class,
and other class to inheritance and non-inheritance relationships since
friend class is only valid for C++ and we do not want to make our model
language specific.

� In addition to counting the number of interactions between classes, the
number of classes that the class interacts with is also counted.

All the above described measures are evaluated using the Briand et al. framework
for coupling measurement [BDW99], we summarize this process in tables 3.2.2.1
and 3.9. The three tables structure is the following: column 1 shows the measure
acronym of the table, column 2 shows the source work where the measure is defined,
column 3 shows whether the measures are theoretically or empirically validated,
column 4 shows the type of connection according the acronym used in Table 3.2,
column 5 shows the strength of the measures, column 6 describes the locus of impact
-see criterion 2 of Briand et al. framework-, finally column 7 and 8 show the direction
-see criterion 5 of Briand et al. framework- and inheritance -see criterion 6 of Briand
et al. framework- aspects of the measures.

80 CHAPTER 3. STATE OF THE ART

Name Definition Source

IFCAIC
ACAIC
OCAIC
FCAEC
DCAEC
OCAEC
IFCMIC
ACMIC
OCMIC
FCMEC
DCMEC
OCMEC
OMMIC
IFMMIC
AMMIC
OMMEC
FMMEC
DMMEC

These coupling measures are counts of interactions between classes. The
measures distinguish the relationship between the classes (friendship, inhe-
ritance, none), different types of interactions, and the locus of impact of the
interaction. The acronyms for the measures indicates what interactions are
counted:

• The first or first two letters indicate the relationship (A: coupling
to ancestor classes, D: Descendents, F: Friend classes, IF: Inverse
Friends (classes that declare a given class c as their friend), O: Oth-
ers, i.e., none of the other relationships).

• The next two letters indicate the type of interaction: CA: There is
a Class-Attribute interaction; CM: There is a Class-Method inter-
action; MM: There is a Method-Method interaction.

• The last two letters indicate the locus of impact: IC: Import-
coupling, the measure counts for a class c all interactions where c is
using another class. EC: Export-coupling: count interactions where
class d is the used class.

Briand et al.
[BDM97]

PIMAS the number of direct and indirect static invocations Briand et al.
[BWL99]

SIMAS the number of direct and indirect static invocations, taking polymorphism
into account

INAG direct and indirect aggregation relationships

Table 3.6: Coupling Measures (Part II)

3.2.2.1 Empirical Studies of Coupling Measures

Although there exists insufficient empirical evidence supporting the usefulness of a
vast number of proposed OO measures [BAC+99], the most promising results with
object-oriented measures were obtained using coupling measures [Ema02]. These
relevant empirical studies suggests that there are important relationships between
coupling structural attribute and several external quality indicators.

Table 3.10, briefly shows a survey of empirical studies for coupling measures, show-
ing the authors (first column), the system where the the study was run (second
column), the dependent variables analysed (third column) as a external quality as-
pect affected by the coupling measure (the independent variable is shown in the
fourth column). Reading Table 3.10 is possible to show that exist evidence that
some forms of coupling have an impact on understandability, maintenance effort,
fault proneness, impact analysis and quality guidelines. Now, we describe these
empirical studies in more detail.

The first empirical study of measures including coupling measures, was run by Li
and Henry [LH93] which explore the link between several OO design measures and
the extent of code change, which they used as a surrogate measure for maintenance
effort.

Many empirical studies were conducted by L. C. Briand, around a number of OO

3.2. COUPLING MEASUREMENT 81

coupling measures identified in a survey of the literature included in [BDW99]. These
studies were empirically validated for predicting different external quality attributes:

• Impact Analysis: Briand el al. study in [BWL99] has investigated the use of
coupling measurement, for identifying classes likely to contain ripple changes
when another class is being changed, i.e. they investigate the relationship
between class coupling and ripple change. A commercial C++ system, which
has been under maintenance and change data has been collected over several
year, was used to investigate this question. The study shows that a number of
coupling measures, related to aggregation and invocation coupling, are related
to a higher probability of common changes.

Name Definition Source

ICAIC Inheritance class-attribute import-coupling. Dagpinar et al,
2003 [DJ03]

NICAIC Non-inheritance class-attribute import-coupling.
ICAEC Inheritance class-attribute export-coupling.
NICAEC Non-inheritance class-attribute export-coupling.
ICMIC Inheritance class-method import-coupling.
NICMIC Non-inheritance class-method import-coupling.
ICMEC Inheritance class-method export-coupling.
NICMEC Non-inheritance class-method export-coupling.
IMMIC Inheritance method-method import-coupling.
NIMMIC Non-inheritance method-method import-coupling.
IMMEC Inheritance method-method export-coupling.
NIMMEC Non-inheritance method-method export-coupling.
IIC Inheritance import-coupling. IIC = ICAIC + ICMIC + IMMIC
NIIC Non-inheritance import-coupling. NIIC = NICAIC + NICMIC + NIMMIC
IEC Inheritance export-coupling. IEC = ICAEC + ICMEC + IMMEC
NIEC Non-inheritance export-coupling. NIEC = NICAEC + NICMEC + NIMMEC
TIIC Total inheritance import-coupling by including indirect coupling relation-

ships.
TNIIC Total non-inheritance import-coupling by including indirect coupling relation-

ships.
TIEC Total inheritance export-coupling by including indirect coupling relationships.
TNIEC Total non-inheritance export-coupling by including indirect coupling relation-

ships.
DTIIC Direct total inheritance import-coupling.
DTNIIC Direct total non-inheritance import-coupling.
DTIEC Direct total inheritance export-coupling.
DTNIEC Direct total non-inheritance export-coupling.
IDTIIC Indirect total inheritance import-coupling. IDTIIC of class A is calculated

by counting
IDTNIIC Indirect total non-inheritance import-coupling.
IDTIEC Indirect total inheritance export-coupling.
IDTNIEC Indirect total non-inheritance export-coupling.

Table 3.7: Coupling Measures

82 CHAPTER 3. STATE OF THE ART

• Fault-Proneness: Briand et al. explores in [BWDP00] the relationships
between existing object-oriented coupling, cohesion, and inheritance measures
and the probability of fault detection in system classes during testing. Results
have shown that many coupling and inheritance measures are strongly related
to the probability of fault detection in a class. In particular, coupling induced
by method invocations (import-coupling), the rate of change in a class due
to specialization, and the depth of a class in its inheritance hierarchy appear
to be important quality factors. On the other hand, cohesion, as currently
captured by existing measures, does not seem to have a significant impact on
fault-proneness.

Also Briand et al. in [BWIL99] study an industrial case and found that three
coupling measures were associated with fault-proneness class.

• Development Effort: Briand et al. [BW01] investigate the impact that
structural properties (coupling was included) has on development effort for
a class. A graphical and interactive editor, LIOO implemented in C++ on
a Linux platform, developed at the University of Florence was study. They
found that simple size measures, predict most of the effort variance, and that
coupling and cohesion measures do not help to improve these predictions to
a degree that would be practically significant. However, Chidamber et al.
[CDK98] observed that higher values of the coupling and the cohesion mea-
sures in the CK suite were associated with reduced productivity and increased
rework/design effort.

• Quality Guidelines: Briand et al. describe in [BBD01] an investigation of
the use of quality design principles and their influence on the developer’ s
ability to understand and modify OO design documents. A set of quality de-
sign principles defined by Coad and Yourdon are studied, being the guidelines
of low coupling between classes one of the design principles analyzed. Their
results shown, with statistical significance, that adherence to good object-
oriented design principles provides practically significant benefits to object-
oriented design documents in terms of ease of understanding and modifiability.
In a replicated study of quality guidelines, Briand et al. [BWL01] provides
the following recommendation: A strong emphasis should be put on method
invocation, import-coupling since it has shown to be a strong, stable indi-
cator of fault proneness’. We also recommend that the following aspects be
measured separately since they capture distinct dimensions in our data sets:
import versus export-coupling, coupling to library classes versus application
classes, method invocation versus aggregation coupling. As far as cohesion is
concerned and measured today, it is very likely not a very good fault-proneness
indicator.

Similarly, to the results of Briand et al. [BWDP00] regarding fault-proneness,

3.2. COUPLING MEASUREMENT 83

N
a
m
e

S
o
u
rc
e

V
a
li
d
a
ti
o
n

B
ri
a
n
d
e
t
a
l.
F
ra
m
e
w
o
rk

C
ri
te
ri
a

T
h
e
o
.

E
m
p
.

co
n
n
e
ct
io
n

st
re
n
g
th

L
o
cu
s

D
ir
e
ct
io
n

In
h
e
ri
ta
n
ce

C
B
O

[C
K
9
4
]

y
es

y
es

M
a
,
M
iM

#
co
u
p
le
d
cl
a
ss
es

b
o
th

n
o

b
o
th

m
a
k
in
g
n
o
d
is
ti
n
ct
io
n

C
B
O
′

[C
K
9
1
]

y
es

y
es

M
a
,
M
iM

#
co
u
p
le
d
cl
a
ss
es

b
o
th

n
o

n
o
n
-i
n
h
er
it
a
n
ce

b
a
se
d

R
F
C
∞

[C
K
9
1
]

n
o

n
o

M
iM

#
m
et
h
o
d
s
in
v
o
k
ed

im
p
o
rt

d
ep

en
d
s

b
o
th

m
a
k
in
g
n
o
d
is
ti
n
ct
io
n

R
F
C

[C
K
9
4
]

y
es

y
es

M
iM

#
m
et
h
o
d
s
in
v
o
k
ed

im
p
o
rt

n
o

b
o
th

m
a
k
in
g
n
o
d
is
ti
n
ct
io
n

R
F
C
′

[C
K
9
4
]

y
es

n
o

M
iM

#
m
et
h
o
d
s
in
v
o
k
ed

im
p
o
rt

n
o

b
o
th

m
a
k
in
g
n
o
d
is
ti
n
ct
io
n

M
P
C

[L
C
9
4
]

n
o

y
es

M
iM

#
m
et
h
o
d
s
in
v
o
ca
ti
o
n
s

im
p
o
rt

y
es

b
o
th

m
a
k
in
g
n
o
d
is
ti
n
ct
io
n

D
A
C

[L
C
9
4
]

n
o

y
es

a
C

#
a
tt
ri
b
u
te
s

im
p
o
rt

n
o

b
o
th

m
a
k
in
g
n
o
d
is
ti
n
ct
io
n

D
A
C
′

[L
C
9
4
]

n
o

y
es

a
C

#
d
is
ti
n
ct

ty
p
es

im
p
o
rt

n
o

b
o
th

m
a
k
in
g
n
o
d
is
ti
n
ct
io
n

C
O
F

[e
A
G
E
9
5
]

n
o

n
o

a
C
,
M
a
,
M
iM

#
co
u
p
le
d
cl
a
ss
es

b
o
th

n
o

n
o
n
-i
n
h
er
it
a
n
ce

b
a
se
d

IC
P

[L
L
W

W
9
5
]

y
es

n
o

M
iM

#
m
et
h
o
d
in
v
o
ca
ti
o
n
s

im
p
o
rt

n
o

b
o
th

m
a
k
in
g
n
o
d
is
ti
n
ct
io
n

#
p
a
ra
m
et
er

p
a
ss
ed

IH
-I
C
P

[L
L
W

W
9
5
]

y
es

n
o

M
iM

#
m
et
h
o
d
in
v
o
ca
ti
o
n
s

im
p
o
rt

n
o

in
h
er
it
a
n
ce

b
a
se
d

#
p
a
ra
m
et
er

p
a
ss
ed

N
IH

-I
C
P

[L
L
W

W
9
5
]

y
es

n
o

M
iM

#
m
et
h
o
d
in
v
o
ca
ti
o
n
s

im
p
o
rt

n
o

n
o
n
-i
n
h
er
it
a
n
ce

b
a
se
d

#
p
a
ra
m
et
er

p
a
ss
ed

N
P
A
V
G

[L
K
9
4
]

y
es

n
o

�
#

p
a
ra
m
et
er
s

im
p
o
rt

n
o

in
h
er
it
a
n
ce

b
a
se
d

C
D
M

[B
S
9
8
]

y
es

y
es

C
C

im
p
o
rt

n
o

�
IF
C
A
IC

[B
D
M
9
7
]

y
es

y
es

a
C

#
a
tt
ri
b
u
te
s

im
p
o
rt

n
o

n
o
n
-i
n
h
er
it
a
n
ce

b
a
se
d

A
C
A
IC

[B
D
M
9
7
]

y
es

y
es

a
C

#
a
tt
ri
b
u
te
s

im
p
o
rt

n
o

in
h
er
it
a
n
ce

b
a
se
d

O
C
A
IC

[B
D
M
9
7
]

y
es

y
es

a
C

#
a
tt
ri
b
u
te
s

im
p
o
rt

n
o

n
o
n
-i
n
h
er
it
a
n
ce

b
a
se
d

F
C
A
E
C

[B
D
M
9
7
]

y
es

y
es

a
C

#
a
tt
ri
b
u
te
s

ex
p
o
rt

n
o

n
o
n
-i
n
h
er
it
a
n
ce

b
a
se
d

D
C
A
E
C

[B
D
M
9
7
]

y
es

y
es

a
C

#
a
tt
ri
b
u
te
s

ex
p
o
rt

n
o

in
h
er
it
a
n
ce

b
a
se
d

O
C
A
E
C

[B
D
M
9
7
]

y
es

y
es

a
C

#
a
tt
ri
b
u
te
s

ex
p
o
rt

n
o

n
o
n
-i
n
h
er
it
a
n
ce

b
a
se
d

IF
C
M
IC

[B
D
M
9
7
]

y
es

y
es

M
p
C

#
o
f
p
a
ra
m
et
er
s

im
p
o
rt

n
o

n
o
n
-i
n
h
er
it
a
n
ce

b
a
se
d

A
C
M
IC

[B
D
M
9
7
]

y
es

y
es

M
p
C

#
o
f
p
a
ra
m
et
er
s

im
p
o
rt

n
o

in
h
er
it
a
n
ce

b
a
se
d

O
C
M
IC

[B
D
M
9
7
]

y
es

y
es

M
p
C

#
o
f
p
a
ra
m
et
er
s

im
p
o
rt

n
o

n
o
n
-i
n
h
er
it
a
n
ce

b
a
se
d

F
C
M
E
C

[B
D
M
9
7
]

y
es

y
es

M
p
C

#
o
f
p
a
ra
m
et
er
s

ex
p
o
rt

n
o

n
o
n
-i
n
h
er
it
a
n
ce

b
a
se
d

D
C
M
E
C

[B
D
M
9
7
]

y
es

y
es

M
p
C

#
o
f
p
a
ra
m
et
er
s

ex
p
o
rt

n
o

in
h
er
it
a
n
ce

b
a
se
d

O
C
M
E
C

[B
D
M
9
7
]

y
es

y
es

M
p
C

#
o
f
p
a
ra
m
et
er
s

ex
p
o
rt

n
o

n
o
n
-i
n
h
er
it
a
n
ce

b
a
se
d

O
M
M
IC

[B
D
M
9
7
]

y
es

y
es

M
iM

#
m
et
h
o
d
in
v
o
ca
ti
o
n
s

im
p
o
rt

n
o

n
o
n
-i
n
h
er
it
a
n
ce

b
a
se
d

IF
M
M
IC

[B
D
M
9
7
]

y
es

y
es

M
iM

#
p
o
in
te
rs

p
a
ss
ed

im
p
o
rt

n
o

n
o
n
-i
n
h
er
it
a
n
ce

b
a
se
d

A
M
M
IC

[B
D
M
9
7
]

y
es

y
es

M
iM

to
a
m
et
h
o
d

im
p
o
rt

n
o

in
h
er
it
a
n
ce

b
a
se
d

O
M
M
E
C

[B
D
M
9
7
]

y
es

y
es

M
iM

ex
p
o
rt

n
o

n
o
n
-i
n
h
er
it
a
n
ce

b
a
se
d

F
M
M
E
C

[B
D
M
9
7
]

y
es

y
es

M
iM

ex
p
o
rt

n
o

n
o
n
-i
n
h
er
it
a
n
ce

b
a
se
d

D
M
M
E
C

[B
D
M
9
7
]

y
es

y
es

M
iM

ex
p
o
rt

n
o

in
h
er
it
a
n
ce

b
a
se
d

S
IM

A
S

[B
W

L
9
9
]

n
o

n
o

M
iM

#
m
et
h
o
d
in
v
o
ca
ti
o
n
s

im
p
o
rt

y
es

in
h
er
it
a
n
ce

b
a
se
d

P
IM

A
S

[B
W

L
9
9
]

n
o

n
o

M
iM

#
m
et
h
o
d
in
v
o
ca
ti
o
n
s

im
p
o
rt

y
es

in
h
er
it
a
n
ce

b
a
se
d

+
p
o
ly
m
o
rp
h
is
m

IN
A
G

[B
W

L
9
9
]

n
o

n
o

M
iM

#
a
g
g
re
g
a
ti
o
n
s
re
la
ti
o
n
sh
ip
s

im
p
o
rt

y
es

in
h
er
it
a
n
ce

b
a
se
d

T
ab

le
3.
8:

A
S
u
rv
ey

of
C
ou

p
li
n
g
M
ea
su
re
s.

84 CHAPTER 3. STATE OF THE ART

N
a
m
e

S
o
u
rce

V
a
lid

a
tio

n
B
ria

n
d
et

a
l.
F
ra
m
ew

o
rk

C
riteria

T
h
eo
.

E
m
p
.

ty
p
e
o
f
co
n
n
ec.

stren
g
th

L
o
cu

s
D
irectio

n
In
h
erita

n
ce

IC
A
IC

[D
J
03]

n
o

yes
aC

#
attrib

u
tes

im
p
ort

d
irect

in
h
eritan

ce
b
ased

N
IC

A
IC

[D
J
03]

n
o

yes
aC

#
attrib

u
tes

im
p
ort

d
irect

n
on

-in
h
eritan

ce
b
ased

IC
A
E
C

[D
J
03]

n
o

yes
aC

#
attrib

u
tes

ex
p
ort

d
irect

in
h
eritan

ce
b
ased

N
IC

A
E
C

[D
J
03]

n
o

yes
aC

#
attrib

u
tes

ex
p
ort

d
irect

n
on

-in
h
eritan

ce
b
ased

IC
M
IC

[D
J
03]

n
o

yes
M
p
C

#
m
eth

o
d
s

im
p
ort

d
irect

in
h
eritan

ce
b
ased

N
IC

M
IC

[D
J
03]

n
o

yes
M
p
C

#
m
eth

o
d
s

im
p
ort

d
irect

n
on

-in
h
eritan

ce
b
ased

IC
M
E
C

[D
J
03]

n
o

yes
M
p
C

#
m
eth

o
d
s

ex
p
ort

d
irect

in
h
eritan

ce
b
ased

N
IC

M
E
C

[D
J
03]

n
o

yes
M
p
C

#
m
eth

o
d
s

ex
p
ort

d
irect

n
on

-in
h
eritan

ce
b
ased

IM
M
IC

[D
J
03]

n
o

yes
M
iM

#
m
eth

o
d
s
in
voked

im
p
ort

d
irect

in
h
eritan

ce
b
ased

N
IM

M
IC

[D
J
03]

n
o

yes
M
iM

#
m
eth

o
d
s
in
voked

im
p
ort

d
irect

n
on

-in
h
eritan

ce
b
ased

IM
M
E
C

[D
J
03]

n
o

yes
M
iM

#
m
eth

o
d
s
in
voked

ex
p
ort

d
irect

in
h
eritan

ce
b
ased

N
IM

M
E
C

[D
J
03]

n
o

yes
M
iM

#
m
eth

o
d
s
in
voked

ex
p
ort

d
irect

n
on

-in
h
eritan

ce
b
ased

IIC
[D

J
03]

n
o

yes
aC

+
M
p
C

+
M
iM

R
im

p
ort

d
irect

in
h
eritan

ce
b
ased

N
IIC

[D
J
03]

n
o

yes
aC

+
M
p
C

+
M
iM

R
im

p
ort

d
irect

n
on

-in
h
eritan

ce
b
ased

IE
C

[D
J
03]

n
o

yes
aC

+
M
p
C

+
M
iM

R
ex
p
ort

d
irect

in
h
eritan

ce
b
ased

N
IE

C
[D

J
03]

n
o

yes
aC

+
M
p
C

+
M
iM

R
ex
p
ort

d
irect

n
on

-in
h
eritan

ce
b
ased

T
IIC

[D
J
03]

n
o

yes
aC

+
M
p
C

+
M
iM

R
im

p
ort

in
d
irect

in
h
eritan

ce
b
ased

T
N
IIC

[D
J
03]

n
o

yes
aC

+
M
p
C

+
M
iM

R
im

p
ort

in
d
irect

n
on

-in
h
eritan

ce
b
ased

T
IE

C
[D

J
03]

n
o

yes
aC

+
M
p
C

+
M
iM

R
ex
p
ort

in
d
irect

in
h
eritan

ce
b
ased

T
N
IE

C
[D

J
03]

n
o

yes
aC

+
M
p
C

+
M
iM

R
ex
p
ort

in
d
irect

n
on

-in
h
eritan

ce
b
ased

D
T
IIC

[D
J
03]

n
o

yes
C
C

#
cou

p
led

classes
im

p
ort

d
irect

in
h
eritan

ce
b
ased

D
T
N
IIC

[D
J
03]

n
o

yes
C
C

#
cou

p
led

classes
im

p
ort

d
irect

n
on

-in
h
eritan

ce
b
ased

D
T
IE

C
[D

J
03]

n
o

yes
C
C

#
cou

p
led

classes
ex
p
ort

d
irect

in
h
eritan

ce
b
ased

D
T
N
IE

C
[D

J
03]

n
o

yes
C
C

#
cou

p
led

classes
ex
p
ort

d
irect

n
on

-in
h
eritan

ce
b
ased

ID
T
IIC

[D
J
03]

n
o

yes
C
C

#
cou

p
led

classes
im

p
ort

in
d
irect

in
h
eritan

ce
b
ased

ID
T
N
IIC

[D
J
03]

n
o

yes
C
C

#
cou

p
led

classes
im

p
ort

in
d
irect

n
on

-in
h
eritan

ce
b
ased

ID
T
IE

C
[D

J
03]

n
o

yes
C
C

#
cou

p
led

classes
ex
p
ort

in
d
irect

in
h
eritan

ce
b
ased

ID
T
N
IE

C
[D

J
03]

n
o

yes
C
C

#
cou

p
led

classes
ex
p
ort

in
d
irect

n
on

-in
h
eritan

ce
b
ased

T
ab

le
3.9:

A
S
u
rvey

of
C
ou

p
lin

g
M
easu

res.

3.3. MEASURES FOR UML MODELS 85

Binkley and Schach [BS98] found that the coupling measure was associated with
maintenance changes made in classes due to field failures. Their investigation was
based in several coupling measures (including CBO) and the NOC measure of the
CK suite in two university software applications. Likewise, Basili et al. [4] and
Tang et al. [TKC99] found that several of the CK coupling measures were positively
associated with fault-proneness of classes.

Harrison et al. [HCN98a] study the CBO measure and compared with an alternative
OO design measure called NAS, which measures the Number of Associations between
a class and its peers. Results from all systems studied indicate a strong relationship
between CBO and NAS, suggesting that they are not orthogonal. Their hypotheses
that coupling would be related to understandability, the number of errors and error
density, was rejected because they did not found any relationships of the systems
between class understandability and coupling.

Dagpinar et al. [DJ03] in order to validate their measures (see table 3.9) conducted
an empirical study based on historical data collected from the maintenance history
of a medium-sized object-oriented system over a period of three years.

Their results indicate that size and import direct coupling measures are significant
predictors for measuring maintainability of classes while inheritance, cohesion, and
indirect/export coupling measures are not. These results are quite similar to the
one obtained by Briand et al. when they study the influences of measures in quality
guidelines.

Subramanyam et al. [SK03] provides empirical evidence supporting the role of OO
design complexity measures, specifically a subset of the Chidamber et al. suite, in
determining software defects. The analysed measures were WMC, CBO and DIT.
They argue that further analyses to understand potential language specific differ-
ences are needed. They validate the aforementioned measures across two programing
languages, C++ and Java, and found that the language might play a role in the
relationship between OO design measures and defects, due to defects were found to
differ in the two languages employed.

3.3 Measures for UML Models

The main goal of this section is to introduce the main proposals of measures that
can be applied for measuring quality characteristics of UML structural diagrams
(class diagrams) and and UML behavioral diagrams (use case diagrams, statechart
diagrams).

This section is organized thus: subsections 3.3.1 to 3.3.3 outline the different pro-
posals of measures for UML diagrams: use cases diagrams, class diagrams and
statechart diagrams, respectively. Finally, last subsection presents some concluding

86 CHAPTER 3. STATE OF THE ART

P
u
b
lica

tio
n

S
y
stem

a
n
a
ly
sed

D
ep

en
d
en
t
V
a
ria

b
le

In
d
ep

en
d
en
t
V
a
ria

b
le

L
i
a
n
d
H
en

ry

[L
H
9
3
]

tw
o

m
ed

iu
m
-sized

,
com

m
ercial

soft-
w
are

sy
stem

s
M
ain

ten
an

ce
eff

ort
(n
u
m
b
er

of
lin

es
ch
an

ged
over

a
p
erio

d
of

th
ree

years)
C
h
id
am

b
er

an
d

K
em

erers
m
easu

res
su
ite

[C
K
91]

+
M
P
C
,
D
A
C

an
d

tw
o

size
m
easu

res
(S
IZ
E
1,

S
IZ
E
2)

L
i

et
a
l.

[L
H
K
S
9
5
]

C
h
id
am

b
er

an
d

K
em

erers
m
easu

res
su
ite

[C
K
91]

+
M
P
C

B
ria

n
d

et
a
l.

[B
W

0
1
]

a
grap

h
ical

an
d
in
teractive

ed
itor

for
m
u
sic

scores
D
evelop

m
en
t
E
ff
ort

m
easu

res
su
ite

d
efi

n
ed

in
[B
D
M
97]

B
in
k
ley

a
n
d

S
ch
a
ch

[B
S
9
8
]

F
ou

r
sy
stem

s
w
ere

d
evelop

ed
(tw

o
of

th
em

u
sin

g
O
O

m
eth

o
d
s)

M
ain

ten
an

ce
co
d
e
ch
an

ge
C
lass

cou
p
lin

g

B
asili

et
al.

[B
B
M
96]

eigh
t
sm

all
softw

are
sy
stem

s,
d
evel-

op
ed

in
a
stu

d
en
ts

p
ro
ject

F
au

lt-p
ron

en
ess

(p
rob

ab
ility

of
d
e-

tectin
g
a
fau

lt
in

a
class)

C
h
id
am

b
er

an
d

K
em

erers
m
easu

res
su
ite

[C
K
94]

B
ria

n
d

et
a
l.

[B
D
M
9
7
],

[B
W

D
P
0
0
]

m
easu

res
su
ite

d
efi

n
ed

in
[B
D
M
97]

T
a
n
g

et
a
l.

[T
K
C
9
9
]

T
h
ree

real
tim

e
sy
stem

s
w
ere

an
aly

zed
for

testin
g
an

d
m
ain

ten
an

ce
d
efects.

F
au

lt-p
ron

en
ess

W
N
C

an
d
R
F
C

m
easu

res

B
ria

n
d

et
a
l.

[B
W

L
9
9
]

A
n
op

en
m
u
lti-agen

t
sy
stem

d
evelop

-
m
en
t
en
v
iron

m
en
t

Im
p
act

A
n
aly

sis
m
easu

res
su
ite

d
efi

n
ed

in
[B
D
M
97]

B
ria

n
d

et

a
l.

[B
B
D
0
1
],

[B
W

L
0
1
]

Q
u
ality

G
u
id
elin

es
on

th
e
M
ain

tain
-

ab
ility

m
easu

res
su
ite

d
efi

n
ed

in
[B
D
M
97]

an
d
oth

ers
m
easu

res

H
a
rriso

n
et

a
l.

[H
C
N
9
8
a
]

fi
ve

sy
stem

s
w
ritten

in
C
+
+

u
n
d
erstan

d
ab

ility,
th
e
n
u
m
b
er

of
er-

rors
an

d
error

d
en
sity

C
B
O

an
d
N
A
S
m
easu

res

D
a
g
p
in
a
r

et

a
l.

[D
J
0
3
]

tw
o

J
ava

sy
stem

s
d
evelop

ed
at

th
e

U
n
iversity

of
P
ad

erb
orn

,
G
erm

an
y

m
ain

tain
ab

ility
of

softw
are

m
easu

res
of

tab
le

3.7

S
u
b
ra
m
a
n
y
a
m

et
a
l.

[S
K
0
3
]

softw
are

d
evelop

ed
in

tw
o
lan

gu
ages,

C
+
+

an
d
J
ava

S
oftw

are
d
efects

C
B
O

an
d
tw

o
oth

er
m
easu

res
of

C
h
i-

d
am

b
er

et
al.

[C
K
94]

T
ab

le
3.10:

O
verv

iew
of

E
m
p
irical

V
alid

ation
S
tu
d
ies

for
C
ou

p
lin

g
M
easu

res

3.3. MEASURES FOR UML MODELS 87

remarks highlighting emerging trends in the area of measures for UML models.

3.3.1 Measures for UML Use Case Diagrams

Jacobson introduced in 1992 [JCJO92] the concept of ”use cases” as primary ele-
ments in software development , and a a diagram for visualizing them [FS00]. The
use case diagram has been adopted by the UML. A use case diagram shows the
relationship among use cases within a system or other semantic external entities
[OMG03c]. The main constituents of a use case diagrams are modelled in UML
through the following model elements: actors, use cases, use case relationships (as-
sociation, includes, extend, and generalization).

Table 3.11: Use Case Proposal for Project Management
structural property quality focus

Authors a
ct
o
rs

u
se

ca
se
s

u
se

ca
se

p
o
in
ts

u
se

ca
se

co
m
p
le
x
it
y
a
n
d
si
ze

ty
p
e
o
f
u
se

ca
se

in
cl
u
d
e
a
n
d
ex
te
n
d
re
l.

a
ss
o
ci
a
ti
o
n
re
l.

S
y
st
em

C
o
m
p
le
x
it
y

D
ev
el
o
p
m
en
t
eff

o
rt

S
y
st
em

si
ze

M
a
in
ta
in
a
b
il
it
y

P
re
d
ic
ti
o
n
eq
u
at
io
n

T
o
o
l
S
u
p
p
or
t

Karner [Kar93] X X X
Marchesi [Mar98] X X X X
Schneider et al.
[SW98]

X X X X Sparx
System

Smith [Smi99] X X X
Feldt [Fel00] X X X
Software Solu-
tions on Time
[oT01]

X X X measure
Data

Henderson Sellers
et al. [HSZKP02]

X X X

In et al. [IKB03] X X X X OSMAT
Carbone et al.
[CS02]

X Fast
and
Serious

But, UML only focus on the diagrammatic notation of use cases. As commented
by some several authors use case diagrams must be understood only as a table of
contents of use cases, not as an alternative of their textual specification. In use case
diagrams, only the name of the use cases, the participating actors and some use case
relationships are shown. The essence of use cases, i.e. their sequence of actor-system
interactions, can not be in anyway derived from use case diagrams. Therefore, it is
necessary to complement use case diagrams with use cases textual specification.

Use Case diagram have been found well suited as a basis for the estimation and

88 CHAPTER 3. STATE OF THE ART

planning of projects, specially many works are centered around software develop-
ment effort. Use cases are also popular and widely used technique for capturing
and describing the functional requirements of a software system [ADSJ01]. These
estimations are based on attributes (the model elements) of a use case diagram
[ADSJ01].

There are few proposals of specific measures for Use Case Diagrams, such as [Mar98]
and [Sae03]. There are also some others which are specifically used for use cases,
among others [Fel00], [HSZKP02], [BDG04]. Although a thorough study of measures
for use cases can be found in [GPE05], we present in this section two tables which
summarize a comparison of use case measures applied with two different purpose.
Table 3.11 shows the proposal applied to project management, meanwhile 3.12 shows
those related to improve Requirements Engineering Process.

Table 3.12: Use Case Proposal for Improving Requirements Engineering Process
Author structural properties quality focus Prediction

Equation
Tool sup-
port

Alexander
[Ale01]

Number of use cases, number
of actors, number of use cases
without exceptions, etc

Status of requirements and
potential problems

No DOORS

Kim et al.
[KB02]

Number of actors, number of
messages in the interaction di-
agram associated with the use
case, number of system classes
associated with the use case

Importance of the require-
ment, impact caused by
change a requirement

No No

Saeki [Sae03] Number of relationships and
dependencies between use
cases

Modifiability No No

Bernardez et
al. [BDG04]

Number of steps of use case
steps, rate of each type of step
and cyclomatic complexity

Fault-proneness No Yes (REM)

As we intend to show the existing measures for use case diagrams, next we will
outline the measures brought forward by Marchesi [Mar98] and Saeki [Sae03].

Marchesi [Mar98] proposed a set of measures for Use case diagrams complexity.
He commented that the number of use cases (NCU), the number of actors (Na)
and the number of include and extend relationships are good indicators of system
complexity.

In [Sae03] a set of measures for use cases diagrams are defined to obtain the rate
of modifiability. The basic idea of the defined measures is that if a use case needs a
change, probably other use cases will also need a change: those that have a relation-
ship with the originally changed use case. In short, include and extend relationships
and control and data dependency relationships are considered. The intuition sug-
gests that, the more existing relationships in the model, the more difficult it will be
to make any change.

The type of use case is another factor that has influence in the modifiability of use

3.3. MEASURES FOR UML MODELS 89

cases. Simplifying the idea, if a use case has several goals (types to Saeki), it is
more susceptible of changing than if it only has one goal. In order to approximate
the modifiability, the defined measures are (Number of Dependencies) and (Number
of Use Case Types). The goal achieved by the author was to find an indicator rate
(0 ≤ Modifiability ≤ 1) that would reveal the modifiability degree of a use cases
model.

In our knowledge there is no evidence on the theoretical and empirical validation
of these two proposals. Moreover, there is no automatic support for the measures
calculation.

Only the measures defined by Karner [Kar93] were validated by Anda et al. [ADSJ01].

3.3.2 Measures for UML Class Diagrams

The main idea of this section is to show a summary of the most relevant existing
proposals of measures that can be applied to UML class diagrams at conceptual
level, looking at their strengths and weaknesses. Most of the measure proposals
we will consider and list below were not originally defined to measure UML class
diagrams, nevertheless they can be tailored for this purpose.

A class diagram has become truly central within OO methods [FS00]. It is widely
used and their basic model elements are needed and familiar by everyone [FS00].
A class diagram mainly show the attributes and operations of classes and the con-
straints that apply to the way objects are connected. These constraints are mainly
represented by graphical relationships between classes, that is, aggregation, instan-
tiation, association and inheritance relationships.

Table 3.13: CK Measures
measure name measure Definition

WMC The Weighted Methods per Class is defined as follows:

WMC =
n
∑

i=1

ci (3.1)

Where c1, ..., cn be the complexity of the methods of a class with meth-
ods M1, ...,Mn. If all method complexities are considered to be unity,
the WMC = n, the number of methods.

DIT The Depth of Inheritance of a class is the DIT measure for a class.
In cases involving multiple inheritance, the DIT will be the maximum
length from the node to the root of the tree.

NOC The Number of Children is the number of immediate subclasses subor-
dinated to a class in the class hierarchy.

90 CHAPTER 3. STATE OF THE ART

• Chidamber and Kemerer´s [CK94] measures. These measures, also called CK
measures, were defined at class level and their purpose is to measure design
complexity in relation to their impact on external quality attributes such as
maintainability, reusability, etc. This proposal is among the ones widely spread
and used. Only three of the six CK measures are available for a UML class
diagram at conceptual level (see table 3.13).

• Li and Henry´s [LH93] measures. These measures measure different internal
attributes such as coupling, complexity and size, and are successfully used to
predict maintenance effort. They were defined at class level.

• Brito e Abreu and Carapua´s [eAC94] measures. They were defined to measure
the use of OO design mechanisms such as inheritance, information hiding,
coupling and polymorphism and the consequent relationship with software
quality and development productivity. They can be applied at class diagram
level.

• Lorenz and Kidd´s [LK94] measures. They were defined at class level to
measure the static characteristics of software design, such as the usage of
inheritance, the amount of responsibilities in a class, etc.

• Briand et al.´s [BDM97] measures. These measures are defined at class level,
and are counts of interactions between classes. Their aim is the measurement
of the coupling between classes.

• Marchesi´s [Mar98] measures. The aim of these measures is the measurement
of system complexity, of balancing responsibilities among packages and classes,
and of cohesion and coupling between system entities.

• Harrison et al.´s [HCN98a] measures. They have proposed the measure Num-
ber of Associations per class as an inter-class coupling measure.

• Genero et al. [GPE05], [GPC00] have defined and validated a set of mea-
sures for structural complexity of UML class diagrams due to the use of UML
relationships, such as: associations, generalizations, dependencies and aggre-
gations (see Table 3.14).

• Bansiya et al.´s [BD02], [BEDL99] measures. These measures were defined
at class level for assessing design properties such as encapsulation, coupling,
cohesion, composition and inheritance.

• In et al. [IKB03] uses measure tree to help a project manager early in the
development lifecycle. He inputs UML diagrams to output some key indica-
tors [YWG04]. The output indicators are respective total number of class,

3.3. MEASURES FOR UML MODELS 91

inheritance relationships, use relationships, association relationships, roles, op-
eration, parameters, and attributes.

• Zhou [Zho03] propose a measure which only uses one indicator, namely entropy
distance based structure complexity measure, to evaluate the complexity of
class diagrams. The measure defines weights for various relationships respec-
tively. Then it gives some rules to transform a class diagram into a weighted
class dependence graph. The structure complexity of a class diagram is de-
fined as the entropy distance of the corresponding weighted class dependence
graph.

• Kang [Kan04] defines a structure complexity measure for the UML class dia-
grams based on entropy distance. It considers complexity of both classes and
relationships between the classes, and presents rules for transforming com-
plexity value of classes and different kinds of relations into a weighted class
dependence graphs. This method can measure the structure complexity of
class diagrams objectively.

Table 3.14: Measures for the Structural Complexity of UML Class Diagrams
Measure Name Definition

NAssoc The total Number of Associations.
NAgg The total Number of Aggregation relationships within a class diagram

(each whole-part pair in an aggregation relationship).
NDep The total Number of Dependency relationships.
NGen The total Number of generalization relationships within a class diagram

(each parent-child pair in a generalization relationship).
NAggH The total Number of Aggregation Hierarchies (whole-part structures)

within a class diagram.
NGenH The total Number of Generalization Hierarchies within a class diagram.
MaxDIT It is the Maximum of the DIT (Depth of Inheritance Tree) values ob-

tained for each class of the class diagram. The DIT value for a class
within a generalization hierarchy is the longest path from the class to
the root of the hierarchy.

MaxHAgg It is the maximum of the HAgg values obtained for each class of the class
diagram. The HAgg value for a class within an aggregation hierarchy is
the longest path from the class to the leaves.

Table 3.15 reflects if there exist published studies related to the theoretical and the
empirical validation of the proposals of measures previously mentioned. Moreover
the last column indicates if there exist tool for the automatic calculation of the
measures.

92 CHAPTER 3. STATE OF THE ART

Table 3.15: Summary of Proposals of Measures for UML Class Diagrams
Validation

Empirical Theoretical
Source Experiments Case Studies Property-

Based Ap-
proaches

Measurement
Theory Based
Approaches

Tool

Chidamber
and Kemerer
[CK94]

Chidamber and Ke-
merer [CK94], Basili
et al. [BBM96], Daly
et al. [DBM+96],
Cartwright [Car98],
Unger and Prechelt
[UPP98], Harrison et
al. [HCN00], Poels
and Dedene [PD01],
Briand et al. [BBD01],
Bandi et al. [BVT03],
Subramanyam et al.
[SK03]

[LH93], Chi-
damber et al.
[CDK98], Tang
et al. [TKC99],
Briand et
al. [BWL01],
[BWDP00].

Briand et al.
[BMB96], Chi-
damber et al.
[CK94]

Zuse [Zus97],
Poels et al.
[Poe99]

YES

Li and Henry
[LH93]

Li and Henry
[LH93]

[HCN98a]

Brito e Abreu
and Carapua
[eAC94]

Brito e
Abreu et al.
[eAGE95],
[eAM96],
[eAEG96],
Harrison et al.
[HCN98b]

Harrison et al.
[HCN98a]

YES

Lorenz and
Kidd [LK94]

[LK94]

Briand et al.
[BDM97]

Briand et
al. [BWL01],
[BWDP00]
, El-Emman
[EBGR99],
Galsberg et al.
[GEMM00]

[BDW98a]

Marchesi
[Mar98]

[Mar98]

Harrison et al.
[HCN98a]

[HCN98a]

Bansiya et
al. [BD02],
[BEDL99]

[BD02],
[BEDL99]

YES

Genero et
al. [GPE05],
[GPC00]

[GPE05], [GPC00] [GPE05],
[GPC00]

[GPE05],
[GPC00]

[GPE05],
[GPC00]

In et al.
[IKB03]

[YWG04]

Zho [Zho03] [Zho03]
Kang [Kan04] [Mar98]

3.3. MEASURES FOR UML MODELS 93

3.3.3 Measures for UML Statecharts Diagrams

Statechart diagrams (std) describe all of the possible states that a particular object
can get into and how the object´s state changes as a result of events that reach the
object [FS00]. This kind of diagrams along with others shows the behaviour of a
system. The statechart diagram indicates the various states of an order, being the
state connected by transition labeled with three parts, all of which are optional:
Event [Guard] / Action.

measures for UML statechart diagrams are scanty. Derr [Der95] defined the number
of states (NS) and the number of transitions (NT) as measures that measure the
OMT statechart diagrams complexity (although they can also be applied to UML).

Carbone and Santucci [CS02] have proposed two measures: numSta(std), which
stands for the total number of states for a class, and the total number of actions
for a class (ie. entry and exit actions associated with a state) as numAction(std) .
These measures are used along with others for classes diagrams, use case diagrams,
etc. in order to determine the total complexity of an OO system.

Nevertheless, both Carbone and Santucci´s and Derr´s proposals have not gone
beyond the definition.

We think that Miranda et al.´s [MGP03] and Cruz-Lemus´s [CLGO+04], [CLGO+05],
[CLGPM06] work is the most complete one. With the hypothesis that the size and
the structural complexity of UML statechart diagrams may influence their under-
standability (and therefore their maintainability), they defined a set of measures for
the structural complexity and size of UML statechart diagrams.

As size measures they defined:

• NEntryA. The total Number of Entry Actions, i.e. the actions performed each
time a state is entered)

• NExitA. The total number of Exit Actions, i.e. the actions performed each
time a state is left.

• NA. The total Number of Activities (do/activity).

• NSS. The total Number of States considering also the Simple states within the
composites states

• NCS. The total Number of Composite States

• NE. The total Number of Events.

• NG. The total Numbers of Guard conditions.

As structural complexity measures they defined:

94 CHAPTER 3. STATE OF THE ART

• NT (Number of transitions). Counts the total number of transitions, consid-
ering common transitions (source and target states are different), and final
transitions, self-transitions (source and target states are the same) and inter-
nal transitions (transitions inside a state that respond to an event but without
leaving the state).

• CC (Cyclomatic Number of McCabe) [24] . It is defined as |NSS-NT|+2

The theoretical validity of the measures proposed by Miranda et al. [MGP03],
[CLGP05] was demonstrated through the validation following Briand et al. s frame-
work [BMB96], [BMB97], concluding that NA, NSS, NCS, NE, NEntryA, NExitA
and NG are size measures; and NT and CC are complexity. Moreover, the use of
DISTANCE framework [PD99] guarantees that the measures can be used as ratio
scale measurement instruments.

In [CLGO+05], [CLGO+04] Cruz-Lemus et al. concludes that the measures that
measure size (number of activities, number of simple states and number of guards)
and structural complexity (number of transitions) in an UML statechart diagram
are highly correlated with understandability efficiency. This means that the UML
constructs that seem to have more impact on the subjects’ understanding of UML
statechart diagrams are simple states, guards, activities and transitions.

In previous works [CLGO+05] the authors studied the relationship between many
of the constructs of the UML statechart diagrams and the effect that they have on
the understandability of the diagrams. The authors had found that the effect of the
composite states on the understandability of the UML statechart diagrams was not
clear. So they designed and performed a controlled experiment and a replication in
order to evaluate this effect. The results obtained show that the use of composite
states improves the understandability efficiency of UML statechart diagrams if the
subjects have a certain level of experience in working with this kind of UML diagrams
[CLGPT05]. They conclude that using composite states when modeling the behavior
of systems through UML statechart diagrams makes them more understandable.

Table 3.16 summarize the three measures proposal for UML statechart diagrams
referring the elements they focus on.

3.3.4 Conclusions about Measures for UML models

The main purpose of this paper is to provide a survey of the most important work
available on measures for quality attributes of UML diagrams. It aims to provide
practitioners with an overall view of what has been done in the field and what
measures are available to help them to take decisions in the early phases of OO
development. This work should also help researchers obtain a more comprehensive
view of the direction that work in UML model measurement is taking. Further

3.3. MEASURES FOR UML MODELS 95

Table 3.16: Summary of Measures for Statechart Diagrams

std concepts Derr
[Der95]

Carbone et
al. [CS02]

Miranda
et al.
[MGP03]

state simples NS numSta NSS, CC *
composite NCS

action entry numAction NEntryA
exit NExitA

activity NA
event NE
guard NG

transition NT NT, CC *
* The measure CC is derived from two different measures

details of some of the proposals presented in this paper can be found either in the
bibliographical references where the measures were originally proposed.

As this study shows, UML class diagrams have been the subject of the most exten-
sive research from the measurement point of view in the models field. Measures for
UML use case diagrams and UML statechart diagrams have been proposed and, to
a lesser extent, validated. Other UML models covering dynamic aspects of OO sys-
tems, such as sequence diagrams, activity diagrams, etc., have been largely ignored.
Although the number of measures that have been proposed for UML diagrams at
conceptual level is low compared to the large number defined for code or advanced
design, we believe a shift in effort is required, from defining new measures to inves-
tigating their properties and applications in replicated studies. We need to have a
better understanding of what measures are really capturing, whether they are really
different, and whether they are useful indicators of external quality attributes such
as maintainability, productivity, etc. The need for new measurements will then arise
from, and be driven by, the results of such studies.

In this area designers also ask for desirable values for each measure. However, we
must be aware that the hard part is to associate the qualifications good and bad to
numeric ranges. This makes measures all the more useful for OO system designers,
to help them make better decisions in their design tasks, which is ultimately the
most important goal of any worthwhile measurement proposal. As a final remark
we would conclude by saying that clearly the field of quality measures for UML
models needs to mature. We believe that further empirical validation is necessary,
in particular by applying measures to models obtained from real projects, in order
to build up a solid body of knowledge about the usefulness of measures in practical
situations.

96 CHAPTER 3. STATE OF THE ART

3.4 Contribution to the Dissertation

In this chapter we provide an introduction to OCL language and we describe the
different utilities of OCL, in Model-Driven development, model transformations and
in several stages at the Meta-Object Facility (MOF) metamodel. In this chapter we
also provide a clear picture of the state-of-the-art about measures for UML models
(see section 3.3). Likewise, we provide a survey of coupling measures, in order to
take into account the most important framework used for coupling measurement (see
section 3.2), the different coupling measures defined in the literature (see section
3.2.2), and their empirical validation (see section 3.2.2.1). From the last criterion
we are agree with El Eman et al. [Ema02] when they argue that the most promising
results with OO measures were obtained using coupling measures.

These relevant empirical studies suggests that there are important relationships be-
tween coupling and several external quality indicators. We show that exists proved
evidence that some forms of coupling have an impact on understandability, main-
tenance effort, fault proneness, impact analysis and quality guidelines. However,
there is no evidence of the influence of coupling on the maintainability of OCL ex-
pressions, this motivated to propose a set of measures for assessing coupling of OCL
expressions (see chapter 4) and later on validate them as maintainability indicators
(see chapter 7 and 8).

Chapter 4

A Proposal of Measures

In this chapter we will present the measures we propose for OCL expressions within
UML models. We structured the presentation of this chapter into two sections, the
first section deals with the Identification activity and the second one describes the
Definition subactivity of the Creation activity. We only present the Definition in
Natural Language, the formal definition is described in chapter 5. Each section
corresponds to the sequence of activities depicted in Fig. 2.2 and Fig. 2.4(b),
respectively. Whenever an activity of the method is applied, the corresponding
section is titled accordingly and a reference to the number of the method’s activity
is included between parenthesis.

4.1 Identification (M1)

For identifying the measures we will follow the steps detailed in the UML activity
diagram shown in Figure 2.2.

4.1.1 Select the Entity of Study (I1)

The measuring activities will be focused on a new kind of software artifact: the OCL
expression. Nevertheless, we must recall that these artifacts are the primary ele-
ments that modelers use as textual add-on to UML models. Although an expression
is attached to a particular contextual type, its meaning involves objects (mentioned
inside its definition) which are usually instances from different classes. The different
classes mentioned in an OCL expression constitute the scope of the OCL expression.
So, although our focus is on OCL expression, we can not study this artifact in an
isolated way. Its context and its scope are intrinsically involved.

98 CHAPTER 4. MEASURE PROPOSAL

4.1.2 Determine the Quality Focus (I2)

The ISO/IEC 9126 [ISO01] defines software quality as composed of six external char-
acteristics of interest, namely: functionality, reliability, efficiency, usability, main-
tainability and portability. In turn, each of these quality characteristics is refined
into sub-characteristics.

Maintainability is a particularly interesting quality attribute due to the fact it has
been recognized that software maintenance activities account for the largest cost in
today’s software development [DJ03]. The IEEE Standard Glossary of Software En-
gineering defines maintainability as ’the ease with which a software system or com-
ponent can be modified to correct faults, improve performance or other attributes,
or adapt to a changed environment’.

In this Ph. D. thesis the quality attribute OCL expression’ maintainability has been
chosen as the prime attribute of interest. Maintainability has been and continues to
be an expensive and challenging task, and it is often poorly managed. One reason for
poor management is the lack of proven measures for software maintainability. Our
study about the OCL expression maintainability will help the modelers to improve
the quality of models, and this is a major goal in software development using MDA
[GJG04], due to the fact models are used to drive the entire software development
process.

To our knowledge, not all the maintainability sub-characteristics proposed in that
standard are suitable for OCL expressions. We used two sub-characteristics:

• Understandability (comprehensibility): The capability of the OCL expression
to be understood by modelers1. Understandability is a sub-characteristic of
Usability.

• Modifiability that includes two sub-characteristics of maintainability of the
ISO 9126 standard for software quality [ISO01]:

� Analyzability: The capability of the OCL expressions to be diagnosed for
deficiencies or for the identification of the parts to be modified.

� Changeability: The capability of the OCL expressions to be changed
when modifications are required.

1Even though understandability has not been considered as a maintainability subcharacteris-
tic by ISO 9126 [ISO01], we included it because there exists a lot of work related to software
measurement that considers understandability as a factor that influences maintainability [FP98],
[HCN00]

4.1. IDENTIFICATION (M1) 99

Table 4.1: Goal of OCL Expression Measures

Object of study: OCL expression

Purpose: Evaluation

Quality focus: Maintainability

Viewpoint: OO software modelers

Environment: OO software organizations

4.1.3 State the Goal (I3)

We used the template provided by the QGM paradigm in order to define our mea-
surement goal, which is shown in Table 4.1. The GQM-goal is: Analyse OCL
expressions with the purpose of evaluating maintainability from the viewpoint of the
OO software modelers in OO software organizations. The object or study and the
quality focus were described in the last two subsection. The purpose is evaluation,
i.e. ’judge the value of’.

4.1.4 Determine the Structural Properties to be Studied
(I4)

External quality attributes as maintainability subcharacteristics can only be mea-
sured late in the IS life cycle. We therefore need to identify early quality indicators
based, for example, on the structural properties of OCL expressions. Thus, our
purpose is to define measures to quantify OCL expressions structural properties
and afterwards to ascertain how each of these measures are related to each of the
maintainability sub-characteristics.

We focus on the degree to which the elements in a design are connected, i.e. on
coupling structural property. Coupling is generally recognized as being among the
most likely quantifiable indicator for software maintainability [BDV04]. In fact, if
one intends to build quality OO models, coupling will very likely be an important
structural dimension to consider [BWSL99].

However, coupling as we presented in chapter 3 is a concept that has many dimen-
sions. We will focus on the degree to which the OCL expression has knowledge of,
uses, or depends on other design elements [BDW99], i.e. on import-coupling. We
focus on import-coupling due to:

• The inner nature of OCL expressions: These artifacts are textual add-on
to UML models, within an expression we can refer to UML artifacts but not the
other way around. OCL expressions are toughly coupled to UML diagrams,

100 CHAPTER 4. MEASURE PROPOSAL

importing artifacts to express a constraint, query, pre- or post-condition, etc.

• Empirical findings: We are also interested in the import-coupling, because
it has shown to be a strong, stable indicator of fault proneness of classes
[BWSL99], and fault-proneness result in low maintainability [BDW99]. Similar
results about import-coupling were obtained as an indicator of development
effort [BW01], [BWDP00], [BWL01], where export-coupling measures show a
much weaker impact than import-coupling. High import-coupling can have
the following effects:

� Decreased maintainability: changes to the supplier may need follow-
up changes (ripple effects) to the client. The stability of the supplier is a
factor to consider here. High coupling to elements that are not likely to
change is less harmful than coupling to variation points.

� Decreased understandability, increased fault-proneness: elements
with high import-coupling operate in large context, developers need to
know all the services the element relies on, and how to use them.

� Decreased reusability: To reuse a class or package with high import-
coupling in a new context, all the required services must also be made
available in the new context.

A clear identification of the abstraction we used to measure OCL expression coupling
is deferred to the next section. In the following we continue explaining the several
aspects related to the structural properties of the software artifact we studied.

We are aware that size was studied as a confounding factor for many coupling
measures [EBGR01]. El-Eman et al. [EBGR01] had demonstrated a strong size
confounding effect of class size in validation studies of object-oriented measures and
cast doubt on the results of previous empirical validation. In [Ema01] El Eman
recommends to use coupling measures along with size measures in fault-proneness
prediction. So, size structural properties should be carefully considered during the
study of coupling measures. We decided to define some size measures to control that
size would not bias our findings during experimentation.

As far as cohesion is concerned and measured today, it is very likely not a very good
maintainability indicator, such as in fault-proneness [BWSL99]. Nevertheless, we
think that a study of cohesion measures in OCL expression maintainability should
be done, and this is a future research direction we are interested in. However, in
a recent research work Darcy et al. [DS05] argue and prove that when designing
and maintaining software to control complexity, both coupling and cohesion should
be considered jointly, instead of independently. We believe that this result does
not affect our GQM goal due to the fact we are studying OCL expression’s import-
coupling, that is the dependence of an OCL expression on other software parts.

4.1. IDENTIFICATION (M1) 101

Nevertheless, when the quality of a set of OCL expressions is being considered, for
instance to measure the quality of a class (or a method) within a UML/OCL model,
coupling and cohesion should be jointly considered.

4.1.5 Identifying Abstractions for Coupling (I5)

In order to identify abstraction for measuring coupling within OCL expression we
used as a basis the Briand et al. framework [BDW99] for coupling measurement.
However the application of this theory is not straightforward, due to the fact that
OCL concepts are not addressed in the framework (only the more typical OO arti-
facts are considered: attributes, methods, classes, etc.).

As Briand et al. argue there are many forms of coupling that can arise in systems
[BAC+99]. We believe that one important contribution of this thesis is to establish
a new form of coupling in OO systems.

When UML models are complemented by OCL expressions, within the expressions
it is possible to use different artifacts of UML models, and the OCL language defines
different concepts from which it is possible to define new OO connections.

Briand et al. framework is based on six criteria (defined in section 3.2) which are
applied to OCL expressions in the following:

1. Type of Connections: Connections are inherent to any coupling measure.
Usually in a connection two entities are involved. A client (or source) entity
specifies a connection to a destination entity (see Fig. 4.1 (a)). The coupling
connections we are interested in are connections between OCL expression and
any OO feature of an UML diagram. So, in our case the source entity will be
always an OCL expression, meanwhile the destination entity varies radically.
Table 4.2 describes the type of connections and the measures which capture
them. Although the source entity is an expression, its meaning depend on the
UML artifact to which the expression is attached 2.

2. Locus of impact: The coupling usually defines a client-supplier relationship
between the design elements. This criterion defines if we focus on defining
measures for the client or the server entity (in the connection). If the focus is
the client (see Fig. 4.1 (b)), the locus of impact is import-coupling, otherwise
(see Fig. 4.1 (c)) the focus is the server and the locus of impact is export-
coupling. As we briefly mentioned before, the intrinsic definition of OCL
expressions as a textual add-on to UML diagram (allows the modeler to specify

2expression can be attached to attributes, method, classes or rolenames, depending on the label
used (def, pre, post, body, inv, etc.) before the expression is defined.

102 CHAPTER 4. MEASURE PROPOSAL

explicit references to UML features) constitutes a suitable mechanism to focus
on the import-coupling. So, the focus is the client entity.

3. Granularity: This criterion involves:

• The domain of measure is always an OCL expression. Nevertheless, the
expression refers to semantic properties of its contextual type. Although
an OCL expression seems to be a small domain, the scope of objects
referred through a expression (the portion of a UML diagram imported
by an OCL expression can vary significatively) can be very large.

• The way we count connections -henceforth, WWCC - is the following:
we always count the number of different items at the other end of the
connections.

4. Stability of server: We did not take into account this criterion, see consid-
eration in section 3.2.1.

5. Direction of the connections: Our coupling measures are defined consid-
ering direct connections with exception of navigation measures.

6. Inheritance: Inheritance aspects are only considered in NIO measure, that
involves the comparison of contextual type with inherited types. Our purpose
is to study coupling mechanism that are declared through OCL expression,
and inheritance aspects are defined in the UML models, specially through the
class diagram. In the empirical studies we did not focus on the structural
properties of expression and UML models at the same time.

client entity (ce) server entity (se)• •
(a)

•ce1

•

•

•

•

se1

se2

. . .

sen
(b) (c)

• se1

•

•

•

•

ce1

ce2

. . .

cem

Figure 4.1: Coupling Connections

4.1. IDENTIFICATION (M1) 103

4.1.5.1 Modeling the Selected Abstractions

As Card recommended in [Car93] one effective supplemental activity of GQM is to
develop a model of the entities and relationships measures. And, any modelling
activity requires abstraction, being abstraction the mathematical representation of
an entity under study [BMB02], often modeled via a graph. Within an abstraction
an entity has to be mapped into one or more abstractions so it becomes analyzable
and its relevant attributes become quantifiable [MGBB90]. The construction of
mapping from the entity to the abstraction is crucial, and needs to be checked for
completeness and suitability, i.e. we must verify that the abstraction contains all
the relationships that one wants to capture, also the level of granularity of the
abstraction should be considered whether it is accurate enough [BMB02], etc. Briand
et al. also recognize that although several abstractions capturing control flow, data
flow and data dependency information are available in the literature, an even larger
variety of abstractions can be derived from software products [BMB02].

Regarding these considerations, we had modelled the entities we are measuring
considering as a reference the framework of Briand et al.[BMB99] for coupling and
cohesion interaction-based measures. The entities to be studied are software parts,
OCL expressions, and the attribute to be studied is import-coupling. The object-
based context was defined through dependencies among OCL expressions and UML
artifacts (i.e., attributes, operations, rolenames, objects, etc). These dependencies
are called interactions and were used to define measures capturing coupling between
software parts.

An interaction graph was used as an abstraction to model the elements and rela-
tionships that are relevant for capturing import-coupling. The interaction graph
contains the elements that are data declarations of a high-level design, in our case
UML models, and whose relationships are the interactions among data declarations
and data used. The description of interaction graph is deferred to chapter 6 due
to the fact it is mainly used to theoretically validate the OCL expression measures
(for instance, Figure 6.1 contains the interaction graph corresponding to a UML
diagrams with different OCL expression attached).

4.1.6 Refine the Goal into Questions (I6)

Based on Briand et al. model [BWIL99] we hypothesized that OCL expressions
maintainability are influenced by its structural properties, which, in turn depends
on elements that compose OCL expressions (navigations, collection operations, va-
riables, etc.). So, the most important question arises:

• Does coupling influence OCL expressions maintainability?

104 CHAPTER 4. MEASURE PROPOSAL

So, we added two other questions:

• Does size influence OCL expressions maintainability?

• Does length (of navigation) influence OCL expressions maintainability?

Nevertheless, the last two questions arise with two different purposes. Length of
navigations is closely related with the depth of coupling. Size property was consid-
ered in order to control during experimentation that size aspects does not bias the
findings related to coupling.

Table 4.2: Type of Connections for OCL Expression Measures

source destination measures
OCL expression contextual instance NES, NIS
contextual instance
of the OCL expres-
sion

contextual
objects

references to the
objects from the
collection

NEI, NII

parameters NPT
data types NUDTO, NUDTA

property of
an object

attribute NAS

method NOS, N@pre,
NON, WNN

rolename NNR, WNN, NNC
manipulation of objects WNCO
a classifier in a hierarchy NIO

OCL expression OCL expression NVD

4.1.7 State General Hypotheses (I7)

We hypothesize that high import-coupling of OCL expression affects the maintain-
ability of OCL expressions.

4.2 Concepts Related to the Measured Attributes

Although our objective is to evaluate OCL expression maintainability we are con-
scious that maintainability is an external quality attribute and therefore it is influ-
enced by structural properties of the OCL expressions.

4.2. CONCEPTS RELATED TO THE ATTRIBUTES 105

As Fenton and Pfleeger [FP98] suggest that it is not advisable to define a single
measure for capturing different structural properties, we will define several measures,
each of which captures different structural properties for coupling, length and size
respectively according to our GQM questions. This section is part of the definition in
natural language of measures for OCL expressions. Nevertheless, before starting the
definition of the measures we should describe which are the OCL concepts involved
with the aforementioned structural properties. For that purpose a metamodel was
selected: the OCL metamodel. Although the metamodel is explained in detail in
the next chapter, in this section we present it in relation to coupling, size and length
attributes.

4.2.1 OCL Concepts Related to Coupling

The OCL concepts related to coupling allow the modeler to specify an OCL ex-
pression for a particular contextual type in terms of its context, i.e. to write an
expression using properties of the contextual type or properties of other Classifiers
which are coupled to the contextual type. By using properties of other classifiers,
you import their meaning in the OCL expression scenario. When references to other
classifiers, implicit assumptions can turn invalid over time [BDV04].

The concepts related to properties of the Contextual Type are:

• Accessing attributes and operations belonging to the contextual
type. Using the contextual instance and the dot notation it is possible to re-
fer to attributes and operations of the contextual type. Considering the OCL
expression shown in the example 4.2.1, two properties are referred :

� The level attribute belonging to Person, and

� The age() operation belonging to the same type.

Example 4.2.1
context Person inv:

self.level = ”Senior” implies self.age() = 21

• <<definition>> constraints. To allow the reuse of a variable and/or
operation over multiple OCL expressions it is possible to define a <<defini-
tion>> constraint, using the keyword def. In fact, this OCL expression means
a stereotype <<definition>>, and the constraint is attached to a Classifier.
The keyword def can be used after the attribute or operation definition. The
constraint is exemplified as follows:

106 CHAPTER 4. MEASURE PROPOSAL

Example 4.2.2 In the next OCL expression a variable called income is de-
fined.

context Person
def : income : Integer = self.job.salary-> sum()

The income variable is known in the same context as any property of Person.
For example in:

context Person inv:
if self.isUnemployee
then income < 100
else income >= 100 endif

• Predefined properties that can be applied to any object. The following
predefined operations which are commonly used with inheritance concepts can
be applied to any objects:

� oclIsTypeOf (t :OclType): Boolean: The operation returns true if its
argument (t) is equal to the type of self.

� oclIsKindOf (t :OclType): Boolean: The operation determines whether t
is either the direct type or one of the supertypes of an object.

Person

Analyst Designer

4

Figure 4.2: An Example of a Class Diagram

Example 4.2.3 According to the class diagram shown in Fig. 4.2, the
following examples are defined in the context of the Designer class :

self.oclIsTypeOf(Person) = false
self.oclIsKindOf(Person) = true
self.oclIsTypeOf(Designer) = true
self.oclIsKindOf(Designer) = true

� oclAsType (t :OclType): instance of OclType: Property of supertypes
when they are overridden within a type, they can be accessed through
oclAsType().

4.2. CONCEPTS RELATED TO THE ATTRIBUTES 107

Example 4.2.4 If B is supertype of A then it is possible to write:

context B inv:
self.oclAsType(A).p1

in order to refer to the p1 property of A.

• Accessing previous values in postcondition. Whenever a property is
postfixed with the @pre keyword in a postcondition, the value accessed is the
property value before the execution of the operation.

Example 4.2.5 In the following example taken from Cook et al. [CKM+02]
the usage property refers to the property of Bathroom whereas usage@pre refers
to the value of usage before the execution of the uses operation.

context Bathroom::uses (g: Guest)
pre:
post: usage = usage@pre + 1

In the following we describe the concepts involving other objects (different to the
contextual type):

• Navigations. Starting from a specific object it is possible to navigate an
association in the class diagram, to refer to other objects and their properties
[OMG03b]. A relation is navigated when we use the rolename of the opposite
association-end of a relation, that links the class where the expression is defined
with another class in the diagram class (when the association-end is missing
we can use the name of the type at the association-end as the rolename). The
result of a navigation is a single object or a collection of objects depending
on the multiplicity of the association-end [RG98]. The syntax uses the dot
notation followed by an association-end property. It is possible to navigate
many relationships in order to access as many properties as needed in an
expression.

Navigations can be simple or combined. Whenever we navigate through more
than one relationships the navigations is combined, otherwise a simple navi-
gation is used (only one relationship is navigated).

Example 4.2.6 The following expression is specified for the class diagram of
Figure 4.3.

context LoyaltyProgram inv:
membership.card-> forAll (goodThru = Date::fromYMD(2007,1, 1))
and self.customer->forAll (age()>30)

108 CHAPTER 4. MEASURE PROPOSAL

LoyaltyProgram
enroll(c:Customer)

Customer
name: String
age() : Integer

CustomerCard
valid : Boolean
validFrom: Date
goodThru: Date
invalidate(): · · ·<<datatype>> Date

now : Date
isBefore(t: Date) : Boolean
isAfter (t: Date) : Boolean
fromYMD (t: Date): Date

ProgramPartners

Membership

1..* partners card

cards 0..*

programs

0..*

Figure 4.3: Part of the Loyal and Royal Class Diagram

membership.card represents a navigation from LoyaltyProgram to Customer-
Card. This is an example of a combined navigation. membership.card navi-
gates two relationships: one from LoyaltyProgram to Membership (an associ-
ation class), and another from Membership to CustomerCard. In the former
relationship there is no rolename attached to the association-end where Mem-
bership is the sink class, and for that reason the name of the class is used.
Meanwhile, in the latter relationship, the navigation is represented by its role-
name ”card”. The expression also contains another navigation self.customer
(a simple navigation).

• In, Out and In/Out Parameters, and Return Values. Operations may
have in, out, in/out parameters. If the operation has out or in/out parameters,
the result of this operation is a tuple containing all out, in/out parameters and
the return value [OMG03b].

• Collection Operations. OCL defines many operations for handling the
elements in a collection. The operations allow the modeler to project new
collections from the existing one. Operations like select, reject, iterate, forAll
and exists, take each element in a collection and evaluate an expression for
them. The expression evaluated for each collection can be defined in terms
of new navigations. We will take into account those expressions of collection
operations which are defined in terms of other navigations.

4.2. CONCEPTS RELATED TO THE ATTRIBUTES 109

All collection operations are specified using the arrow-syntax notation:
collection->OperationCollection(Boolean-expression).

Example 4.2.7 self.customer of example 4.2.6 specifies a forAll collection
operation to express that all LoyaltyProgram customer must be greater than 30
years old.

• Messages. OCL message expressions are used to specify the fact that an
object has, or will send some message to another object at some moment in
time [OMG03b], [WK03].

Example 4.2.8 The following expression broadcasts a message called update
to the observers of a subject.

context Subject:: haschanged()
post: observer
update(?:Integer, ?:Integer)

• User-Defined DataType. A data type is a special kind of classifier, similar
to a class, whose instances are pure values (not objects). Usually, a data type is
used for specification of the type of an attribute. A data type is denoted using
the rectangle symbol with keyword <<dataType>> or, when it is referenced
by e.g. an attribute, denoted by a string containing the name of the data type
[OMG03c].

Example 4.2.9 A user-defined data type called Date is included in the class
diagram of Figure 4.3. The expression of the example 4.2.6 uses it and access
to its property (the fromYMD property).

4.2.2 OCL Concepts Related to Length

The navigation is also a concept related to length. The length of coupling is defined
in terms of the distance from the contextual type to those objects to which the
expression navigates through a simple or combined navigation. The greater the
combined navigation the greater the distance from the contextual instance to the
coupled object.

110 CHAPTER 4. MEASURE PROPOSAL

Table 4.3: Predefined Iterator Expressions

Collection Set Bag Sequence

exists any select select select

forAll one reject reject reject

isUnique collect collectNested collectNested collectNested

sortedBy sortedBy sortedBy

4.2.3 OCL Concepts Related to Size

In this group we have included those OCL concepts that are intrinsic to the language
itself. The concepts are:

• Logical operators. The Boolean type is a predefined type composed of two
literal values: true and false. OCL defines the following logical operators for
Boolean: or, xor, and, not and implies. It is common to use logical operators
in an OCL expression because they represent general connectors of subexpres-
sions.

• Predefined iterator expressions. The semantic of predefined iterator ex-
pressions is defined in terms of an iterate expression. The set of standard
iterator expressions defined in OCL [OMG03b] is included in Table 4.3.

For example the reject operation allows us to obtain a subset from a collection.
The subset obtained from the collection using reject, is composed of all the
elements of the collection from which the expression evaluates to false. How-
ever, the operation can adopt three different forms (see definition 4.2.10). The
last two forms include an iterator variable, being the iterator, in the last form,
specified by its type. The iterator variable is used to refer explicitly to the
collection elements. The use of these predefined expressions involves dealing
with collections and iterators.

Definition 4.2.10 Definition of reject operation:

collection->reject(Boolean-expression)
collection->reject(v | Boolean-expression-with-v)
collection->reject(v : Type | Boolean-expression-with-v)

4.3. DEFINITION IN NATURAL LANGUAGE (D2) 111

4.3 Definition in Natural Language (D2)

In this section we include the result of the application of the Definition of Measures
in Natural Language of the Creation activity (Fig. 2.4(b)). The set of measures
defined are included in Table 4.4.

Each measure is defined using a consistent format composed of:

• ACRONYM and NAME: this component shows the result of activity N4 of
Fig. 2.4(b).

• Proper DEFINITION: this component involves the result of applying N1 and
N2 activities of Fig. 2.4(b).

• INTENT: this component describes the goal of the measure, and corresponds
to the application of activity N3 of Fig. 2.4(b).

• EXAMPLE: we had included a sample to illustrate its calculus.

The definition of the measures is presented according to the attributes they are
related to.

4.3.1 Measures for Length

Within a UML model, a class is shown in class diagram along with its relationships
with its surrounding classes, the class can be coupled to other classes through in-
direct connections. However, graphical information does not express whether their
methods trust in classes that are indirectly connected to the class. For example,
in Figure 4.3, the LoyaltyProgram class presents three direct relationships (to Cus-
tomer, Membership and ProgramPartners) but indeed is also coupled to Customer-
Card due to the class verify (through an OCL expression) that all its memberships
had a valid card. More precise information is available once its methods are imple-
mented, and we can compute the exact quantity of coupled classes (for instance, if
we use CBO measure). But this is obtained in later phases of software development.
However, in UML/OCL models the OCL expression reveals more precise coupling
information when invariant or pre- post-condition expressions are declared. Using
the navigation specified in the expression we can estimate, in a more accurate way,
how coupled is the class with its context. This is the rationale of DN, one of the
most important measure we define. DN controls the depth of the coupling. It is
stated that as one goes further to more distant coupled classes, the more complex a
class become and, hence, more difficult its comprehension and modification is.

• DN: Depth of Navigations.

112 CHAPTER 4. MEASURE PROPOSAL

Table 4.4: Measures for OCL Expressions of UML/OCL Models.

MEASURE MEASURE MEASURE
ACRONYM GROUP DESCRIPTION

DN Length Depth of Navigations
NAS Coupling Number of Attributes belonging to the classifier

that Self represents
NOS Coupling Number of Operations belonging to the classifier

that Self represents
NIO Coupling Number of oclIsTypeOf, oclIsKindOf or

oclAsType Operations
N@P Coupling Number of properties postfixed by @ Pre
NNR Coupling Number of Navigated Relationships
NAN Coupling Number of Attributes referred through Navigations
NON Coupling Number of referred Operations through

Navigations
NNC Coupling Number of Navigated Classes
NPT Coupling Number of Parameters whose Types are classes

defined in a class diagram
NUDTA Coupling Number of User-Defined Data Type Attributes
NUDTO Coupling Number of User-Defined Data Type Operations

WNN Coupling Weighted Number of Navigations
WNCO Coupling Weighted Number of Collection Operations

NEI, NII Coupling Number of Explicit or Implicit Iterator variables
NKW Size Number of OCL KeyWords
NES Size Number of Explicit Self
NIS Size Number of Implicit Self

NBO Size Number of Boolean Operators
NCO Size Number of Comparison Operators

1. DEFINITION: Given that in an OCL expression there can be many nav-
igations regarding its definition, we build a tree of navigation using the
class name to which we navigate. We will only consider navigations start-
ing from the contextual instance (from self). The root of the tree is the
contextual type. Then we build a branch for each navigation, where each
class we navigate to is a node in the branch. Nodes are connected by
”navigation relations”. DN is defined as the maximum depth of the tree.
When a navigation includes a collection operation expression defined in
terms of a new navigation(s), we will build a new tree for the navigation
used in the collection operation expression, using the same method, then
we will connect both trees using a ”definition connection”. A dashed line
will represent a definition connection. When we obtain the depth of the
tree, we will apply the following rule: ”Navigation connection is counted
once, and definition connection twice”.

4.3. DEFINITION IN NATURAL LANGUAGE (D2) 113

LoyaltyProgram.........
.........
..........
............
...............
.................

..........

..
...............
............
..........
.........
.........

.

................
................
................
..

.................
.................
.................

....................
....................
.............

.......................
.......................

........

.

..........
..........
..........
..

...........
...........
........

...........
...........
......

...........
...........
....

Membership.........
.........
.........
...........
..............
.................

...........
..........
.
.........
.
...

..................
...............
............
..........
..........

.

.........
.........
......

.........
.........
....

..........
..........

..........
........

CustomerCard.........
.........
.........
...........
..............
.................

..........

...
..................

...............
............
..........
..........

Customer...........
..........
..........
............
..............

...........
..........
.
..........
.
..

............
..........
..........
...........

LoyaltyProgram..........
..........
..........
.............
...............

...............
.............
..........
..........
..........

.

..........
..........
..........

..........
..........
.......

.........
.........
......

.........

.........

...

Customer...........
...........
...........
.............
................

..........

..........

.

..........

.
...

.............
...........
...........
...........

LoyaltyProgram.........
.........
..........
.............
................
..................

..........
...

................
.............
..........
.........
.........

.

..........
..........
..........
.

..........
..........
.........

..........
..........
.......

...........
...........
...

Customer...........
...........
...........
.............
................

..........

..........

.

..........

.
...

.............
...........
...........
...........

(a) (b)

Figure 4.4: Example for Illustrating DN Measure

2. INTENT: A high depth of navigations may involve a complicated nav-
igation. Warmer et al. [WK03] suggest avoiding complex navigation
expressions, they also argue that: ”using long navigation makes details
of distant objects known to the object where we started the navigation”.

This measure was proposed as a measure of OCL expression complexity
and class complexity. It is based on the idea that a high value of the
measure will be an indicator of how distant the objects known by the
contextual type are.

Example 4.3.1 A tree built for the following expression -using the method
described above- is shown in Figure 4.4 (a). In this example the value of
DN is 2.

context LoyaltyProgram inv:
membership.card -> forAll (
goodThru = Date::fromYMD (2007,1, 1))
and self.customer->forAll (age()>30)

Example 4.3.2 According to the following expression, the tree built is
shown in Figure 4.4 (b), where a dashed line represents a definition con-
nection. The DN value for the expression of Figure 4.4 (b) is equal to
4.

context LoyaltyProgram inv:
self.customer ->forAll(age() <= 30) and
self.customer ->forAll (c1 | self.customer ->
forAll (c2| c1 <> c2 implies c1.name <> c2.name)

114 CHAPTER 4. MEASURE PROPOSAL

4.3.2 Measures for Coupling

In this section we define a set of measures for OCL expressions considering those
elements which involve coupling (see Table 4.4).

• NAS: Number of Attributes belonging to the classifier that Self represents.

1. DEFINITION: This measure counts the total number of attributes be-
longing to the contextual type. The attributes are directly referred to
using the notation self.attributename.

2. INTENT: A higher number of this kind of attributes will increase the
complexity of the expression. The comprehension of attributes used in
an expression not only involves the meaning of them as a constituent
of a class diagram but also the different OCL expressions that declare
restrictions on them.

Example 4.3.3 In the following expression, two attributes of Person are
used, title and isMale, the former has an implicit self instance, while in
the latter it is explicit, thus the value of NAS is 2.

context customer inv:
title = (if self.isMale = true

then ’Mr.’ else ’Ms.’
endif)

• NOS: Number of Operations belonging to the classifier that self represents.

1. DEFINITION: This measure counts the total number of Operations be-
longing to the contextual type. These operations are directly referred to
using the notation self.operationname.

2. INTENT: The same goal as NAS but considering operations instead of
attributes. The comprehension of an operation involves the comprehen-
sion of its meaning as a class diagram constituent and also the constraints
associated to it (pre and postconditions, body expression, etc.).

Example 4.3.4 The value of NOS in the OCL expression of example
4.2.1 is 1, only one operation is used: age().

• NIO: Number of oclIsTypeOf, oclIsKindOf or oclAsType Operations.

1. DEFINITION: This measure counts the number of times an oclIsTypeOf,
oclIsKindOf or oclAsType operation is used in an expression. These are
some predefined properties. NIO uses the contextual type and other types
connected to the contextual type through inheritance.

4.3. DEFINITION IN NATURAL LANGUAGE (D2) 115

FruitPie

ApplePie PeachPie

PieceOfFruit

4

ingredients
0..*0..1

4

Apple Peach

Figure 4.5: A Class Diagram used for Exemplifying NIO Measure

2. INTENT: A high number of this kind of predefined operations can in-
crease the complexity of the expression, as the modelers have to deal with
inheritance concepts. The complexity will also depend on the complexity
of the inheritance tree in which the contextual type is included.

Example 4.3.5 Given the class diagram of Figure 4.5 and the following
expression of the ApplePie class:

context ApplePie inv:
self.ingredients->forAll(oclIsKindOf(Apple))

The value of NIO is 1, because the expression uses oclIsKindOf().

• N@P: Number of properties postfixed by @Pre.

1. DEFINITION: This measure represents the number of different properties
postfixed by @pre. This measure can be used exclusively for postcondi-
tions.

2. INTENT: A high number of variables postfixed by @pre could increase
the complexity of an OCL expression.

Example 4.3.6 In the expression of example 4.2.5 the value of N@P is
1, as the postfix @pre is used with the usage property.

• NNR: Number of Navigated Relationships.

1. DEFINITION: This measure counts the total number of relationships
that are navigated in an expression. If a relationship is navigated twice,
for example using different properties of a class or interface, this relation-
ship is counted only once. Whenever an association class is navigated we
will consider the association to which the association class is attached.

116 CHAPTER 4. MEASURE PROPOSAL

2. INTENT: As Warmer and Kleppe [WK03] remark: An ”argument against
complex navigation expressions is that writing, reading and understand-
ing invariants becomes very difficult”. The meaning of each relationship
involves the understanding of how the objects are coupled to each other.
The larger the set of relationships to be navigated, the greater is the
context to be understood.

Example 4.3.7 In the following expression valid for Fig. 4.3 two differ-
ent relationships are navigated: (1) the relationship between LoyaltyPro-
gram and Customer (it is navigated from LoyaltyProgram to Member-
ship, and from LoyaltyProgram to Customer), (2) the relationship between
Membership and CustomerCard.

context LoyaltyProgram inv:
membership.card -> forAll (
goodThru = Date::fromYMD (2007,1, 1)
and self.customer->forAll (age()>30)

thus NNR = 3 because three relationships were navigated.

• NAN: Number of Attributes referred through Navigations.

1. DEFINITION: This measure counts the total number of attributes re-
ferred through navigations in an expression.

2. INTENT: NAN measures the extent of usage of attributes of other classes
by the contextual type. The larger the set of attributes referred through
navigations, the greater is the context to be understood.

Example 4.3.8 In the expression of example 4.3.7 valid for Figure 4.3
only the goodThru attribute is used, thus NAN = 1:

• NON: Number of referred Operations through Navigations (NON).

1. DEFINITION: The measure is defined as the count of operations which
are referred through navigations.

2. INTENT: NONmeasures the extent of usage of operations of other classes
by the contextual type. The larger the set of operations (referred through
navigations) the greater is the context to be understood.

Example 4.3.9 The following operation ”income” has a result of type
Integer, an in parameter (d) and an out parameter (bonus):

4.3. DEFINITION IN NATURAL LANGUAGE (D2) 117

context Person::income(d: Date, bonus: Integer): Integer
post: result = type { bonus = · · ·,

result = · · · }

Now, consider an expression in which we navigate to the Person class,
and we operate with the two returned values of income:

context Salary::calculate()
post: person.income(aDate).bonus + person.income(aDate).result

The value of NON measure for the postcondition expression is 1 although
the income operation was used twice.

• NNC: Number of Navigated Classes.

1. DEFINITION: This measure counts the total number of classes, associ-
ation classes or interfaces to which an expression navigates. If a class
contains a reflexive relation and an expression navigates it, the class will
be considered only once in the measure. Also, as a class might be reach-
able from a starting class/interface from different forms of navigations
(i.e. following different relationships) we must consider this situation as
a special case: If a class is used in two (or more) different navigations the
class is counted only once.

2. INTENT: Warmer and Kleppe [WK99] argue that ”any navigation that
traverses the whole class model creates a coupling between the object
involved”. A high number of navigated classes will increase the coupling
between the objects.

Example 4.3.10 In the expression of example 4.3.8, the value of NNC
= 3, because the classes Membership, Customer and CustomerCard are
used.

• NPT: Number of Parameters whose Types are classes defined in a class dia-
gram.

1. DEFINITION: This measure is specially used in pre and postcondition
expressions and it counts the method parameters, and the return type
(also called result) used in an expression, each parameter/result having
a type representing a class or interface defined in the class diagram.

118 CHAPTER 4. MEASURE PROPOSAL

2. INTENT: In an OO system a typical method of communication is by
using an object as a parameter [GHJV95]. Parameters can be used in the
specification of an OCL constraint. However if the quantity of parameters
whose types are classes in the class diagram is high, the context of the
object involved will affect the understanding of the OCL expression.

Example 4.3.11 In the following expressions (both, pre- and post- con-
ditions, are valid expressions for the LoyaltyProgram class of Fig. 4.3.),
the value of NPT = 1 because only one parameter (c), whose type is a
class in the class diagram (Customer), is used in the expression.

LoyaltyProgram::enroll(c: Customer)
pre: not customer->includes(c)
post: customer = customer@pre-> including (c)

• NUDTA: Number of User-Defined Data Type Attributes.

1. DEFINITION: This measure counts the total number of attributes be-
longing to a user-defined data type used in an expression. Attributes are
counted once if they belong to the data type class, even if they are used
more than once.

2. INTENT: NUDTA is a measure of the potential reuse of user-defined
data type attributes.

Example 4.3.12 In the following expression the value of NUDTA = 1
because only one class attribute (now) of a data type (Date) is used.

context CustomerCard inv:
validFrom.isBefore(goodThru) or
goodThru.isAfter(Date::now) implies self
invalidate()

• NUDTO: Number of User-Defined Data Type Operations.

1. DEFINITION: The definition of this measure is analogous to the NUDTA
measure, but considering operations instead of attributes.

2. INTENT: NUDTO is a measure of the potential reuse of user-defined
data type operations.

Example 4.3.13 In the expression of example 4.3.12, NUDTO = 2 be-
cause the isBefore and isAfter operations (belonging to the data type Date)
are used.

• WNN: Weighted Number of Navigations.

4.3. DEFINITION IN NATURAL LANGUAGE (D2) 119

1. DEFINITION: As we explain in the section 3.2.3. an operation collec-
tion is composed of an expression which is evaluated for each collection
element, and if the evaluated expression involves a new navigation (or
many) we will give a higher weight to the new navigation used inside the
definition of the outermost expression. As the collection operation can be
defined in terms of a new navigation and its collection operations, i.e. in
a recursive way, we will refer to the different compositions of navigation
as ”level”. In the case that navigation B is used in the immediate defini-
tion of an operation collection for a navigation A, we would say that B is
in level 2 and A in level 1. The weight associated with each level is equal
to the level number. Therefore the definition of the WNN measure is:

WNN = Σ weight of the level × number of navigations of the level.

2. INTENT: This measure is an estimate of overall coupling among objects
(those involved through relationships) in the specification of an OCL
expression. The value of WNN will provide an indicator of how the
relationships are used together for specifying semantics of an expression
in terms of a coupling set of objects. A high number of WNN will indicate
an intertwining specification of relationships and this could reduce the
understandability of an OCL expression.

Example 4.3.14 In the precondition expression of example 4.3.11, the
value of WNN is 1, and there is only one navigation (self.customer).
Now, we will show how the WNN is obtained in the expression of example
4.3.2.

Two subexpressions are connected by an AND operator. Each subexpres-
sion involves navigations. Whilst the navigation of the first subexpression
does not include a new navigation in its evaluation, the second one uses
a collection operation defined in terms of another, and the value of WNN
is obtained in the following way: 1 * 2 + 2 * 1 = 4. The number shown
in bold print font represents the applied weight, and the number shown in
normal font indicates the number of navigations.

• WNCO: Weighted Number of Collection Operations.

1. DEFINITION: The collection operations used in the expression defini-
tion are weighted according to the level in which they are defined, so the
measure is defined thus:
WNCO = Σ weight of the level * number of collection operations of the
level.

2. INTENT: The value of WCO will provide an indicator of how the opera-
tion collections are specified using a sort of composition. A high number

120 CHAPTER 4. MEASURE PROPOSAL

of WNCO will indicate an intertwining specification of operation collec-
tions and this could reduce the understandability of an OCL expression.

Example 4.3.15 In the expression of example 4.3.14 WNCO = 4, and
the value is obtained in the following way: 1 * 2 + 2 * 1 = 4. The num-
ber shown in bold font represents the weight whereas the number shown
in normal font indicates the number of operation collections. Three op-
eration collections are used in the specification of the expression, two of
them are used in the same subexpression at different levels.

• NEI, NII: Number of Explicit/Implicit Iterator variables.

1. DEFINITION: These measures count the total number of iterator varia-
bles used in explicit or implicit form respectively. Each iterator variable
have a specific type (a classifier in the UML models to which the expres-
sion is attached) that is coupled to the contextual type of the expression.
The way to determine the values of the NEI and NII measures is similar
to NSE and NSI measures. NEI is the number of times an iterator va-
riable appears in an expression (except in the way it is declared), whilst
the way to compute the value of the NII measure involves the evaluation
of each property with an implicit object in order to determine the object
to which the property applies. If the property belongs to an object rep-
resented by an iterator variable, the measure is incremented by one. In
[OMG03b] there is a clear example of the resolution of ambiguities for an
implicit object.

2. INTENT: As already mentioned, the use of implicit objects and the deter-
mination of which object a property is applied to, leads to the interference
of the comprehensibility of the expression and could also reduce its com-
prehension, as it is not always easy to know immediately which is the
target object.

Example 4.3.16 Given the class diagram of Figure 4.6 and the following
expression:

context Person inv:
self.employer->forAll (iter1 |
iter1.employee->exists (lastname = name))

The value of NEI is 1 due to the fact that iter1 is an explicit iterator
variable for the forAll operation (iter1 is an explicit variable whose type
is Company), and it is used in an explicit form when iter1.employee is
used. The value of NII is 2 due to:

4.3. DEFINITION IN NATURAL LANGUAGE (D2) 121

Person
firstName: String
lastName: String

employee employer

0..* 0..*

Company
name: String

Figure 4.6: A Class Diagram used for Exemplifying NII Measure

� exists operation does not have an explicit iterator variable (an iterator
variable whose type is Person), and lastname refers to this implicit
variable.

� The name attribute is a property of self and iter1, and this constitutes
an ambiguity. To determine to which object name is applied, the
most inner scope is used [OMG03b]. The result is: name attribute
refers to iter1.

4.3.3 Measures for Size

In this section we present the measures for OCL expressions related to size structural
properties (see Table 4.4).

• NKW: Number of OCL KeyWords.

1. DEFINITION. This measure counts the total number of OCL keywords
used in an expression. The OCL keywords are: and, attr, body, context,
def, else, endif, endpackage, if, implies, in, inv, let, not, oper, or, package,
post, pre, then, and xor.

2. INTENT: The number of keywords is an indicator of the complexity of
an OCL expression, in terms of its size. A higher number of keywords
used in an OCL expression the greater its complexity.

Example 4.3.17 In the expression of example 4.3.3 the value of NKW
is 6, the keywords used are: context, inv, if, then, else, and endif.

• NES: Number of Explicit Self.

1. DEFINITION. This measure counts the number of times self is used in
an explicit form in an OCL expression.

2. INTENT: Self, as explained in section 3.1, provides a point of reference
for the interpretation of an OCL expression, By using it in an explicit

122 CHAPTER 4. MEASURE PROPOSAL

or implicit form it is possible to access different properties (attributes,
operations, and associations-end). The greater the number of times self
is used may indicate the greater the difficulty of the context to be under-
stood.

Example 4.3.18 The expression of example 3.1.3 contains a navigation
of a reflexive association written as self.work˙with.exists(self); in this
example the first self could be written in implicit form but the last self
must be explicitly declared because self is sent as a parameter. The value
of NSE is 2, as self was used in explicit form twice.

• NIS: Number of Implicit Self.

1. DEFINITION: This measure counts the number of times Self is used in
an implicit form in an expression.

2. INTENT: The goal of NES is also valid for the NIS measure; however, as
self (and iterator variables in operation collections) can be left implicit,
the number of times self is left implicit introduces a difficulty for modelers,
because they have to evaluate to which object a property is applied.

Example 4.3.19 In the following expression the value of NIS is 1, self
is implicit when the property work˙with is referred.

context Person inv:
not work˙with.exists(self)

• NBO: Number of Boolean Operators.

1. DEFINITION: This measure counts the total number of boolean opera-
tors used in an expression. Two occurrence of the same boolean operators
are counted separately.

2. INTENT: We believe that the number of boolean operators is an indi-
cator of the complexity of an OCL expression, in the same way as the
number of keywords used in it. In Warmer and Kleppe [WK99], [WK03]
it is also recommended to split a constraint with many boolean AND
operators, as a correct style for writing less complex expressions. Those
expressions with a high number of boolean operators can be candidates
to be evaluated in order to be rewritten.

Example 4.3.20 NBO = 2 in the following expression:

context ProgramPartner inv:
partners.deliveredServices->forAll(pointsEarned = 0) and
membership.card->

4.4. CONTRIBUTION TO THE DISSERTATION 123

forAll(goodThru = Date::fromYMD(2000,1,1)) and
customer->forAll(age() >55)

NBO = 2 because two AND operators are used in the expression. This
expression taken from Warmer and Kleppe [WK03], is a an example of an
invariant that can be rewritten splitting it into three different invariants.
Each of the new invariants will be composed of an operand of the AND
logical operator.

• NCO: Number of Comparison Operators.

1. DEFINITION: This measure counts the number of times an operator like:
<, <=, >,>=, = y <> is used in an expression. If an operator is used
many times the measures take into account each occurrence of it.

2. INTENT: It is common to use a comparison operator as a way of ex-
pressing a constraint. The goal is similar to that of the previous defined
measure.

Example 4.3.21 The value of NCO measure is 4 in the following ex-
pression:

context Person inv:
age() > 30 and
Person.allinstances()->
forAll(p1, p2 | p1 <>p2 implies p1.dni <> p2.dni) and
work˙with->size() <= 5

4.4 Contribution to the Dissertation

In this chapter, we define our measurement goal using GQM, which was stated as
the evaluation of OCL expression maintainability. After the definition of questions
for reaching the pursued goal, we focus on the definition of coupling measures.

Even though we are conscious that coupling is almost the more important dimension
of predicting maintainability, other product properties such as size and length also
affects maintainability. We decided to define some size measures to control that size
not bias our findings during experimentation due to the fact that size was study as
a confounding factor for many coupling measures [EBGR01]. In relation to length,
the length of navigations is closely related with the depth of coupling.

We carefully consider the following aspects during the measure definition for assess-
ing import-coupling:

124 CHAPTER 4. MEASURE PROPOSAL

• We analysed the different types of connections that can be specified in OCL
expressions in terms of UML model artifacts, defining coupling connections
between the contextual instance and its coupled objects.

• Regarding the locus of impact, we put strong emphasis on import-coupling.

• Granularity aspects were evaluated. We take into account what we measure,
and in which form we do it, i.e. we distinguish the connection domain and
how we count connections.

Having this in mind, we obtained fifteen coupling measures, five size measures and
one length measure (see Table 4.4), defining in natural language for each of them a
shorthand, a definition, its pursued intent and an example.

Chapter 5

Formal Definition of the Measures

This chapter describes the activities related to the formal definition of measures ac-
cording to Figure 2.4 (a). Section 5.1 begins explaining the selected formal language
for the formal definition (activity D3 of the method), then section 5.2 describes in
detail the selected metamodel (activity D1) and section 5.3 presents the formal def-
inition of the measures (activity D4). Finally, the contribution to the dissertation is
included in section 5.4.

Although the selected metamodel (activity D1) is a shared activity with the mea-
sure definition in Natural language it is explained here due to the fact that the
specification of the measures uses its OCL metaclasses.

Whenever an activity of the method is applied, the corresponding section is titled
accordingly and a reference to its number is included between parenthesis.

5.1 Select a Formal Language for the Formal Def-
inition (D3)

An important contribution to solve the problems introduced of the formality degree
in the measure definition (mentioned in chapter 2) is to use the Object Constraint
Language upon a design metamodel. We have proposed a set of measures for OCL
expressions, trying to find indicators for the comprehensibility and modifiability of
OCL expressions. When we decided to formally define them we considered that the
use of OCL could have two advantages (activity D3 of Figure 2.4):

• The first is that OCL itself is precisely defined through metamodelling facili-
ties, as an instance of the meta-metamodel of the OMG Meta Object Facility
(MOF), and the measure definition can be suitably placed at the same level
(the M2 level) as the OCL definition.

126 CHAPTER 5. FORMAL DEFINITION OF THE MEASURES

• The second is that a same language, OCL, is used as a formal language to
define the UML and OCL semantics (at M2 Level) and is used by modelers
for defining constraints on their models (at M1 Level). In fact the OCL was
claimed as a language easy to use and easy to learn, and to be easily grasped
by anybody familiar with OO modeling [WK03]. So, the familiarity of this
language can make the definition of our measures more modeler-friendly.

Thus, the approach of defining measures for OCL expressions using OCL meta-
model and OCL language as the formal language allows an unambiguous definition.
OCL was previously used by the QUASAR (QUantitative Approaches on Software
Engineering And Reengineering) Research Group [BBeA02], [BeA03a], [BeA02],
[BeA03b] to define measures. However the metamodel upon which OCL was used
was the UML metamodel. In our case, OCL is used as a language for defining mea-
sures for OCL expressions upon the OCL metamodel. This chapter describe the
formal definition of the measures.

In our approach when we compute the value of a specific measure we represent an
OCL expression as an instantiation of OCL metaclasses. The instantiation has the
shape of a tree, an abstract syntax tree (ast). We traverse the dynamic hierarchical
structure (the ast) and meanwhile we visit every element in the tree, we evaluate if
each element of the tree is meaningful for the measure we want to compute. If it is,
the measure is incremented otherwise it remains as it is.

Before giving an example of how the dynamic hierarchical structure is built ac-
cording to an OCL expression, we must describe each of the constituent parts of
the OCL metamodel for understanding how the ast objects are instantiated from
its corresponding metaclasses. So, section 5.2 describes the OCL metamodel and
section 5.2.2 gives an example of an OCL expression and its corresponding ast tree.
Finally, section 5.3 formally defines the proposed measures.

5.2 OCL Metamodel (D1)

The UML metamodel is defined as one of the layers of a four-layer metamodelling
architecture. In this architecture the UML metamodel is an instance of the meta-
metamodel of the OMGMeta Object Facility (MOF). The OCL metamodel is placed
at the same level (the M2 level) as the UML metamodel and use the MOF as
the definition language (provided by the M3 level) [Ric02]. So, the concepts of
OCL 2.0 and their relationships have been defined in the form of a MOF-compliant
metamodel [HZ04] 1. The benefit of a metamodel for OCL is that it precisely defines
the structures and syntax of all OCL concepts like types, expressions, and values in

1Previous versions of OCL had no metamodel representation

5.2. OCL METAMODEL (D1) 127

an abstract way and by means of UML features. Thus, all legal OCL expressions
can be systematically derived and instantiated from the metamodel [Ric02].

This section has two subsections: the OCL metamodel is described in section 5.2.1
whereas section 5.2.2 gives samples of OCL expressions and their corresponding ast
trees.

5.2.1 OCL Metamodel Metaclasses

In this section we will present the main metaclasses of the Expression Package of
the OCL metamodel which are essential for the formal definition of the proposed
measures. We present several class diagrams defining the abstract syntax of OCL
concepts, giving an explanation of the class in the diagram according to [OMG03b].
Some concrete examples are used to illustrate the application of the metamodel, in
the same way Richters does in [Ric02] when he describes the first definition of the
OCL metamodel.

5.2.1.1 Expressions Core

Figure 5.1 shows the core part of the Expressions package. The basic structure in the
package consists of the classes OclExpression, PropertyCallExp and VariableExp.
An OclExpression always has a type, which is usually not explicitly modeled, but
derived. Each PropertyCallExp has exactly one source, identified by an OclExpres-
sion. A ModelPropertyCallExp generalizes all property calls that refer to Features
or AssociationEnds in the UML metamodel. In Figure 5.2 the various subtypes of
ModelPropertyCallExp are defined.

Most of the remainder of the expressions package consists of a specification of the
different subclasses of PropertyCallExp and their specific structure. From the meta-
model it can be deduced that an OCL expression always starts with a variable or
literal, on which a property is recursively applied.

• OclExpression The abstract superclass OCLExpression defines the set of all
legal expression in OCL [Ric02]. It is the top-level element of the OCL Ex-
pressions package. Every OclExpression has a type that can be statically
determined by analysing the expression and its context. Evaluation of an ex-
pression results in a value 2.
The environment of an OclExpression defines what model elements are visible
and can be referred to in an expression. At the topmost level the environment
will be defined by the ModelElement to which the OCL expression is attached,

2Expressions with boolean result can be used as constraints, e.g. to specify invariants. Expres-
sions of any type can be used to specify queries, initial attribute values, target sets, etc.

128 CHAPTER 5. FORMAL DEFINITION OF THE MEASURES

ModelElement
(from Core)
name: String

4

OCLExpression

4

Property
CallExp

4
LiteralExp

+appliedProperty

0..1 �

+source

0..1

+body

1

+initExpression

0..1

IfExp

VariableExp

1

+referredVariable+iterators

1..n

OClMessageExp

ModelProperty
CallExp

4
LoopExp
�

0..1

� +loopExpr

0..1

IteratorExp IterateExp � 0..1

+baseExp

1 +result

VariableDeclaration
varName: String

Classifier
(from Core)

� 0..1

+initializedVariable

1+type
1

+type

Figure 5.1: The Basic Structure of the Abstract Syntax Kernel Metamodel for Ex-
pressions

for example by a Classifier if the OCL expression is used as an invariant. On
a lower level, each iterator expression can also introduce one or more iterator
variables into the environment. The environment is not modeled as a separate
metaclass, because it can be completely derived using derivation rules. The
complete derivation rules can be found in chapter 4 of [OMG03b].

5.2. OCL METAMODEL (D1) 129

Associations
appliedProperty The property that is applied to the instance that

results from evaluating this OclExpression.
type The type of the value that is the result of evalu-

ating the OclExpression.
parentOperation The OperationCallExp where this OclExpression

is an argument of.
initializedVariable The variable of which the result of this expression

is the initial value.

• PropertyCallExp A PropertyCallExp is an expression that refers to a property
(operation, attribute, association end, predefined iterator for collections). Its
result value is the evaluation of the corresponding property. This is an abstract
metaclass.

• ModelPropertyCallExp A ModelPropertyCall expression is an expression that
refers to a property that is defined for a Classifier in the UML model to which
this expression is attached. Its result value is the evaluation of the correspond-
ing property. Subclasses of ModelPropertyCallExp are defined in 5.2.1.2.

• LoopExp A LoopExp is an expression that represent a loop construct over a
collection. It has an iterator variable that represents the elements of the col-
lection during iteration. The body expression is evaluated for each element in
the collection. The result of a loop expression depends on the specific kind
and its name.
Associations
iterators The VariableDeclarations that represents the iterator varia-

bles. These variables are, each in its turn, bound to every
element value of the source collection while evaluating the
body expression.

body The OclExpression that is evaluated for each element in the
source collection.

• IterateExp An IterateExp is an expression which evaluates its body expression
for each element of a collection. It acts as a loop construct that iterates over the
elements of its source collection and results in a value. An iterate expression
evaluates its body expression for each element of its source collection. The
evaluated value of the body expression in each iteration-step becomes the new
value for the result variable for the succeeding iteration-step. The result can
be of any type and is defined by the result association. The IterateExp is
the most fundamental collection expression defined in the OCL Expressions
package.

130 CHAPTER 5. FORMAL DEFINITION OF THE MEASURES

Associations
result The VariableDeclaration that represents the result variable.

Example 5.2.1 The following example illustrates the general structure of It-
erateExp expressions. The source attribute is inherited from PropertyCall-
Exp, whereas the iterators and body attribute are inherited from LoopExp.

Sequence{1..5}
︸ ︷︷ ︸

source

− > iterate(i : Integer
︸ ︷︷ ︸

iterators

; acc : Integer = 1
︸ ︷︷ ︸

result

| acc ∗ i
︸ ︷︷ ︸

body

)

︸ ︷︷ ︸

iterateExp

• IteratorExp The type of the iterator expression depends on the name of the
expression, and sometimes on the type of the associated source expression.
The IteratorExp represents all other predefined collection operations that use
an iterator. This includes select, collect, reject, forAll, exists, etc. The OCL
Standard Library defines a number of predefined iterator expressions.

Example 5.2.2 The following example illustrates the general structure of It-
eratorExp expressions. The source attribute is inherited from PropertyCall-
Exp, whereas the iterators and body attribute is inherited from LoopExp.

self.employees
︸ ︷︷ ︸

source

− > forAll(p : Person
︸ ︷︷ ︸

iterators

| p.age > 45
︸ ︷︷ ︸

body

)

︸ ︷︷ ︸

iteratorExp

• VariableDeclaration A VariableDeclaration declares a variable name and binds
it to a type. The variable can be used in expressions where the variable is in
scope.

Associations
initExpression The OclExpression that represents the initial value of

the variable. Depending on the role that a variable
declaration plays, the init expression might be manda-
tory.

type The Classifier which represents the type of the varia-
ble.

Attributes
varName The String that is the name of the variable.

Example 5.2.3 The following example illustrates the general structure of a
VariableDeclaration used in the previous IterateExp expressions example.

5.2. OCL METAMODEL (D1) 131

acc
︸︷︷︸

varName

: Integer
︸ ︷︷ ︸

type

= 1
︸︷︷︸

initExpression
︸ ︷︷ ︸

variableDeclaration

• LiteralExp A LiteralExp is an expression with no arguments producing a value.
In general the result value is identical with the expression symbol. This in-
cludes things like the integer 1 or literal strings like this is a LiteralExp.

• IfExp An IfExp represent an If Expression, it is defined in section 5.2.1.3, but
included in this diagram for completeness.

• VariableExp A VariableExp is an expression which consists of a reference to a
variable. References to the variables self and result or to variables defined by
Let expressions are examples of such variable expressions.

Associations
referredVariable The VariableDeclaration to which this variable ex-

pression refers. In the case of a self expression the
variable declaration is the definition of the self varia-
ble.

• OclMessageExp OclMessageExp is defined in section 5.2.1.4, but included in
this diagram for completeness.

Associations
source The result value of the source expression is the instance

that performs the property call.

5.2.1.2 ModelPropertyCall Expressions

A ModelPropertyCallExp is a specialization of PropertyCallExp. All ModelProper-
tyCallExp have at least one argument: an OCLExpression, determining the source
object. A ModelPropertyCallExp can refer to any of the subtypes of Feature as de-
fined in the UML kernel. This is shown in Figure 5.2 by the three different subtypes,
each of which is associated with its own type of ModelElement.

• AttributeCallExp An AttributeCallExpression is a reference to an Attribute of
a Classifier defined in a UML model. It evaluates to the value of the attribute.

Associations
referredAttribute The Attribute to which this AttributeCallExp is a

reference.

132 CHAPTER 5. FORMAL DEFINITION OF THE MEASURES

ModelPropertyCallExp

4

AttributeCallExp
Attribute
(from Core)

+referredAttribute

1

0..n

NavigationCallExp

+navigationSource 1
4

AssociationEnd
CallExp

AssociationEnd
(from Core)

+referredAssociationEnd

10..n

AssociationClass
CallExp

AssociationClass
(from Core)

0..n

+referredAssociationClass

1

�

{ ordered } 0..n

+qualifiers

+arguments

{ ordered } 0..n

�0..1 +parentOperation

OCLExpression

OperationCallExp 1

+referredOperation

Operation
(from Core)

Figure 5.2: Abstract Syntax Metamodel for ModelPropertyCallExp

Example 5.2.4 The following example illustrates the general structure of an
AttributeCallExp used in an example 3.1.1 valid to the UML class diagram
of Figure 3.1.

self
︸︷︷︸

source

. age
︸︷︷︸

referredAttribute
︸ ︷︷ ︸

AttributeCallExp

> 50

• NavigationCallExp A NavigationCallExp is a reference to an AssociationEnd
or an AssociationClass defined in a UML model. It is used to determine objects
linked to a target object by an association. If there is a qualifier attached to
the source end of the association then additional qualifiers expressions may be
used to specify the values of the qualifying attributes.

5.2. OCL METAMODEL (D1) 133

Associations
qualifiers The values for the qualifier attributes if applicable.
navigationSource The source denotes the AssociationEnd at the end of

the object itself. This is used to resolve ambiguities
when the same Classifier participates in more than
one AssociationEnd in the same association. In other
cases it can be derived.

• AssociationEndCallExp An AssociationEndCallExp is a reference to an Asso-
ciationEnd defined in a UML model. It is used to determine objects linked to
a target object by an association. The expression refers to these target objects
by the role name of the association end connected to the target class.

Associations
referredAssociationEnd The AssociationEnd to which this Associa-

tionEndCallExp is a reference. This refers to
an AssociationEnd of an Association that is
defined in the UML model.

Example 5.2.5 The following example illustrates the general structure of an
AttributeCallExp used in an example 4.3.16 valid to the UML class diagram
of Figure 4.6.

self
︸︷︷︸

source

. employer
︸ ︷︷ ︸

referredAssociationEnd
︸ ︷︷ ︸

AssociationEndCallExp

− > forAll · · ·

• AssociationClassCallExp An AssociationClassCallExp is a reference to an As-
sociationClass defined in a UML model. It is used to determine objects linked
to a target object by an association class. The expression refers to these target
objects by the name of the target associationclass.

Associations
referredAssociationClass The AssociationClass to which this Associa-

tionClassCallExp is a reference. This refers
to an AssociationClass that is defined in the
UML model.

• OperationCallExp AOperationCallExp refers to an operation defined in a Clas-
sifier. The expression may contain a list of argument expressions if the opera-
tion is defined to have parameters. In this case, the number and types of the

134 CHAPTER 5. FORMAL DEFINITION OF THE MEASURES

IfExp

�� �
0..10..1

0..1

+elseExpression+thenExpression

+condition1

1 1OclExpression

Figure 5.3: The Abstract Syntax of If Expressions

arguments must match the parameters.

Associations
arguments The arguments denote the arguments to the

operation call. This is only useful when the
operation call is related to an Operation that
takes parameters.

referredOperation The Operation to which this OperationCallExp
is a reference. This is an Operation of a Clas-
sifier that is defined in the UML model.

5.2.1.3 If Expressions

Figure 5.3 shows the structure of the if expression.

• IfExp An IfExp results in one of two alternative expressions depending on the
evaluated value of a condition. Note that both the thenExpression and the
elseExpression are mandatory. The reason behind this is that an if expression
should always result in a value, which cannot be guaranteed if the else part is
left out.

5.2. OCL METAMODEL (D1) 135

Associations
condition The OclExpression that represents the boolean

condition. If this condition evaluates to true, the
result of the if expression is identical to the result
of the thenExpression. If this condition evaluates
to false, the result of the if expression is identical
to the result of the elseExpression

thenExpression The OclExpression that represents the then part
of the if expression.

elseExpression The OclExpression that represents the else part
of the if expression.

Example 5.2.6 The following example illustrates the general structure of a If ex-
pression used in the constraint of 4.3.3 example.

title = if isMale = true
︸ ︷︷ ︸

condition

then ′Mr.′
︸ ︷︷ ︸

thenExpression

else ′Ms.′
︸ ︷︷ ︸

elseExpression
︸ ︷︷ ︸

IfExp

5.2.1.4 Message Expressions

In the specification of communication between instances we unify the notions of
asynchronous and synchronous communication. The structure of the message ex-
pressions is shown in Figure 5.4.

• OclMessageExp An OclMessageExp is an expression that results in an collection
of OclMessage value. An OclMessage is the unification of a signal sent, and
an operation call. The target of the operation call or signal sent is specified
by the target OclExpression. Arguments can be OclExpressions, but may also
be unspecified value expressions for arguments whose value is not specified.

136 CHAPTER 5. FORMAL DEFINITION OF THE MEASURES

ModelElement
(from Core)

4
UnspecifiedValueExp

OclMessageArg

+type

1

Classifier
(from Core)

+arguments
0..n {ordered}+unspecified 0..1

0..1

+expression 0..1

0..1

OclExpression +target
1

OclMessageExp

+calledOperation 0..1 +sentSignal0..1

CallAction
(from Common Behaviour)

+operation 0..1 +signal0..1

SendAction
(from Common Behaviour)

Operation
(from Core)

Signal
(from Common Behaviour)

Figure 5.4: The Abstract Syntax of OclMessages

Associations
target The OclExpression that represents the target in-

stance to which the signal is sent.
arguments The SignalArgs that represents the parameters to

the Operation or Signal. The number and type of
arguments should conform to those defined in the
Operation or Signal. The order of the arguments
is the same as the order of the parameters of the
Operation or the attributes of a Signal.

calledOperation If this is a message to request an operation call, this
is the requested CallAction.

sentSignal If this is a UML signal sent, this is the SendAction.

• OclMessageArg An OclMessageArg is an argument of an OclMessageExp. It
is either an OclExpression, or an UnspecifiedValueExp. An OclExpression is
used to specify the exact value of the parameter. An UnspecifiedValueExp is

5.2. OCL METAMODEL (D1) 137

used when one does not want, or is not able to specify the exact value of the
parameter at the time of sending the message. An OclMessageArg has either
a specified or an unspecified value.

Associations
expression The OclExpression that represents an actual param-

eter to the Operation or Signal. unspecified The
UnspecifiedValueExp that represents a random value
that conforms to the type of this expression.

• UnspecifiedValueExp An UnpecifiedValueExp is an expression whose value is
unspecified in an OCL expression. It is used within OCL messages to leave
parameters of messages unspecified.

5.2.1.5 Literal Expressions

This section defines the different types of literal expressions of OCL. It also refers
to enumeration types and enumeration literals. Figure 5.5 shows all types of literal
expressions.

• BooleanLiteralExp A BooleanLiteralExp represents the value true or false of
the predefined type Boolean.

Associations
booleanSymbol The Boolean that represents the value of the literal.

• CollectionItem A CollectionItem represents an individual element of a collec-
tion.

• CollectionKind A CollectionKind is an enumeration of kinds of collections.

• CollectionLiteralExp A CollectionLiteralExp represents a reference to a collec-
tion literal.
Attributes
kind The kind of collection literal that is specified by this

CollectionLiteralExp.

• CollectionLiteralPart A CollectionLiteralPart is a member of the collection
literal.
Associations
type The type of the collection literal.

• CollectionRange A CollectionRange represents a range of integers.

138 CHAPTER 5. FORMAL DEFINITION OF THE MEASURES

• EnumLiteralExp An EnumLiteralExp represents a reference to an enumeration
literal.

Associations
referredEnumLiteral The EnumLiteral to which the enum expres-

sion refers.

• IntegerLiteralExp A IntegerLiteralExp denotes a value of the predefined type
Integer.

Attributes
integerSymbol The Integer that represents the value of the

literal.

• NumericLiteralExp A NumericLiteralExp denotes a value of either the type
Integer or the type Real.

• PrimitiveLiteralExp A PrimitiveLiteralExp literal denotes a value of a primi-
tive type.

Attributes
symbol The String that represents the value of the

literal.

• RealLiteralExp A RealLiteralExp denotes a value of the predefined type Real.

Attributes
realSymbol The Real that represents the value of the lit-

eral.

• StringLiteralExp A StringLiteralExp denotes a value of the predefined type
String.

Attributes
stringSymbol The String that represents the value of the

literal.

• TupleLiteralExp A TupleLiteralExp denotes a tuple value. It contains a name
and a value for each part of the tuple type.

5.2.1.6 Let Expressions

The abstract syntax metamodel for Let expressions introduce a new metaclass, the
metaclass LetExp, as shown in Figure 5.6. The other metaclasses are re-used from
the previous diagrams.

5.2. OCL METAMODEL (D1) 139

LiteralExp

4

+tuplePart 0..n

PrimitiveLiteralExp

4
TupleLiteralExp

NumericLiteralExp

4
StringLiteralExp
stringSymbol: String

VariableDeclaration

BooleanLiteralExp
booleanSymbol: Boolean

IntegerLiteralExp
integerSymbol: Integer

RealLiteralExp
realSymbol: Integer

EnumLiteralExp

CollectionLiteralExp
kind: CollectionKind

CollectionLiteralPart

4

CollectionRange

0..1 0..1

1 1+first +last

0..1

+item

1

+type

1

CollectionItem

OclExpression
Classifier
(from Core)

1

+enumeration

+literal

0..n

+referredEnumLiteral 1

+parts 0..n {ordered}
EnumLiteral

Enumeration
(from Core)

<< enumeration >>
CollectionKind
Collection
Set
Bag
Sequence

Figure 5.5: The Abstract Syntax Metamodel for Literal Expression

140 CHAPTER 5. FORMAL DEFINITION OF THE MEASURES

OclExpression

4

� �� +variable
1

+initializedVariable0..1

+initExpression
0..1

+in

1

0..1

LetExp VariableDeclaration
varName: String

Figure 5.6: Abstract Syntax Metamodel for Let Expression

5.2.1.6.1 LetExp Through a LetExp expression it is possible to define a new
variable with an initial value. A variable defined by a LetExp cannot change its
value. The value is always the evaluated value of the initial expression. The variable
is visible only in the in expression.

Associations
variable The VariableDeclaration that defined the variable.
in The OclExpression in whose environment the de-

fined variable is visible.

5.2.2 Samples of Abstract Syntax Tree

Given an OCL expression it is possible to build an abstract syntax tree (ast) of
it. The abstract syntax of OCL is defined via UML class diagram [Lia04] and
was described according to [OMG03b] in the previous section. The purpose of this
section is to show two samples of ast built from two different OCL expression.

Example 5.2.7 Figure 5.7 shows the following invariant as a stereotype associated
to the Company class whereas Figure 5.8 shows the standard place where an invariant
OCL expression occur in the UML and OCL metamodel.

context Company inv:
self.numberOfEmployees > 50

The object diagram for the abstract syntax of the invariant expression as an in-
stantiation of the metamodel for OCL expressions and types is depicted in Figure
5.9.

The object diagram basically shows an abstract syntax tree (ast). In order to build
the tree shown in Figure 5.9, instances of the following OCL metaclasses have been

5.2. OCL METAMODEL (D1) 141

used: OperationCallExp, AttributeCallExp, Operation, IntegerLiteralExp, Variable-
Exp and VariableDeclaration. Also, in the tree shown in Figure 5.9 there are in-
stances of the Class, Constraint and Attribute UML´s metaclasses.

The root of the tree of Figure 5.9 is the OperationCallExp expression, which has
three child branches:

• First, the source of the operation call expression is an AttributeCallExpression.

• The second branch models the referred operation, and

• The third branch represents the argument, an Integer Literal expression.

In order to compute the value of a specific measure, for example the measure Num-
ber of Explicit Self (NES), we must visit each of the tree nodes (instances of OCL
metaclasses), and verify if each of them belongs to the particular metaclass we are
interested in measuring. In the case of computing the value of NES, we need to
traverse the tree looking for instances of the VariableDeclaration metaclass having
an attribute called name whose value is ’self ’. In this example there is only one
instance of Variable Declaration with this characteristic. See the first leaf of the ast
tree.

Example 5.2.8 This example corresponds to the invariant OCL expression at-
tached to the Flight class of Figure 5.10. The meaning of the invariant expression is
that a flight does not contain more passengers than the number of seats of the air-
plane’ type associated with the airplane of the flight. The basic instantiation of this
fragment of the model for our example is consistent with the standard place where
an invariant OCL expression occurs in the UML and OCL metamodel. An OCL
expression always constitutes the body of a Constraint object associated with one or
more ModelElement objects. So, the instantiation includes two important objects:

• a class object where its name is Flight, and

• a constraint object to represent an invariant constraint.

The body of the constraint will be represented by the object diagram for the ast of
the invariant expression. The object diagram of Figure 5.11 basically shows an ast
in the right part.

The tree is built with instances of the following OCL metaclassses: OperationCall-
Exp, AttributeCallExp, AssociationEndCallExp, Operation, IntegerLiteralExp, Vari-
ableExp and VariableDeclaration OCL metaclasses. Within the tree there is also an
instance of the Attribute UML metaclass which constitutes the attribute referred by
the AttributeCallExp; and three instances of the AssociationEnd UML metaclass.

142 CHAPTER 5. FORMAL DEFINITION OF THE MEASURES

Company
numberOfEmployees: Integer
· · ·

Sample Design

<<invariant>>
self.numberOfEmployees > 50

Figure 5.7: Metamodel Objects for a Sample Design

The root of the tree of Figure 5.11 is the OperationCallExp expression, which has
three branches:

• First, the source of the Operation Call expression is the subtree modeling the
subexpression self.passenger->size().

• the second branch models the referred operation, and

• the third branch represents the argument, the subtree modeling the subexpres-
sion self.plane.planetype.numberofseats.

In order to compute the value of a specific measure we must visit each of the tree
nodes (instances of OCL metaclasses) and verify if each of them belongs to the
par-ticular metaclass we are interested in measuring. The implemented strategy for
visiting the elements is shown in the following section.

ModelElement
(from Core)

4

Classifer
(from Core)

Constraint
(from Core)
�0..1

1 +body

0..n +constraint
+constrainedElement 1

Expression
(from DataType)

4

ExpressionInOcl+bodyExpression

1
OclExpression

Figure 5.8: Situation of OCL Expression used as Definition or Invariant

5.3. FORMAL DEFINITION OF THE MEASURES (D4) 143

: Class

name: Company
+constraint

+constrainedElement

: Constraint

kind: Inv

+body

:ExpressionInOCL
.

....................
............

.....................
..............

.......................
...............

.........................
.................

............................
.................

...............................
.................

...............................
.....................

..................................
.....................

..................................
.........................

.......................................
.......................

: OperationCallExp

+parentOperation

+referredOperation +arguments

.

...........
...........
......

............
............
.......

..............
..............

......

................
................

.....

...................
...................

...

....................
....................

....

.......................
.......................

..

.........................
.........................

.

............................
...........................

...............................
...........................

.
...........
...........
...

...........
...........
....

............
............
.....

.............
.............
......

..............
..............
.......

...............
...............
........

................
................
.........

.................
.................
...........

.................
.................
..............

...................
...................
.............

: AttributeCallExp

.

...............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

.
......................................

...................................
.................................

..............................

............................

.........................

.......................

....................

...................

...................

..................

..................

..................

..................

+source

+appliedProperty

+referredAttribute+source

: Operation

name: >

: IntegerLiteralExp

name: 50

: VariableExp
.

..........
..........
..........
..........
..........
.....

..........
..........
..........
..........
..........
..

..........
..........
..........
..........
..........

..........
..........
..........
..........
........

+referredVariable

: Attribute

name = numberOfEmployees

: VariableDeclaration

name = self

Figure 5.9: AST Built for an OCL Invariant

5.3 Formal Definition of the Measures (D4)

This section formally defines the proposed measures. However, as the definition is
defined upon the OCL metamodel the implemented strategy to visit each of the
element in the ast tree -without clutter the OCL metaclasses- was to use a Visitor
Pattern. The strategy employed is described in subsection 5.3.1. The Visitor class
which allows us to obtain the value of each measure is specified in section 5.3.3.

144 CHAPTER 5. FORMAL DEFINITION OF THE MEASURES

Person
name: String
passport: String

*

flight 1

plane

0..* passengers

* flight˙in

Flight
id˙flight : String
id˙departure : String

Plane
id˙plane : String
year : Integer

Type˙of˙Plane
id˙type : String
capacity : Integer

1 planetype

Figure 5.10: Portion of Class Diagram about Flights

5.3.1 Implemented Strategy

There are many different operations we must carry out in order to compute the
measures values, and these operations should be defined in many OCL metaclasses,
but we do not want to clutter the OCL metaclasses with these operations. Moreover,
it is possible that during the process of measure definition, many of these operations
changes as the process time passes.

A useful implementation which help us to solve this problem is to use a Visitor
Pattern [GHJV95]. The operations we must define are located into a separate object
(a visitor). The visitor is sent to the tree root, eventually each element forwards the
requests to its children and also its calls activates the visitor. The visitor performs
operations on the element. An explanation of this pattern can be found in [GHJV95],
[RM00].

context Constraint::Value˙of˙NES() :Integer
post: self.body∧accept(self.visitor, MetricAcronym::NES)

and result = self.visitor.valueMetric

Figure 5.12 shows the basic UML design for implementing the strategy. Subsection
5.3.2 shows how the Accept operations are implemented in the OCL´s metaclasses
of the Expression Package. Subsection 5.3.3 describes the way measures values are
obtained and shows the Visitor Class and its operations.

All the expression used in this section were syntactically verified using ECLIPSE
[Ecl00] and the OCTUPUS component [Obj00], a plug-in of ECLIPSE.

5.3. FORMAL DEFINITION OF THE MEASURES (D4) 145

: Class

name: Flight
+constraint

+constrainedElement

: Constraint

kind: Inv
+body

:ExpressionInOCL
.

....................
............

.....................
..............

.......................
...............

.........................
.................

............................
.................

...............................
.................

...............................
.....................

..................................
.....................

..................................
.........................

.......................................
.......................+bodyexpression

: OperationCallExp

+parentOperation

+referredOperation +arguments+source

.

...........
...........
.....

...........
...........
....

.............
.............
.

...............
..............

.................
..............

.....................
............

.........................
..........

...............................
......

.......................................

.

...........
...........
.......

...........
...........
......

............
............
.....

..............
..............
....

................
................
..

...................
..................

.....................
..................

.........................
.................

...............................
.............

..................................
.............

: OperationCallExp

.

.................................

...............................

.............................

...........................

.........................

......................

....................

..................

.
...............................

............................

.........................

......................

...................

..................

.................

................

...............

..............+appliedProperty

+source

: Operation

name: >

: AttributeCallExp

name: capacity

.
...

.....................................

..................................

..............................

...........................

........................

....................

.................
.............
...........
........
......

.
...................................

................................

..............................

............................

.........................

.......................

....................

..................

+referredAttribute
+source

+referredOperation

.
..................

.....................

.......................

..........................

............................

...............................

.
..................

..................

...................

....................

......................

.........................

...........................

..............................

.................................

...................................

+source
+referredAssociationEnd

:AssociationEndCallExp

.
.......................

......................

.....................

......................

......................

.......................

.
................................

.................................

.................................

..................................

..................................

....................................

.......................................

...

+referredAssociationEnd+referredVariable

:Operation

name: size
:AssociationEndCallExp

:Attribute

name:capacity

:VariableExp

...........
..............

..................

......................

..........................

..............................

..................................

......................................

.

..

..

......................................

..................................

..............................

............................

+source
+referredAssociationEnd

:AssociationEnd

name: passenger

:AssociationEndCallExp

:VariableDeclaration

name: self

:VariableExp

+referredVariable

+source

:VariableDeclaration

name: self

:AssociationEnd

name: plane

:AssociationEnd

name:planetype

Figure 5.11: 2nd AST Built for an OCL Invariant

5.3.2 Implementing the Accept Operations

In this subsection we will show how the Accept´s operations are implemented in
the OCL´s metaclasses (described in section 5.2) of the Expression Package. Each
OCLExpression subclass define Accept operations in basically the same way: It calls
the Visitor operation that corresponds to the class that received the Accept request.
Eventually a specific Accept operation also traverses all the parts of its coupled
elements. So, in order to understand the Accept operations a clear comprehension
of the OCL metaclasses and their relationships is required.

OperationCallExp subclass defines Accept calling the Visitor operation that cor-
responds to the class, and it implements Accept by iterating over its arguments

146 CHAPTER 5. FORMAL DEFINITION OF THE MEASURES

ExpressionInOCL
.

..........
..........
........

...........
...........
.....

...........
...........
....

.............
.............

................
............

.................
............

.....................
.........

............................
....
visitor

<<enumeration>>
MetricAcronym

OCLExpression

4

bodyExpression

Visitor˙ast

PropertyCallExp LiteralExp

Figure 5.12: Implemented Strategy for Obtaining Measures Values

(whenever the arguments contain an element) and calling Accept on each of them.
It also calls Accept operation on its source.

context OperationCallExp::accept˙new(v: Visitor, metricName: MetricAcronym)
post: v∧visitOperationCallExp(self, metricName) and

(arguments->size() >= 1 implies
arguments->forAll(a | a∧accept˙new(v, metricName)))
and
(self.source->notEmpty()
implies self.source∧accept˙new(v, metricName))

NavigationCallExp subclass defines Accept calling the Visitor operation that corre-
sponds to the class, and it implements Accept by iterating over its qualifiers (when-
ever the qualifiers contain an element) and calling Accept on each of them. It also
calls the Accept operation on its source.

context NavigationCallExp::accept˙new(v: Visitor˙ast, metricName: MetricAcronym)
post: v∧visitNavigationCallExp(self, metricName) and

(self.qualifiers->size() >= 1 implies
self.qualifiers->forAll(q | q∧accept˙new(v, metricName))
)
and
(self.source->notEmpty() implies self.source∧accept˙new(v, metricName))

AttributeCallExp subclass defines Accept calling the Visitor operation that corre-
sponds to the class, and it calls the Visitor operation on its source whether the
source is not empty.

context AttributeCallExp::accept˙new(v: Visitor, metricName: MetricAcronym)
post: v∧visitAttributeCallExp(self, metricName) and

(self.source->notEmpty() implies
self.source∧accept˙new(v, metricName)
)

5.3. FORMAL DEFINITION OF THE MEASURES (D4) 147

A LetExp object calls the Visitor operation that corresponds to the class, and it
calls Accept operations on its In and variable.initExpression variables.

context LetExp::accept˙new(v: Visitor, metricName: MetricAcronym)
post: v∧visitLetExp(self, metricName) and

self.In∧accept˙new(v, metricName) and
self.variable∧accept˙new(v, metricName) and
(self.variable.initExpression->notEmpty() implies
self.variable.initExpression∧accept˙new(v, metricName)
)

A IfExp object calls the Visitor operation that corresponds to the class, and calls
Accept operations on its condition, thenExpression and elseExpression variables.

context IfExp::accept˙new(v: Visitor˙ast, metricName: MetricAcronym)
post: v∧visitIfExp(self, metricName) and

self.condition∧accept˙new(v, metricName) and
self.thenExpression∧accept˙new(v, metricName) and
self.elseExpression∧accept˙new(v, metricName)

LoopExp subclass defines Accept calling the Visitor operation that corresponds to
the class, and it implements Accept by iterating over its iterators (whenever the
iterators contain an element) and calling Accept on each of them. It also calls the
Accept operation on its Body.

context LoopExp::accept˙new(v: Visitor˙ast, metricName: MetricAcronym)
post: v∧visitLoopExp(self, metricName) and

self.Body∧accept˙new(v, metricName) and
(self.iterators->size() >= 1 implies
iterators->forAll(a | a.initExpression->notEmpty()

implies
a.initExpression∧accept˙new(v, metricName)
))

OClMessageExp subclass defines Accept calling the Visitor operation that corre-
sponds to the class, and it implements Accept by iterating over its arguments (when-
ever the arguments contain an element) and calling Accept on each of them. It also
calls the Accept operation on its target.

context OclMessageExp::accept˙new(v: Visitor, metricName: MetricAcronym)
post: v∧visitOclMessageExp(self, metricName) and

target∧accept˙new(v, metricName) and

148 CHAPTER 5. FORMAL DEFINITION OF THE MEASURES

(arguments->notEmpty() implies
arguments->forAll(a | a.expression->notEmpty()

implies a.expression∧accept˙new(v, metricName)
))

A CollectionRange subclass calls the Visitor operation that corresponds to the class
and calls Accept operations on its first and last variables.

context CollectionRange::accept˙new(v: Visitor, metricName: MetricAcronym)
post: v∧visitCollectionRange(self, metricName) and

first∧accept˙new(v, metricName) and
last∧accept˙new(v, metricName)

A CollectionItem subclass calls the Visitor operation that corresponds to the class
and calls Accept operations on its item.

context CollectionItem::accept˙new(v: Visitor, metricName: MetricAcronym)
post: v∧visitCollectionItem(self, metricName) and

item∧accept˙new(v, metricName)

TupleLiteralExp subclass defines Accept calling the Visitor operation that corre-
sponds to the class, and it implements Accept by iterating over its tuplePart (when-
ever the tuplePart contain an element) and calling Accept on each of them.

context TupleLiteralExp::accept˙new(v: Visitor, metricName: MetricAcronym)
post: v∧visitTupleLiteralExp(self, metricName) and

(tuplePart ->notEmpty() implies
tuplePart->forAll(p | p.initExpression->notEmpty() implies

p.initExpression∧accept˙new(v, metricName)
))

A LiteralExp object calls the Visitor operation that corresponds to its class.

context LiteralExp::accept˙new(v: Visitor, metricName: MetricAcronym)
post: v∧visitLiteralExp(self, metricName)

5.3. FORMAL DEFINITION OF THE MEASURES (D4) 149

Table 5.1: A Visitor Class
ClassName: Visitor

<<attributes>>:
- valueMetric: Integer;
- importedproperties: Set(String);
- navigatedClasses: Set(String);
� navigatedRelationships: Set(String);
- aSetofValues : Set(Integer);
- maxDepthatLevel: Sequence(Integer);

<<operations>>:
+ visitOperationCallExp(o: OperationCallExp, level: Integer, metricName: MetricAcronym) :
Integer
+ visitNavigationCallExp(o: NavigationCallExp, level: Integer, metricName: MetricAcronym)
: Integer
+ visitAttributeCallExp(o: AttributeCallExp,level: Integer, metricName: MetricAcronym) :
Integer
+ visitLetExp(o: LetExp, level: Integer, metricName: MetricAcronym) : Integer
+ visitIfExp(o: IfExp, level: Integer, metricName: MetricAcronym) : Integer
+ visitLoopExp(o: LoopExp, level: Integer, metricName: MetricAcronym) : Integer
+ visitOclMessageExp (o: OclMessageExp, level: Integer, metricName: MetricAcronym) :
Integer
+ visitCollectionRange(o: CollectionRange,level: Integer, metricName: MetricAcronym) : In-
teger
+ visit CollectionItem(o: CollectionItem, level: Integer, metricName: MetricAcronym) : Inte-
ger
+ visitTupleLiteralPart (o: TupleLiteralPart,level: Integer, metricName: MetricAcronym) :
Integer
+ visitLiteralExp(o: LiteralExp, level: Integer, metricName: MetricAcronym) : Integer

5.3.3 A Visitor Class for Obtaining the Value of OCL mea-
sures

In this subsection a Visitor class is defined. Its methods are shown in Table 5.1,
they allow us to compute the value of the OCL expression measures.

In the following we show how the measure values are obtained along with how the
visitor class defines a corresponding operation for each OCL metaclass in order to
obtain the values.

• NES: References to the self variables are examples of a VariableExp. The
referredVariable is an instance of the VariableDeclaration, being its name
self.

context Visitor::visitLetExp(o: LetExp, metricName: MetricAcronym)
pre: o.oclIsKindOf(OclAbstractSyntax::Expressions::VariableDeclaration)

150 CHAPTER 5. FORMAL DEFINITION OF THE MEASURES

post: (metricName = MetricAcronym:: NES
and o.variable.name = ’self’)
implies
valueMetric = valueMetric@pre + 1

context Visitor::visitTupleLiteralExp(o: TupleLiteralExp,
metricName: MetricAcronym)

pre: o.oclIsKindOf(OclAbstractSyntax::Expressions::TupleLiteralExp)
post: (metricName = MetricAcronym::NES and

o.tuplePart->notEmpty())
implies valueMetric = valueMetric@pre +
o.tuplePart->collect(a | if a.varName = ’self’ then 1

else 0 endif)->sum()

context Visitor::visitLoopExp(o: LoopExp, metricName: MetricAcronym)
pre: o.oclIsKindOf(OclAbstractSyntax::Expressions::LoopExp)
post:

(metricName = MetricAcronym::NES and
o.iterators->size() >= 1)
implies

valueMetric = valueMetric@pre +
o.iterators->collect(a | if a.varName = ’self’ then 1
else 0 endif)->sum()

context Visitor::visitIterateExp(o: IterateExp, metricName: MetricAcronym)
pre: o.oclIsKindOf(OclAbstractSyntax::Expressions::IterateExp)
post: (metricName = MetricAcronym::NES

and o.result.varName = ’self’)
implies valueMetric = valueMetric@pre + 1

context Visitor::visitVariableExp(o: VariableExp, metricName: MetricAcronym)
pre: o.oclIsKindOf(OclAbstractSyntax::Expressions::VariableExp)
post: (metricName = MetricAcronym::NES

and o.referredVariable.varName = ’self’)
implies valueMetric = valueMetric@pre + 1

• NKW: This measures value is equal to the number of keywords used in an
expression. The keywords were defined in section 4.3.3. Many OCL meta-
classes represent different keywords, e.g. LetExp a Let expression, IfExp an
If expression, etc.

context Visitor::visitLetExp(o: LetExp, metricName: MetricAcronym)
pre: o.oclIsKindOf(OclAbstractSyntax::Expressions::VariableDeclaration)
post: metricName = MetricAcronym:: NKW)

implies
valueMetric = valueMetric@pre + 1

5.3. FORMAL DEFINITION OF THE MEASURES (D4) 151

context Visitor::visitIfExp(o: IfExp, metricName: MetricAcronym)
pre: o.oclIsKindOf(OclAbstractSyntax::Expressions::IfExp)
post: (metricName = MetricAcronym::NKW)

implies valueMetric = valueMetric@pre + 1

context Visitor::visitOperationCallExp(o: OperationCallExp,
metricName: MetricAcronym)

pre: o.oclIsKindOf(OclAbstractSyntax::Expressions::OperationCallExp)
post: (metricName = MetricAcronym::NKW) and

Set{’and’, ’or’, ’xor’, ’implies’}->includes(o.referredOperation.name))
implies valueMetric = valueMetric@pre + 1

• NBO: Boolean Operators are instances of OperationCallExp metaclass
where the name of the referredOperation is and, or, xor or implies.

context Visitor::visitOperationCallExp(o: OperationCallExp,
metricName: MetricAcronym)

pre: o.oclIsKindOf(OclAbstractSyntax::Expressions::OperationCallExp)
post: (metricName = MetricAcronym::NBO and

Set{’and’, ’or’, ’xor’, ’implies’}->includes(o.referredOperation.name))

implies valueMetric = valueMetric@pre + 1

• NCO: Comparison Operators are instances of OperationCallExp metaclass
where the name of the referredOperation is ’=’, ’<=’, ’>=’, ’<’, ’>’.

context Visitor::visitOperationCallExp(o: OperationCallExp,
metricName: MetricAcronym)

pre: o.oclIsKindOf(OclAbstractSyntax::Expressions::OperationCallExp)
post: (metricName = MetricAcronym::NCO and

Set’=’, ’<=’, ’>=’, ’<’, ’>’->includes(o.referredOperation.name))
implies valueMetric = valueMetric@pre + 1

• NAS: The ’number of the Attributes belonging to the Classifier that self
represents’ is obtained by counting the instances of AssociationCallExp
where self is the name of the referredvariable through its source variable.

context Visitor::visitAttributeCallExp(o: AttributeCallExp,
metricName: MetricAcronym)

post: (metricName = MetricAcronym::NAS
and o.source.oclIsTypeOf(VariableExp)
and o.source.oclAsType(VariableExp).referredVariable.varName = ’self’
)
implies importedproperties =
importedproperties@pre ->including(o.referredAttribute.name)

152 CHAPTER 5. FORMAL DEFINITION OF THE MEASURES

• NOS: The ’number of the Operations belonging to the Classifier that self
represents’ is equal to the quantity of instances of OperationCallExp where
self is the name of the referredvariable through its source variable.

context Visitor::visitOperationCallExp(o: OperationCallExp,
metricName: MetricAcronym)

post: (metricName = MetricAcronym::NOS
and o.source.oclIsTypeOf(VariableExp)
and o.source.oclAsType(VariableExp).referredVariable.varName = ’self’
)
implies importedproperties =
importedproperties@pre->including(o.referredOperation.name)

• NAN: The ’number of the Attributes belonging to a Classifier which is differ-
ent to the Classifier that self represents’ is equal to the quantity of instances
of AssociationEndCallExp where the type of its source is an Associatio-
nEndCallExp or AssociationClassCallExp.

context Visitor::visitAttributeCallExp(o: AttributeCallExp,
metricName: MetricAcronym)

post: (metricName = MetricAcronym::NAN
and o.source.oclIsTypeOf(AssociationEndCallExp)
and o.source.oclIsTypeOf(AssociationClassCallExp)
)
implies importedproperties =
importedproperties@pre ->including(o.referredAttribute.name)

• NON: The ’number of the Operations belonging to a Classifier which is dif-
ferent to the Classifier that self represents’ is equal to the quantity of instances
of AssociationEndCallExp where the type of its source is an Associatio-
nEndCallExp or AssociationClassCallExp.

context Visitor::visitOperationCallExp(o: OperationCallExp,
metricName: MetricAcronym)

post: (metricName = MetricAcronym::NON
and o.source.oclIsTypeOf(AssociationEndCallExp)
and o.source.oclIsTypeOf(AssociationClassCallExp)
)
implies importedproperties =
importedproperties@pre->including(o.referredOperation.name)

• NUDTA: Attributes belonging to a DataType is obtained by counting the
instances of AttributeCallExp where its type, the referredvariable, is a
Datatype.

5.3. FORMAL DEFINITION OF THE MEASURES (D4) 153

context Visitor::visitAttributeCallExp(o: AttributeCallExp,
metricName: MetricAcronym)

post: (metricName = MetricAcronym::NUDTA
and o.referredAttribute.type.oclIsTypeOf(DataType)
)
implies importedproperties =
importedproperties@pre ->including(o.referredAttribute.name)

• NUDTO: The ’number of Operations belonging to a DataType’ is obtained
counting the instances of OperationCallExp where the owner of its the re-
ferredOperation is a Datatype.

context Visitor::visitOperationCallExp(o: OperationCallExp,
metricName: MetricAcronym)

post: (metricName = MetricAcronym::NUDTO
and o.referredOperation.owner.oclIsTypeOf(DataType))
)
implies importedproperties =
importedproperties@pre->including(o.referredOperation.name)

• N@P:Whenever the postfix atPre is specified, an instance ofOperationCall-
Exp metaclass should be used, having the name of the referredOperation the
name of ’atPre’.

context Visitor::visitOperationCallExp(o: OperationCallExp,
metricName: MetricAcronym)

pre: o.oclIsKindOf(OclAbstractSyntax::Expressions::OperationCallExp)
post: (metricName = MetricAcronym::NatP

and o.referredOperation.name = ’atPre’)
implies valueMetric = valueMetric@pre + 1

• NIO: The number of ’oclIsTypeOf’, ’oclIsKindOf’ and ’oclAsTupe’ opera-
tors is obtained counting the instance of OperationCallExp metaclass where
the name of the referredOperation is the matching name, i.e. the name is
’oclIsTypeOf’, ’oclIsKindOf’ or ’oclAsTupe’.

context Visitor::visitOperationCallExp(o: OperationCallExp,
metricName: MetricAcronym)

pre: o.oclIsKindOf(OclAbstractSyntax::Expressions::OperationCallExp)
post: (metricName = MetricAcronym::NIO and

Set’oclIsTypeOf’, ’oclIsKindOf’, ’oclAsTupe’->
includes(o.referredOperation.name))

implies valueMetric = valueMetric@pre + 1

154 CHAPTER 5. FORMAL DEFINITION OF THE MEASURES

The value of NES, NKW, NBO, NCO, NAS, NOS, NAN, NON, NIO, NUDTO,
NUDTA and N@P is obtained in similar way. However the definition for the rest of
the measures is more complicated, and we will their definition in details.

Finally, we can show how the value of NCO is obtained:

context ExpressionInOcl::value˙of˙NCO() : Integer
post: self.bodyExpression∧accept˙new(self.visitor, 0, MetricAcronym::NCO)

and result = self.visitor.valueMetric

In the same way, using the valueMetric variable, the values of NES, NKW, NBO,
NIO and N@P are obtained.

In order to compute the value of NAN the following operation is defined:

context ExpressionInOcl::value˙of˙NAN() : Integer
post: self.visitor.oclIsNew()

and self.bodyExpression∧accept˙new(self.visitor, 0, MetricAcronym::NCO)
and result = self.visitor.importedproperties->size()

In the same way, using the importedproperties variable, the values of NAS, NUDTA,
NOS, NON and NUDTO are obtained.

5.3.3.1 NNR and NNC measures

Whenever a visitor accesses a NavigationCallExp object, it loads in a set (called
navigatedClasses) the name of the classes used in the navigation (whether the mod-
eler use a navigation class) or the name of the class of the AssociationEndCall type
(i.e. the name of the class to which the rolename refers). The size of this set is used
to obtain the NNC value.

context Visitor::visitNavigationCallExp(o: NavigationCallExp,
metricName: MetricAcronym)

post:
metricName = MetricAcronym::NNC
implies navigatedClasses = navigatedClasses@pre->including(
if self.oclIsTypeOf(AssociationEndCallExp)

then source.oclAsType(AssociationEndCallExp).
referredAssociationEnd.type.name
else source.oclAsType(AssociationClassCallExp).
referredAssociationClass.name
endif)

5.3. FORMAL DEFINITION OF THE MEASURES (D4) 155

A similar operation is used to compute the quantity of relationships (NNR measure).
However, as a same name of a rolename can be used in different classes we decided
to represent in the set those elements composed by the pair of two strings, the name
of the class and the name of the relationship.

context Visitor::visitNavigationCallExp(o: NavigationCallExp,
metricName: MetricAcronym)

post:
metricName = MetricAcronym::NNR
implies navigatedClasses = navigatedClasses@pre->union(
(if self.oclIsTypeOf(AssociationEndCallExp)
then source.oclAsType(AssociationEndCallExp).

referredAssociationEnd.type.name
else source.oclAsType(AssociationClassCallExp).

referredAssociationClass.name
endif)->append
(if self.oclIsTypeOf(AssociationEndCallExp)
then source.oclAsType(AssociationEndCallExp).

referredAssociationEnd.name
else source.oclAsType(AssociationClassCallExp).

referredAssociationClass.name
endif))

5.3.3.2 WNN and WNCO measures

There are some OCL expression measures that its computation use a weighted factor,
such as WNN and WNCO using a level factor. In both cases the level represents the
degree of compositions of collection operations, i.e. if an OCL expression includes a
navigation along with a collection operation whose body includes a new navigation,
the collection operation determines a new level. Level 1 refers to the place where
the first navigation is defined whereas the body of the collection operation is at the
second level. WNN weights the number of navigations of a level by the level itself,
meanwhile WNCO weights the number of collection operations of a level by the level
itself.

The level is specified through a parameter of each accept operations and consists
of a value parameter that each ast node forwards to its descendants. The value is
incremented by the IteratorExp accept operation because this class represents all
the collection operations.

context IteratorExp::accept(v: Visitor˙ast, level: Integer,
metricName: MetricAcronym)

post: v∧visitIterateExp(self, level , metricName) and
self.Body∧accept˙new(v, level + 1, metricName) and
self.source∧accept˙new(v, level, metricName) and

156 CHAPTER 5. FORMAL DEFINITION OF THE MEASURES

(self.iterators->size() >= 1 implies
iterators->forAll(a | a.initExpression->notEmpty()

implies
a.initExpression∧accept˙new(v, level + 1, metricName)
))

The same accept operation is defined for IterateExp.

5.3.3.2.1 WNNmeasure: When each ast node of type NavigationCallExp calls
the visitor that corresponds to the class, the visitor uses the level parameter. The
first NavigationCallExp object (in an ast) of any simple or combined navigation
produces that a level value being included in a set of Values (aSetofValues) to
compute WNN measure.

context Visitor::visitIterateExp(o: IterateExp, level: Integer, metricName: MetricAcronym)
pre: o.oclIsKindOf(OclAbstractSyntax::Expressions::IterateExp)
post: (metricName = MetricAcronym::WNN

and (o.appliedProperty.oclIsTypeOf(AttributeCallExp)
or o.appliedProperty.oclIsTypeOf(OperationCallExp)
and o.source.oclIsTypeOf(VariableExp)
)
implies aSetofValues = aSetofValues@pre->including(level)

5.3.3.2.2 WNCO measure: When each ast object of type IteratorExp calls the
Visitor operation that corresponds to the class, the visitor uses the level parameter.
The visitor includes a level value in the set of values to compute this measure. The
same operation is performed in the visitIterateExp.

context Visitor::visitIteratorExp(o: IterateExp, level: Integer, metricName: MetricAcronym)
pre: o.oclIsKindOf(OclAbstractSyntax::Expressions::IteratorExp)
post: metricName = MetricAcronym::WNCO

implies aSetofValues = aSetofValues@pre->including(level)

context Visitor::visitIterateExp(o: IterateExp, level: Integer, metricName: MetricAcronym)
pre: o.oclIsKindOf(OclAbstractSyntax::Expressions::IterateExp)
post: metricName = MetricAcronym::WNCO

implies aSetofValues = aSetofValues@pre->including(level)

5.3.3.3 DN measure

The value of DN measure is obtained using an OCL Sequence of Integer, called
maxDepthAtLevel. The Sequence contains the max depth of navigation for each

5.4. CONTRIBUTION TO THE DISSERTATION 157

level. A new operation was defined in the NavigationCallExp metaclass. This oper-
ation, getdepthofNavigation, is recursive because the navigation could be combined.
In each iteration of this operation a new relationship is navigated. When the last
rolename of a combined navigation is traversed the recursion finish.

context Visitor::visitNavigationCallExp(o: NavigationCallExp, level: Integer,
metricName: MetricAcronym)

post: (metricName = MetricAcronym::DN and
(o.appliedProperty.oclIsTypeOf(AttributeCallExp)
or o.appliedProperty.oclIsTypeOf(OperationCallExp))
implies maxDepthatLevel = maxDepthatLevel@pre->insertat(level,

maxDepthatLevel->at(level).max(o.getdepthNavigation(o))

context NavigationCallExp::getdepthNavigation(a: NavigationCallExp) : Integer
body: (if source.oclIsTypeOf(AssociationEndCallExp)

then 1 + getdepthNavigation(source.oclAsType(AssociationEndCallExp))
else

(if source.oclIsTypeOf(AssociationClassCallExp)
then
1 + getdepthNavigation(source.oclAsType(AssociationClassCallExp))
else
1
endif)

endif)

The sequence maxDepthAtLevel is used to obtain the value of DN in the following
way: The values of each level are accumulated and for each new level we increment
by 2 the value of the measure because a definition connection is used to represent
this situation.

5.4 Contribution to the Dissertation

Within the OO software measurement community the formal definition of measures
is an important aspect that was almost neglected. Although there is a huge amount
of OO measures, the lack of formalization constitutes a serious matter. Only natural
language or rigorous mathematical definition were used, being none of these extremes
suitable and widely adopted. Sometimes an increase in the focus on one aspect
such as a more rigorous definition (e.g. when mathematical background is used)
it decreases the focus on another aspect (e.g. not everybody is familiar with the
mathematical formalism applied in a rigourous definition). On the other hand, if a
less rigorous definition is applied for gaining a wide range of audience, ambiguity is
introduced. Our belief is that the combination of the metamodelling facilities and
the OCL as a language for defining OCL semantics, such as in defining the UML

158 CHAPTER 5. FORMAL DEFINITION OF THE MEASURES

and OCL languages, allows also unambiguous measure definition achieving both
understandability and formality in their specification. We claim that the formal
definition of our measures using OCL language is easy to grasp by anybody familiar
with metamodelling. The relevance of the proposed approach for the specification
of OCL expressions measures using OCL upon the OCL metamodel is reinforced
by the growing field of Model Driven Architecture paradigm and the proliferation
of MOF-compliant architectures. In addition, the formal specification of measures
allows the development of precise measures extraction tools and we believe that
in the future, code implementation for UML and OCL measures extraction can be
translated from their formal definition through model transformations (a relevant
aspect of model-driven engineering).

In this chapter our goal was to precisely define the OCL expression measures. In
order to fulfill this purpose we used the OCL metamodel (at M2 of MOF). So, we
had firstly described each of the OCL metaclasses used in any measure definition.
Afterwards, we described the strategy used to traverse the ast object (an instance
of the OCL metamodel) to compute a measure value. Finally, we had included the
measure formal definition.

Chapter 6

Theoretical Validation

The theoretical validation is carried out to assess whether a measure actually mea-
sures what it claims to measure. The theoretical proof is crucial to avoid construct
validity threats. To develop the theoretical validation we have applied the activities
described in section 2.3.2. We have used property-based frameworks (Activity T1

of Figure 2.5) and a framework based on the measurement theory (Activity T2 of
Figure 2.5). These two applications are described in sections 6.1 and 6.2 respectively.

Whenever an activity of the method is applied, the corresponding section is titled
accordingly and a reference to its number is included between parenthesis.

6.1 Use Property-based Frameworks (T1)

In this section we use two frameworks to theoretical validate the measures: the
Briand et al. Framework [BMB96], [BMB97] and its adaptation for interaction-based
measures for coupling and cohesion [BMB99]. Subsection 6.1.1 uses the property-
based framework of Briand et al. [BMB96], [BMB97] for validate measures of size
and length, i.e. we used generic properties defined by Briand et al., applying the
activities P1 and P2 of Figure 2.5 (b).

However, in order to study the relations defined between a software individual part
-in our context, an OCL expression- and its associated software system -mainly, at-
tributes, rolenames, and operations and other expressions- we need to apply context-
dependent properties as it is described by activities P3 and P4 of of Figure 2.5 (b).
So, to perform this activity we follow a similar approach to that described in sec-
tion B.1.2 when context-dependent properties are defined fro ADA’ modules. In
section 6.1.2 we explain how the Briand et al. [BMB99] adaptation framework for
interaction-based measures for coupling and cohesion [BMB99] is used and applied.

160 CHAPTER 6. THEORETICAL VALIDATION

We used this framework because we focus on the import-coupling of an OCL expres-
sion, and we want to study the interaction of an OCL expression with its associated
system, i.e. its surrounding context (remember that OCL is not an stand-alone
language). The framework used is rarely applied in other theoretical validation of
measures although its authors states that the notion of interaction can be applied
to other object-based design methods and formalisms. Briand et al. [BMB99] also
remark that ’When working with other design techniques, one can use all the avail-
able information on the interactions between elements of the design. If mechanisms
for describing such interactions exists, then one can apply our approach, based on
more information than is available in our case’, obtaining in that way more accurate
models.

6.1.1 Applying Generic Properties (P1,P2)

In this section the generic properties of size and length [BMB96], [BMB97] (described
in section B.1.1.1) are used for the validation of some OCL expression measures.
Due to the fact we will apply a generic property we follow the activities P1 and P2

of Figure 2.5 (b).

6.1.1.1 NCO as a Size Measure

• Instantiation (P1): For our purpose and in accordance with the framework of
Briand et al. [BMB96] and [BMB97], we consider that an OCL expression is
a system composed of comparison operators (elements) and the relationship
between elements is just the sequential relationship. A sub-expression will be
considered a module.

• Validation using the properties (P2): We will demonstrate that NCO fulfills
all of the axioms that characterize size measures, as follows:

1. Nonnegativity: Is directly proven and it is impossible to obtain a neg-
ative value.

2. Null value: An expression e without a message, has a WNM(e) = 0

3. Module Additivity: If we consider that an OCL expression is composed
of modules, the number of comparison operator of an OCL expression will
always be the sum of the number of comparison operators of its modules.

In a similar way, it is possible to show that WNN, WNCO, NKW, NES, NIS, NEI,
NII and NBO are size measures.

6.1. USE PROPERTY-BASED FRAMEWORKS (T1) 161

6.1.1.2 DN as a Length Measure

• Instantiation (P1): For our purpose and in accordance with the framework of
Briand et al. [BMB96] and [BMB97], we consider that an OCL expression is a
system. The elements are the classes (to which the expression navigates) and
the relationships are the navigations of a UML relationship.

• Validation using the properties (P2): We will demonstrate that DN fulfills all
of the axioms that characterize length measures, as follows:

1. Nonnegativity and Null Value are straightforwardly satisfied, the
depth of a tree can never be negative, and an expression without naviga-
tion has an empty tree, and DN is 0.

2. Nonincreasing monotonocity for connected components: If we
add relationships between elements of a tree (classes or interfaces) the
depth does not vary.

3. Nondecreasing monotonocity for non- connected components:
Adding a relationship to two unconnected components (two trees) makes
them connected, and its length is not less than the length of the two
unconnected components.

4. Disjoint modules: The depth of a tree is given by the component that
has more levels from the root to the leaves.

6.1.2 Applying Context-dependent Properties (P3,P4,P5)

In this section we will apply a similar approach as the one taken by Briand et al.
in [BMB99]. This approach was described in section B.1.2. Instead of using Ada´s
modules and subroutines as a high level design we will use UML/OCL models, being
the measures applied to OCL expressions defined in that models. In the approach
applied several concepts should be defined, mainly the notion of what is considered
a high-level design, which are the main components of the object-based design along
with the interaction links, etc.
Before applying the framework of Briand et al. [BMB99], we will define the basic
terminology used in our context.

6.1.2.1 Definition of the Context (P3)

In this subsection we define the context to which the properties will be applied,
this activity constitutes the application of activity P3 of Figure 2.5 (b). Our object
of study is to define measures for a specific elementary component of a high-level

162 CHAPTER 6. THEORETICAL VALIDATION

design. So, first at all, we will define which is considered for us a high-level design
(implicitly we are currently defining the object-based design method and formalism
used in our study):

A High level Design and its elementary components and relationships
UML/OCL models will be considered a high level design: A UML class diagram
with the specification of OCL expressions defining invariants, definitions, queries,
pre- and post-condition of operations (which only declares the effect of the operation
but not how the operation is performed [WK03]), etc. will be considered a high
level design.

Now we will describe the elementary component of our high level design. One im-
portant elementary component is a module (we use the same concepts as [BMB99])
represented in our design by a class. The module, a class, can be composed by three
different components:

• attributes

• operations

• OCL expressions

Modules and module´s components may be related to each other by IS˙COM- PO-

NENT˙OF and USES relationships. The definition of these relation can be found in
section B.1.2.

We will define measures that can be applied only to OCL expressions. We will
study the relations defined between a software individual part -in our context, an
OCL expression- and its associated software system -mainly, attributes, rolenames,
and operations and other expressions-. For short, we will use the term software
part (sp) to denote an OCL expression. An OCL expression, for example a pre- or
post-condition, gives to the designer a high level point of view of the content of an
operation. In that way, in our context the OCL expression is component of what
is called ’subroutine’ in the Briand et al.´s framework. Indeed, the information
available in our context about a ’subroutine’ is higher than one available in Ada´s
context of [BMB99].

6.1. USE PROPERTY-BASED FRAMEWORKS (T1) 163

Interactions
There are three possible kinds of interactions forms in our context:

1. data declarations to data declarations,

2. data declarations to OCL expression,

3. OCL expression to OCL expression,

However we do not study all of them, due to the fact our measures should be applied
to OCL expressions the first form of interaction is not relevant for our study. We
decided to focus only in the second kind of interaction, and we specifically consider
coupling-based interaction.

An OCL expression can access to the components of its associated system through
OCL messages, OCL navigations, etc. The interaction links are defined as follow:

Definition 6.1.1 DU-interaction. The interaction from data Declaration to data
Used in an OCL expression.

In our context we consider as a Data declaration any information of the model
(attributes, role names, etc.) referred through an OCL property or other OCL mech-
anisms. Whenever an OCL expression refers to a property, it ’uses’ the property.
The way a Data declaration of the associated system is used in an expression, can
involve different OCL concepts for that reason we have differentiated several kinds
of DU-interaction.

Example 6.1.2 The top part of Figure 6.1 shows piece of a UML/OCL models (a
high level design) where six OCL expressions were defined. The bottom part shows
a directed graph, similar to the ones depicted in [BMB99], showing the modules and
link relationships of that model. Data declaration and Data Used are represented
by rounded nodes, operations and OCL expressions by thick lined boxes, modules
(classes) by thin lined boxes, and interactions by dotted arcs. For instance, it is
apparent that both the precondition and the postcondition use the p parameter de-
clared by the new˙customer operation. Two OCL expressions, one definition and
one invariant, use the salary attribute of the Job class. These are common exam-
ples of interaction between a data declaration and OCL expressions. One example
of interaction between two OCL expressions (in the Person class) is shown in the
arc between the income declaration of the definition expression and its use in an
invariant.

164 CHAPTER 6. THEORETICAL VALIDATION

Bank

bank˙name: String

new˙customer(p: Person)

0..*

employee 0..*

employer

0..1 bank

0..* customer

Person

isMarried : Boolean
isUnemployed : Boolean

Company

name : String
numberOfEmployees :
Integer

Job

title : String
startDate : Date
salary : Integer

<<invariant>>
self.Job.salary->sum() >= 10000
implies (self.bank->notEmpty() and
self.bank.bank˙name = BPN)

<<precondition>>
not customer -> includes(p)

<<postcondition>>
not customer -> customer at pre -> including(p)

<<invariant>>
numberOfEmployees>50

<<definition>>
income := Integer
self.job.salary ->sum()

<<invariant>>
if self.isUnemployed then
income < 100 else
income ≥ 100 endif

Bank
customer

......
.......
.............

......

I

bank˙name
......
.......
.............

......I
new˙customer

I p........
.......
..........

.......

........
p........

.......
..........

.......

........I customer......
......
..........

......

......

I
I

pre new customer

p
........
.......
..........

.......

........
I

customer......
......
..........

......

......

post new customer

Person

isMarried......
.......
.............

......

isUnemployed...........
........

.....

I

employer............
......
......
.................

..

I

I

bank.......
.......
...........

.......

I

job.......
.......
...........

.......

definition

income..............
.......
.......
.................

..

I

job..............
.......
.......
...............

.. salary............
......
......
...............

...

I

I

I

invariant I
income..............

.......
.......
.................

..isUnemployed.............
.....
...........

...

invariant I

job..............
.......
.......
...............

.. salary............
......
......
...............

...bank..............
.......
.......
...............

..

bank˙name
......
......
...........

......

Company

numberOfEmployees.........
...........

numberOfEmployees...........
........

.....

I

name.......
......
.........

......

.......

invariant

employees.......
.......
............

.......I

Job
title.......
.......
............

.......

startDate.......
.......
............

.......

salary.......
.......
............

.......

Figure 6.1: DU-interaction

6.1. USE PROPERTY-BASED FRAMEWORKS (T1) 165

After defining the interaction links of our high level design and giving an exempli-
fication we are able to define a core concept: import-coupling.

Import-coupling: Given a software part sp, import-coupling of sp is the number
of DU-interaction between data declaration external to sp and data used within sp.

Our hypothesis is similar to the IC and H-ISP hypothesis of [BMB99]:

• The more dependent a software part (an OCL expression) on external data
declarations, the more external information needs to be known in order to make
the software part consistent with the rest of the system. Any modification on
the data declaration could affect the modification of our software part (the
OCL expression). Also the comprehension of the software part as a whole
involve the comprehension of the external data declaration, from which it
depends.

• the larger the number of imported software parts, the larger the number to be
understood, the more likely to occurrence of a fault.

6.1.2.2 Context-dependent Properties (P4)

This activity represents the application of activity P4 of Figure 2.5 (b). The proper-
ties we believe should be satisfied by interaction-based import-coupling measures are
defined below. These properties are instantiated for our context, of the properties
defined in [BMB96] for coupling:

• Property OCLCoupling1. Nonnegativity. Given a software part sp
(an OCL expression), the measure import˙coupling˙measure(sp) ≥ 0. Im-
port˙coupling˙ measure(sp) = 0 if sp does not have import interactions with
other software parts.

• Property OCLCoupling2. Monotonicity. Let m1 be a module and II(m1),
its set of import interactions. If m2 is a modified version of m1 with the same
sets of data and subroutine declarations and one more import interaction so
that II(m2) ⊇ II(m1), then import˙coupling˙measure(m2) ≥ import˙cou-
pling˙measure(m1)

1.

• Property OCLCoupling3. Merging of Modules. The sum of the import-
couplings of two modules is no less than the coupling of the module which is
composed of the data declarations of the two modules.

1Adding import interactions to a module cannot decrease its import-coupling.

166 CHAPTER 6. THEORETICAL VALIDATION

Bank
bank˙name: String

Person
isMarried : Boolean
isUnemployed : Boolean
birthDate : Date
age : Integer
gender : Gender

Company
name : String
numberOfEmployees :
Integer

Job
title : String
startDate : Date
salary : Integer

<<invariant>>
self.Job.salary->sum() >= 10000
implies (self.bank->notEmpty() and
self.bank.bank˙name = BPN)

..
...............
...............
.
..............
..
.............
....

.............

.....

.............

......

.............

.............

.............

............

.............

...........

.............

.........

.............

........

..............
......

..............
.....

...............
...
..............
..
...............

...........
............
.............
...............
................

.
.....................
....................
...................

I

I

.........
.........
.........
...........

..........

.........

..

..
......

.........
.........
..........
.............
................

.....

.........
.........
..........
.............
................

.....

........
........
...........

.........

..
..

...........
.........
.........
.........

0..1 bank

0..* customer
manager

1 managedComp

0..*

Figure 6.2: Design Used for Explaining the Briand et al.´s Theoretical Validation

Now we will exemplify the application of this framework in the theoretical validation
of NAN measure.

6.1.2.3 NAN properties as a coupling interaction-based measure (P5)

This activity represents the application of activity P5 of Figure 2.5 (b). We will
make some definitions prior to the application of properties of interaction-based
measures for coupling to the NAN (The Number of Attributes referred through
Navigations in an expression) measure:

• Relation: The relations are defined between a software individual part (in
our context, an OCL expression) and its associated software system (attributes
which it is possible to access through navigations in the NAN measure).

• DU-interaction: The interaction from Data declaration to Data Used (at-
tributes used through navigations) in an OCL expression.

6.1. USE PROPERTY-BASED FRAMEWORKS (T1) 167

• Import-coupling: Given a software part sp (an OCL expression), import-
coupling of sp is the number of DU-interactions between data declaration
external to sp and data used within sp.

Our hypothesis is similar to the ISP-hypothesis of Briand et al. [BMB99]: The
larger the number of ”used” software parts, the larger the context to be understood,
the more likely the occurrence of a fault.

Example 6.1.3 Figure 6.2 shows a UML/OCL model and an OCL expression. The
value of NAN applied to the OCL expression is 2, because two external attribute data
were used in the OCL expression´s invariant, and its use was through navigations.
Two curves show the place where the two external data were declared, and the place
they were used within the OCL expression.

Following a similar approach applied in Briand et al. [BMB99] the properties for
interaction-based measures for coupling are instantiations, for our specific OCL con-
text, of the properties defined in Briand et al. (1996) and (1997) [BMB96], [BMB97]
for coupling.

1. Nonnegativity: Is directly proven, as it is impossible to obtain a negative
value. An expression sp without navigation (referring to attributes) in its
definition has NAN(sp) = 0.

2. Monotonicity: Is directly verified, adding import interactions - in this case,
DU-interactions of navigations referring to attributes- to an OCL expression
cannot decrease its import-coupling. If we add a new navigation referring
to an attribute in an expression sp, two possible situations can happen: (1)
the attribute referred to in the added navigation is an attribute already used
by a DU-interaction. Thus the measure NAN applied to the new expression
obtained, is equal to NAN(sp). (2) If the added navigation refers to a new
attribute, then NAN applied to the new expression is greater than NAN (sp).

3. Merging of Modules: This property can be expressed for our context in the
following way: ”the sum of the import-coupling of two modules is no less than
the coupling of the module which is composed of the data used of the two
modules”. The value of NAN for an expression which consists of the union of
two original expressions, is equal to the NAN of each expression merged when
the sets of attributes referred to in each original expression are disjointed,
otherwise it is less than NAN of each expression merged.

In a similar way, it is possible to show that NNR, NON, NNC, NPT, NUDTA,
NUDTO, NAS, NOS, N@P, WNN, WNCO, NEI, NII and NIO are interaction-based
measures for coupling.

168 CHAPTER 6. THEORETICAL VALIDATION

6.2 Use Framework based on the Measurement
Theory (T2)

In this section we will follow each of the steps for measurement construction proposed
in Poels and Dedene´s DISTANCE framework [PD00], [PD99]. We used the process
described in section B.2. In order to exemplify how it is applied two UML/OCL
models of Figure 6.3 were used.

• Find a measurement abstraction (MT1): In our case the set of software
entities e is the Universe of OCL Expressions (UOE) within UML/OCL models
that are relevant for some application domains whereas e is an OCL expression
(OCL-E) (i.e. e ∈ UOE).

The attribute of interest attr is the number of attributes referred through nav-
igations 2, i.e. a particular aspect of OCL expressions structural property.
Let UAttrrtN be the Universe of attributes rtN relevant to the Universe of
Discourse (UoD) domain. The set of attributes rtN in an OCL-E, noted as
ArtN(OCL-E) is a subset of of UAttrrtN.

All the sets of attributes rtN within the OCL expressions of UOE are ele-
ments of the power set of UAttrrtN, denoted by ℘(UAttrrtN). We can therefore
equate the set of measurement abstractions M to ℘(UAttrrtN) and define the
abstraction function as:

absNAN : UOE → ℘(UAttrrtN): OCL-E → ArtN(OCL-E)

This function maps an OCL-E onto its set of Attributes rtN. In our example,
see Figure 6.3 we have the set of attributes rtN of the OCL-E A and of OCL-E
B:
absNAN(E A) = ArtN(OCL-E A) = salary
absNAN(E B) = ArtN(OCL-E B) = salary, bank˙name

• Model distances between measurement abstractions (MT2): The next
step is to model distances between the elements of M. We need to find a set
of elementary transformation types (Te) for the set of measurement abstrac-
tions ℘ (UAttrrtN) such that any set of attribute rtN can be transformed into
any other set of attributes rtN by means of a finite sequence of elementary
transformations. Finding such a set it is quite easy in the case of a domain.
Since the elements of ℘ (UAttrrtN) are sets of attributes rtN, Te must only
contain two types of elementary transformations: one for adding an attribute

2We will use the acronym rtN in order to said ’referred through navigations’

6.2. USE MEASUREMENT THEORY-BASED FRAMEW.(T2) 169

OCL expression A (OCL-E A) within a UML/OCL model

Person
isMarried : Boolean
isUnemployed : Boolean
birthDate : Date
age : Integer
gender : Gender

Company
name : String
numberOfEmployees :
Integer

Job
title : String
startDate : Date
salary : Integer<<invariant>>

self.Job.salary->sum() >= 10000

manager

1 managedCompanies

0..*

0..*

employee

0..*

employer

Bank
bank˙name: String

Person
isMarried : Boolean
isUnemployed : Boolean
birthDate : Date
age : Integer
gender : Gender

Company
name : String
numberOfEmployees :
Integer

Job
title : String
startDate : Date
salary : Integer

<<invariant>>
self.Job.salary->sum() >= 10000
implies (self.bank->notEmpty() and
self.bank.bank˙name = BPN)

OCL expression B (OCL-E B) within a UML/OCL model

0..1 bank

0..* customer
manager

1 managedCompanies

0..*

Figure 6.3: Two UML/OCL Models used with the DISTANCE Framework

170 CHAPTER 6. THEORETICAL VALIDATION

rtN to a set and one for removing an attribute rtN from a set. Given two
sets of attribute rtN s1 ∈ ℘ (UAttrrtN) and s2 ℘ (UAttrrtN), s1 can always be
transformed into s2 by removing first all attributes rtN from s1 that are not
in s2, and then adding all attribute rtN to s1 that are in s2, but not in the
original s1. In the ”worst case scenario”, s1 must be transformed into s2 via
an empty set of attributes rtN.

Formally, Te = t0−NAN ,t1−NAssoc, where t0−NAN and t1−NAN are defined as:
t0−NAssoc: ℘ (UAttrrtN) → ℘ (UAttrrtN): s → s ∪ {a}, with a ∈ UAttrrtN
t1−NAssoc: ℘ (UAttrrtN) → ℘ (UAttrrtN): s → s - {a}, with a ∈ UAttrrtN

In our example, the distance between absNAN(OCL-E A) and absNAN(OCL-
E B) can be modelled by a sequence of elementary transformations, as is shown
below.
m0 = {salary}
m1 = {salary, bank˙name} = t0−NAN(m0)

This sequences of one elementary transformation is sufficient to transform
ArtN(OCL-E A) into ArtN(OCL-E B). All ”shortest” sequences of elementary
transformations qualify as models of distance.

• Quantify distances between measurement abstractions (MT3): In this
step the distances in ℘(UAttrrtN) that can be modelled by applying sequences
of elementary transformations of the types contained in Te are quantified. A
function δNAN of these distances is a measure (in a mathematical sense) that
is defined by the symmetric difference model, i.e. a particular instance of the
model of Tversky (Suppes et al. [KDST06]). It has been provided in [PD99]
that the symmetric difference model can always be used to define a measure
when the set of measurement abstractions is a power set:

δNAN : ℘(UAttrrtN) × ℘(UAttrrtN) → < : (s, s’) → (| s - s’| + | s’ - s|)

This definition is equivalent to stating that the distance between two sets of at-
tributes rtN, as modelled by a shortest sequence of elementary transformations
between these sets, is measured by the count of elementary transformations in
the sequence. Note that for any element in s but not in s and for any element
in s but not in s, an elementary transformation is needed. The symmetric
difference model results in a value of 1 for the distance between the set of
associations of OCL-E A and OCL-E B.
δNAN(abs(OCL-E A), abs(OCL-E B)) =

6.3. CONTRIBUTION TO THE DISSERTATION 171

|{salary} - {salary, bank˙name}| + |{salary, bank˙name} - {salary}| = | ∅ |
+ |{bank˙name}|= 1

• Find a reference abstraction (MT4): In our example the obvious reference
point for measurement is the empty set of attribute rtN. It is desirable that
an OCL expression without attribute rtN will have the lowest possible value
for the NAN measure. So that we define the following function:
refNAN : UOE → ℘ (UAttrrtN): OCL-E → ∅

• Define the software measure (MT5): In our example, the number of at-
tribute rtN in an OCL-E ∈ UOE can be defined as the distance between its
set of associations ArtN(OCL-E) and the empty set of associations ∅. Hence,
the NAN measure can be defined as a function that returns the value of the
measure δNAN for the pair of sets ArtN(OCL-E) and ∅ for any OCL-E ∈ UOE:
∀ OCL-E ∈ UOE: NAN(OCL-E) = δNAN(ArtN(OCL-E), ∅) = |ArtN(OCL-E)
- ∅| + | ∅ - ArtN(OCL-E)| = |ArtN(OCL-E)|

Consequently, a measure that returns the count of attribute referred through naviga-
tions of OCL expression within UML/OCL models qualifies as a number of attributes
rtN measure. Table 6.1 summarized the definition of the NAN measure following
the distance-based process of measurement construction. In fact, table 6.1 is an
instantiation of the template shown in table B.2.

The rest of the proposed OCL measures measures can be modelled by means of a
set abstraction (see table 6.2, 6.3, 6.4) and as a consequence all the measures take
the form of a simple count, so their process construction is analogous followed by
the measure NAN.

6.3 Contribution to the Dissertation

We have used two different frameworks in order to theoretically validate the mea-
sures defined in chapter 4. These frameworks are the property-based framework of
Briand et al. ([BMB96], [BMB97]) and its adaptation for interaction-based mea-
sures for coupling and cohesion [BMB99] and the DISTANCE framework based on
measurement theory [PD99].

From the results of the validation in the Poels and Dedene´s DISTANCE framework
[PD99] we can conclude that all the measures are ratio measures. A summary of
the results of the property-based frameworks of Briand et al. is shown in Table 6.5.

We are aware that it is necessary to provide information about the utility of the
measures in practice, through their empirical validation. The empirical validation
employing experiments or case studies is fundamental to assure that the measures

172 CHAPTER 6. THEORETICAL VALIDATION

m
ea
su
re

fo
r
O
C
L

N
A
N

is
th
e
total

n
u
m
b
er

of
attrib

u
tes

referred
trou

gh
ex
p
ressio

n
s
w
ith

in
n
av

igation
s
(rtN

)
in

an
O
C
L
ex
p
ression

.
U
M
L
/
O
C
L
m
o
d
els

S
o
ftw

a
re

a
ttrib

u
te

(a
ttr

)
N
u
m
b
er

of
attrib

u
tes

rtN
(a

su
b
-

ch
aracteristic

of
an

O
C
L

ex
p
res-

sion
(O

C
L
-E

))

S
o
ftw

a
re

en
tity

(p
∈

P
)

O
C
L
-E
∈

U
O
E

O
u
tp
u
t
o
f
d
ista

n
ce-b

a
sed

p
ro
cess

U
n
d
erly

in
g
m
ea
su
rem

en
t
th
eo
retic

co
n
stru

cts
a
n
d
fo
rm

a
l
d
efi

n
itio

n
s

M
ab

s
N
A
N
:
U
O
E
→

℘
(U

A
ttrrtN

):
O
C
L
-E
→

A
rtN

(O
C
L
-E

)
a
bs

(rem
a
rk

1
)

T
e

T
e
=

t
0−
N
A
N
,t
1−
N
A
sso

c
•
≥

•
≥
N
A
N

w
h
ere

t
0−
N
A
N

an
d
t
1−
N
A
N

are
d
efi
n
ed

as:
t
0−
N
A
sso

c :
℘
(U

A
ttrrtN

)
→

℘
(U

A
ttrrtN

):
s
→

s
∪
{a}

S
A
P
S

(℘
(U

O
E
),•
≥
N
A
N
)

t
1−
N
A
sso

c :
℘
(U

A
ttrrtN

)
→

℘
(U

A
ttrrtN

):
s
→

s
-{a}

w
ith

a
∈

U
A
ttrrtN

(rem
a
rk

2
)

δ
δ
N
A
N
:
℘
(U

A
ttrrtN

)
×
℘
(U

A
ttrrtN

)
→
<

:
M
S
A
S

(℘
(U

O
E
),δ

N
A
N
)

(s,
s’)
→

(|
s
-
s’|

+
|
s’

-
s
|)

ref
refN

A
N
:
U
O
E
→

℘
(U

A
ttrrtN

):
O
C
L
-E
→
∅

S
T
a
b
s
(p
),r
e
f
(p
)
S
T
S
N
A
N
(O
C
L
−
E
),∅

A
ttrib

u
te

d
efi
n
ition

T
h
e
n
u
m
b
er

of
attrib

u
te

rtN
of

an
O
C
L
-E

is
th
e
d
istan

ce
b
etw

een
th
e
set

of
attrib

u
tes

rtN
A
rtN

(O
C
L
-E

)
an

d
th
e
em

p
ty

set
δ

δ
N
A
N
:
U
O
E
→
<
:
O
C
L
-E
→
|A
rtN

(O
C
L
-E

)
|

(rem
a
rk

3
)

M
easu

re
d
ef-

in
ition

T
h
e

n
u
m
b
er

of
attrib

u
tes

rtN
in

an
O
C
L
-

E
is

m
easu

red
b
y

th
e

cou
n
t
of

attrib
u
tes

of
A
rtN

(O
C
L
-E

)
R
em

a
rk
s:

(1
)
U
A
ttrrtN

rep
resen

ts
th
e
set

of
all

th
e
attrib

u
tes

rtN
of

an
O
C
L
-E

(2
)
s
is

a
set

of
attrib

u
tes

rtN
,
i.e.

an
elem

en
t
of
℘
(U

A
ttrrtN

)
(3
)∀

O
C
L
-E
∈

U
O
E
:
δ
N
A
N
(A

rtN
(O

C
L
-E

),∅)
=
|A
rtN

(O
C
L
-E

)
-∅|

+
|∅

-
A
rtN

(O
C
L
-E

)|
=

|A
rtN

(O
C
L
-E

)|

T
ab

le
6.1:

D
istan

ce-b
ased

D
efi
n
ition

of
N
A
N

M
easu

re

6.3. CONTRIBUTION TO THE DISSERTATION 173

Measure Abstract Function
NKW absNKW : UOE → ℘(UKeywords): OCL-E → SKW(OCL-E)

where UKeywords is the Universe of keywords 3 relevant to an
UoD.
SKW(OCL-E) ⊆ UKeywords is the set of keywords used
in an OCL expression.

NES absNES : UOE → ℘(UES): OCL-E → SES(OCL-E)

where UES is the Universe of explicit occurrences of the con-
textual instance relevant to an UoD.
SES(OCL-E) ⊆ UOE is the set of occurrences of self is
used in an OCL expression.

NIS absNIS : UOE → ℘(UIS): OCL-E → S(OCL-E)

where UIS is the Universe of implicit occurrences of the con-
textual instance relevant to an UoD.
SIS(OCL-E) ⊆ UOE is the set of occurrences of self is
used in an OCL expression.

NBO absNBO: UOE → ℘(UBO): OCL-E → SBO(OCL-E)

where UBO is the Universe of boolean operators occurrences
relevant to an UoD.
SBO(OCL-E) ⊆ UOE is the set of boolean operators
occurrences in an OCL expression.

NCO absNCO: UOE → ℘(UCO): OCL-E → SCO(OCL-E)

where UCO is the Universe of comparison operators relevant
to an UoD.
SCO(OCL-E) ⊆ UOE is the set of comparison operators
occurrences in an OCL expression.

NEI absNEI : UOE → ℘(UEI): OCL-E → SEI(OCL-E)

where UEI is the Universe of explicit iterators relevant to an
UoD.
SEI(OCL-E) ⊆ UOE is the set of explicit iterators de-
fined in an OCL expression.

NII absNII : UOE → ℘(UII): OCL-E → SII(OCL-E)

where UII is the Universe of implicit iterators occurrences rel-
evant to an UoD.
SII(OCL-E) ⊆ UOE is the set of implicit iterators oc-
currences in an OCL expression.

NAS absNAS : UOE → ℘(UAS): OCL-E → SAS(OCL-E)

where UAS is the Universe of attributes belonging to the clas-
sifier that Self represents, relevant to an UoD.
SAS(OCL-E) ⊆ UOE is the set of attributes belonging
to the classifier that Self represents in an OCL expres-
sion.

Table 6.2: Abstract Function for the Measures (Part 1)

174 CHAPTER 6. THEORETICAL VALIDATION

Measure Abstract Function
NOS absNOS : UOE → ℘(UOS): OCL-E → SOS(OCL-E)

where UOS is the Universe of operations belonging to the clas-
sifier that Self represents, relevant to an UoD.
SOS(OCL-E) ⊆ UOE is the set of operations belonging
to the classifier that Self represents, in an OCL expres-
sion.

NIO absNIO: UOE → ℘(UO): OCL-E → SIO(OCL-E)

where UO is the Universe of number of occurrences of
oclIsTypeOf, oclIsKindOf or oclAsType Operations rele-
vant to an UoD.
SIO(OCL-E) ⊆ UOE is the set of number of times an
oclIsTypeOf, oclIsKindOf or oclAsType operation is used
in an OCL expression.

N@P absN@P : UOE → ℘(U@P): OCL-E → S@P(OCL-E)

where U@P is the Universe of properties postfixed by @Pre,
relevant to an UoD.
S@P Number of properties postfixed by @Pre(OCL-E)
⊆ UOE is the set of properties postfixed by @Pre in an
OCL expression.

NNR absNNR: UOE → ℘(UNR): OCL-E → SNR(OCL-E)

where UNR is the Universe of Navigated Relationships relevant
to an UoD.
SNR(OCL-E) ⊆ UOE is the Set of Navigated Relation-
ships in an OCL expression.

NNC absNNC : UOE → ℘(UNC): OCL-E → SNC(OCL-E)

where UNC is the Universe of Navigated Classes relevant to an
UoD.
SNC(OCL-E) ⊆ UOE is the Set of Navigated Classes
within a OCL expression.

NPT absNPT : UOE → ℘(UPT): OCL-E → SPT(OCL-E)

where UPT is the Universe of Parameters whose Types are
classes relevant to an UoD.
SPT(OCL-E) ⊆ UOE is the set of Parameters whose
Types are classes in the UML/OCL model where the
OCL expression is defined.

Table 6.3: Abstract Function for the Measures (Part II)

6.3. CONTRIBUTION TO THE DISSERTATION 175

Measure Abstract Function
NUDTA absNUDTA: UOE → ℘(UAODT): OCL-E → SAUDT(OCL-E)

where UAOUDT is the Universe of attributes or operations
belonging to a user-defined data type, used in any ex-
pression relevant to an UoD.
SAUDT(OCL-E) ⊆ UOE is the Set of Attributes be-
longing to a User-defined Data Type used in an OCL
expression.

NUDTO absN...: UOE → ℘(UAODT): OCL-E → SOUDT(OCL-E)

where UAOUDT is the Universe of attributes or operations
belonging to a user-defined data type, used in any ex-
pression relevant to an UoD.
SOUDT(OCL-E) ⊆ UOE is the Set of Attributes be-
longing to a User-defined Data Type used in an OCL
expression.

DN absNDN : UOE → ℘(UCN): OCL-E → SCN(OCL-E)

where UCN is the Universe of set of Classes belonging to any
navigation tree built for any OCL expression relevant to
the UoD.
SCN(OCL-E) ⊆ UOE is the set of Classes to which the
OCL expression Navigates to.

NON absNON : UOE → ℘(UON): OCL-E → SON(OCL-E)

where UON is the Universe of referred Operations through
Navigations, which are relevant to the UoD.
SON(OCL-E) ⊆ UOE is the Set of referred Operations
through Navigations in an OCL expression.

WNN absWNN : UOE → ℘(UN): OCL-E → SN(OCL-E)

where UN is the Universe of Navigations relevant to an UoD.
SN(OCL-E) ⊆ UOE is the set of Navigations of an OCL
expression.

WNCO absN...: UOE → ℘(UCO): OCL-E → SCO(OCL-E)

where UCO is the Universe of Collection Operations relevant
to an UoD.
SCO(OCL-E)⊆UOE is the Set of Collection Operations
in an OCL expression.

Table 6.4: Abstract Function for the Measures (Part III)

176 CHAPTER 6. THEORETICAL VALIDATION

Measure OCL Expression Measures
Classification NKW, NES, NIS, NBO, NCO,

NEI, NII, WNCO, WNN

NNR, NAN, NON, NNC,

NUDTA, NUDTO, NAS,

NOS, NIO, N@P, WNN,

WNCO, NPT

DN

Interaction-
based mea-
sures for
coupling

×
√

×

Length × × ×

Size
√

×
√

Table 6.5: Theoretical Validation of Measures According to Briand et al.´s Frame-
works [BMB99],[BMB96],[BMB97]

are really significant and useful in practice, and this is the subject of the following
chapter.

Chapter 7

Psychological Explanation

Cognitive complexity is assumed to be the mechanism causing the effect of struc-
tural properties on software quality attribute [CES01], [GEMM00]. So, cognitive
complexity of modelers dealing with software artifacts should be carefully considered
to explain the rationale behind any defined measure.

This chapter describes the psychological explanation activity of the method for
measure definition (explained in section 2.3.3):

• The selected Theory to use in a Plausible Explanation (Activity PE1) was
already explained in section 2.3.3.2.

• The relation of the Cognitive Theory to the Software Artifact and Measure
(Activity PE2) is included in section 7.1 of this chapter. Section 7.1 ex-
plains the different cognitive dimensions of OCL expressions comprehension
according to cognitive and mental models theories, and also defines a mapping
between the components of these selected models and the proposed measure.

• The activity of using qualitative methods to understand cognitive complexity
(Activity PE3) is applied in section 7.2. This section gives a plausible ex-
planation of the main categories of the mental model of modelers when they
comprehend OCL expressions through the use of verbal protocols.

Finally, section 7.3 describes the contribution to the dissertation.

178 CHAPTER 7. PSYCHOLOGICAL EXPLANATION

7.1 Relate the Cognitive Theory to the Software
Artifact and Measures (PE2)

The relationships between the Cognitive Theory and the software artifact and mea-
sure is divided in the following parts:

• Section 7.1.1 describes the more important dimensions which affects the com-
prehension of OCL expressions.

• Section 7.1.2 details how the cognitive techniques of the cognitive model of
Cant et al. [CJHS92] are used to explain how modelers deal with OCL expres-
sions. It also shows the OCL concepts related to each technique.

7.1.1 Dimensions of OCL Expression Comprehension

We are conscious that the application of a mental model described in chapter 2 is
not straightforward, due to the fact they were defined for program comprehension,
and the OCL expressions are declarative without getting embroiled in implemen-
tations details [Ham99] as a program does. However, we consider that the mental
models are generally enough to be applied to the comprehension of a declarative
language like OCL. In fact, the essence of program comprehension is identifying
artifacts, discovering relationships, and generating abstractions [TH03]. We believe
that, whatever the language is, imperative or declarative, the comprehension of its
specifications (or products) involve different cognitive dimensions, such as scope and
direction of comprehension.

Before giving an analysis of the dimensions of the OCL expression comprehension
we must recall that the main purpose of using OCL is the precise specifications of
constraints on object-oriented models through its modeling artifacts [Ham99]. Now
we describe the different dimensions which influence on OCL expression comprehen-
sion:

• Type of Information: During OCL comprehension modelers had to deal
with two kinds of information: textual information, i.e. the OCL expres-
sions itself written using ASCII code, and graphical information, the arti-
facts of the UML diagram which the expression constraints. Both, diagrams
and OCL expressions, are necessary. Without OCL expressions, the model
would be severely underspecified; without the UML diagrams, the OCL ex-
pressions would refer to non-existing model elements 1 [WK03]. In fact, as

1As there is no way in OCL to specify classes and associations

7.1. APPLYING THE COGNITIVE THEORY (PE2) 179

Hamie argues in [Ham99], OCL selects ideas from formal methods to combine
with diagrammatic, object-oriented modelling.

Textual and diagrammatic or graphical information present different charac-
teristics. Meanwhile diagrams have topological and geometric relations and
the information is indexed according to location [LS87], the text used by a
language as OCL consists mainly of signs and meaning. So, during the com-
prehension of OCL expressions, modelers should constantly switch between
textual specification (OCL expressions) and graphical specification (UML di-
agram).

Graphical representations of software artifacts are often advocated as an ef-
fective means of aiding program understanding [MTH04], and we believe that
they facilitate the comprehension of OCL expressions. Moreover, early re-
search indicated that illustrations and text should be presented in proximity
rather than separately [QaMKI04], otherwise they can contribute detrimen-
tally to cognitive load.

Although the graphical representation as diagrammatic notations has became
an important artifact as a medium of knowledge representation [HK99], the
visual appearance of a diagram influences its level of computational efficiency
and may thus produce different behavioral and performance outcomes [LS87].
Hahn and Kim present in [HK99] a theoretical framework and an empirical
exploration of diagrammatic manipulation in the domain of systems analysis
and design. We plan to study as a future work different cognitive aspects
related to graphical issues.

• Levels of abstraction: During the OCL expression comprehension, the mod-
elers deal with two different levels of abstractions: classes and objects. At
a class diagram level we can think of a system as made up of classes and
their associations, however at object-level perspective see the system as made
up of objects linked to each other and interacting [Tor04]. The class-level of
abstraction is used to describe features that apply to all instances, and are
depicted in the UML class diagram facilitating to build a situation model and
the comprehension of OCL expressions. However, the OCL expression refers
to an object-level perspective, because a expression is declared for a particular
object of the contextual type (the contextual instance) and its relationships
with other objects. The object-level perspective is not depicted but should
be part of the mental representation of the modeler. Nevertheless the UML
diagrams contribute significantly to support the conformation of the mental
representation of the object-level.

• Direction of Comprehension: It is likely that during middle phases of OCL
expressions comprehension, modelers tend to utilize a bottom up direction, by
reading the textual representation of the OCL expressions and then mentally

180 CHAPTER 7. PSYCHOLOGICAL EXPLANATION

grouping these statements into higher level abstractions. While the modelers
chunk the OCL expression they constantly switched to the graphical UML di-
agram to which the expression is associated with, looking for artifacts referred
in the OCL expressions, i.e. rolename of relationships, methods, attributes,
etc. However, in the last phases of OCL expression comprehension process the
modelers increasingly use an opportunistic direction of comprehension. Nev-
ertheless, the direction of comprehension can be influenced by the familiarity
of the modelers with the class diagram. Modelers having a broad knowledge
of the class diagrams are likely to use a bottom up direction.

In Table 7.1 we provide a mapping between the Burkhardt et al.´s model
[BDW02] and the proposed measures. The analysis of this mapping, i.e. why
each component of the Burkhardt et al.´s model is related to each measure is
described here:

� Problem Objects: The main problem objects within an OCL expression
are:

∗ the contextual instance, measured by NES and NIS.

∗ coupled objects of the problem domain which are obtained through
navigations (measured by NNC).

∗ coupled objects that are received as a parameter (measured by NPT).

∗ any enumeration type is a special user-defined type which is often
used as a type for attributes [WK03].

∗ the iterators can be used as explicit reference to problem objects.
Iterators are commonly specified in collection operations that loops
over the collection [WK03].
Attributes references in OCL can be interpreted as client-server com-
ponent of Burkhardt, due to the fact Warmer and Kleppe [WK03]
explain that any attribute reference in OCL needs to be mapped
to the corresponding get operation when implementing OCL expres-
sions. Nevertheless, we consider that object properties, such as meth-
ods and attributes, are considered as part of references of problem
objects’ properties. So, NAN, NON, NAS and NOS from the point
of view they are attributes and operation references belong to this
category.

� Relationship between Problem Objects: Relationships between prob-
lem objects are:

∗ Any navigation within an OCL expression uses association-ends of
UML relationships (measured by NNR, WNN and DN).

∗ Inheritance relationships should be considered through OCL expres-
sion when certain operations are employed. This is measured by NIO
measure.

7.1. APPLYING THE COGNITIVE THEORY (PE2) 181

� Reified Objects: OCL Collections constitute reified objects, measured
by WNCO measure.

� Elementary Operations: Boolean and comparison operators are ele-
mentary operations (measured by NBO and NCO). OCL keywords are
also part of this component (measured by NKW).

• Scope of Comprehension: We believe that modelers can take different ap-
proaches to comprehend an OCL expression. We think that a systematic stra-
tegy can be applied as well as an as-needed strategy. In a systematic strategy
the modelers do attempt to understand the overall design that is associated
to the OCL expression, whereas in a as-needed strategy the modelers focused
on those UML artifacts mentioned in the OCL expressions. However we think
that OCL expression modifications demand a wide scope of comprehension,
and modelers should apply a more systematic strategy of the surrounding
classes of the contextual type.

• Experience and Knowledge: The comprehension of OCL expressions like-
wise in program comprehension, depends on several factors, including one´s
cognitive abilities and preferences, one´s familiarity with the application do-
main (LT-WM knowledge), and the set of support facilities provided by the
software engineering environment. These factors often determine the approach
taken to understanding a complex artifact [TH03].

7.1.2 The Application of the Cant et al.’s Model

This section explains the cognitive techniques applied by modelers during OCL
comprehension, based on and aligned with the Cognitive Complexity Model of Cant
et al. [CJHS92].

We believe that OCL expressions are key facilitators to the construction of chunks
and also compound chunks. Moreover, the constraint declared by an OCL expression
is often captured by the mnemonics of the OCL expression´s name2, and this can
help to associate high level concepts with program concepts3.

In our cognitive model, we argue that when a modeler is primarily chunking an OCL
expression within a UML/OCL model, there are dependencies that, to be resolved,
require the modeler to perform a certain amount of tracing (in different directions)
to find relevant features as rolenames, attributes, etc. Having found their features,
modelers will once again chunk to comprehend it. Conversely, when modelers are
primarily tracing, they will need to chunk to understand the effect of the identified

2All OCL expressions can be named as was described in chapter 2.
3So, we recommend to properly name OCL expressions as part of a practical guidelines.

182 CHAPTER 7. PSYCHOLOGICAL EXPLANATION

T
ab

le
7.1:

M
easu

res
for

O
C
L
E
x
p
ression

s
w
ith

in
U
M
L
M
o
d
els

M
E
A
S
U
R
E

M
E
A
S
U
R
E

T
E
X
T

M
O
D
E
L

A
C
R
O
N
Y
M

D
E
S
C
R
IP

T
IO

N
R
E
L
A
T
IO

N
N
N
C

#
of

N
av
igated

C
lasses

P
rob

lem
O
b
jects

S
itu

ation
M
o
d
el

N
E
S

#
of

E
x
p
licit

S
elf

P
rob

lem
O
b
ject

S
itu

ation
M
o
d
el

N
IS

#
of

Im
p
licit

S
elf

P
rob

lem
O
b
ject

S
itu

ation
M
o
d
el

N
@
P

#
of

p
rop

erties
p
ostfi

x
ed

b
y
@

P
re

P
rob

lem
O
b
jects

S
itu

ation
M
o
d
el

N
U
D
T
A

#
of

U
ser-D

efi
n
ed

D
ata

T
y
p
e
A
ttrib

u
tes

P
rob

lem
O
b
jects

S
itu

ation
M
o
d
el

N
U
D
T
O

#
of

U
ser-D

efi
n
ed

D
ata

T
y
p
e
O
p
eration

s
P
rob

lem
O
b
jects

S
itu

ation
M
o
d
el

N
N
R

#
of

N
av
igated

R
elation

sh
ip
s

R
el.

b
etw

een
P
rob

lem
O
b
ject

S
itu

ation
M
o
d
el

N
A
N

#
of

A
ttrib

u
tes

referred
th
rou

gh
N
av

igation
s

P
rob

lem
O
b
ject

S
itu

ation
M
o
d
el

N
O
N

#
of

O
p
eration

s
referred

th
rou

gh
N
av

igation
s

P
rob

lem
O
b
ject

S
itu

ation
M
o
d
el

N
P
T

#
of

P
aram

eters
w
h
ose

T
y
p
es

are
classes

R
el.

b
etw

een
P
rob

lem
O
b
ject

S
itu

ation
M
o
d
el

d
efi
n
ed

in
a
class

d
iagram

W
N
C
O

W
eigh

ted
#

of
C
ollection

O
p
eration

s
R
eifi

ed
O
b
jects

S
itu

ation
M
o
d
el

N
IO

#
of

o
clIsT

y
p
eO

f,
o
clIsK

in
d
O
f
or

R
el.

b
etw

een
P
rob

lem
O
b
ject

S
itu

ation
M
o
d
el

o
clA

sT
y
p
e
O
p
eration

s
N
E
I,
N
II

#
of

E
x
p
licit

or
Im

p
licit

Iterator
variab

les
R
el.

b
etw

een
P
rob

lem
O
b
ject

S
itu

ation
M
o
d
el

W
N
N

W
eigh

ted
#

of
N
av
igation

s
R
el.

b
etw

een
P
rob

lem
O
b
ject

S
itu

ation
M
o
d
el

D
N

D
ep

th
of

N
av

igation
s

R
el.

b
etw

een
P
rob

lem
O
b
ject

S
itu

ation
M
o
d
el

N
A
S

#
of

A
ttrib

u
tes

b
elon

gin
g
to

th
e
classifi

er
P
rob

lem
O
b
jects

S
itu

ation
M
o
d
el

th
at

S
elf

rep
resen

ts
N
O
S

#
of

O
p
eration

s
b
elon

gin
g
to

th
e
classifi

er
P
rob

lem
O
b
jects

S
itu

ation
M
o
d
el

th
at

S
elf

rep
resen

ts
N
B
O

#
of

B
o
olean

O
p
erators

E
lem

en
tary

O
p
eration

P
rogram

M
o
d
el

N
C
O

#
of

C
om

p
arison

O
p
erators

E
lem

en
tary

O
p
eration

P
rogram

M
o
d
el

N
K
W

#
of

O
C
L
K
ey
W
ord

s
E
lem

en
tary

op
eration

s
P
rogram

M
o
d
el

7.1. APPLYING THE COGNITIVE THEORY (PE2) 183

chunks. Moreover, as El-Eman recognize in [Ema02] a certain amount of coupled
chunks do not affect cognitive burden, until a limit is exceeded and overflow short-
term memory.

Many times the modelers should constantly switch between textual specification
(OCL expressions) and graphical specification (UML diagram). The effects of chunk-
ing and tracing difficulty on complexity can be graphically modeled using a landscape
model, as we shown in section 2.3.3 (see Figure 2.9).

While reading an upper-level chunk, a dependency requires that the modeler sus-
pend reading of the original OCL expression because of the need to undertake tracing
to fully understand the chunk currently being analysed. This is exemplified in the
following:

Passenger

passenger˙name: String
passenger˙passport: String

*

flight 1

plane

1..n passengers

* flight˙in

Flight

id˙flight : String
id˙departure : String

Plane

id˙plane : String
year : Integer

Type˙of˙Plane

id˙type : String
capacity : Integer

1 planetype

context Flight
inv flight˙capacity:
self.plane.planetype.capacity >= self.passengers->size()

f (flight˙capacity)
◦

◦ ◦
x0

F
(Flight)

◦ ◦
x1

P
(Plane) ◦ ◦◦

x3

TP
(Type˙of˙Plane)

◦ ◦
x4

P
(Passenger)

◦
g

1st level

2nd level

3rd level

Figure 7.1: A Sample of a Landscape Model Modeled for an OCL Expression within
a UML/OCL Model

Example 7.1.1 The upper part of Figure 7.1 shows an UML/OCL combined model
where an OCL expression had been defined for the Flight class, meaning that the
quantity of passengers of a flight must be lower or equal to the capacity of the

184 CHAPTER 7. PSYCHOLOGICAL EXPLANATION

plane´s type of that flight. The landscape model for the OCL expression, named
’flight˙capacity’, is shown in the bottom part of Figure 7.1. Graphically at the
top-level there is a single chunk visible, the OCL expression, delineated by the two
markers (f, g). This chunk is interrupted by three lower-level chunks. The first
interruption is common to every OCL expression where the modeler trace to lo-
cale the context of the expression (the Classifier written after the context keyword)
within the UML diagram. The second interruption, depicted as the ’vertical drop’
x1P represents visually the work required in tracing the relevant features in the UML
diagram, in this case, implies following a navigation from the Flight class to an-
other class where its opposite-end rolename is defined as ”plane”, having found this
class the modeler must chunk it, also chunk the cardinality associated to the men-
tioned rolename. Then, the modeler should follow a new navigation from Flight to
Type˙of˙plane using the ’planetype’ rolename, and after chunking the meaning of
the latter class, the modeler should chunk one of its attributes, ’capacity’. The third
and last interruption during the comprehension of the flight˙capacity OCL expres-
sion is during the navigation (drop x4P) to the Passenger class, for obtaining the
size of the set of passengers.

As previously described the modeler should switch between textual and graphical
information (between ASCII declarations -the OCL expressions- and UML diagram-
matic notations) in order to fully capture the meaning of an OCL expression. For
instance while reading a navigation in an OCL expression the modeler should follow
the rolenames used in the UML diagram. Cant et al. [CHSJ94] consider in their
cognitive model the spatial distance of tracing as a factor difficulty this cognitive
technique, being this factor the distance, measured in program comprehension pos-
sibly through lines of code, between two chunks for which there is a dependency.
The spatial distance of tracing in OCL expression is captured from the contextual
type to the most distant coupled object through the DN measure.

We should also take into account that, in general, OCL expressions are not graph-
ically attached to UML models, rather they are included in the underlying model
repository [WK03], so the automated tool used to storage the model repository
should facilitate the visualization of both the OCL expression and UML diagram at
the same time otherwise the spatial distance could negatively influence the cognitive
load.

7.1. APPLYING THE COGNITIVE THEORY (PE2) 185

7.1.2.1 OCL Concepts Related to Cognitive Techniques

The understanding of an OCL expression as a chunk involves a strong intertwining
of tracing and chunking techniques. We believe that is important to understand
which OCL concepts, specified in its metamodel [OMG03b], are relevant to each of
these techniques.

• Chunking: As mentioned in the previous section, in order to describe the
OCL concepts which involve chunking we have basically considered those con-
cepts which belong to one expression (the chunk) and which do not require
solving dependencies to other chunks. In this group we have included those
OCL concepts that are intrinsic to the language itself. This group is related
to the microstructures in the program model of Pennington´s mental model,
or to the Syntactic knowledge of Shneiderman and Mayer´s cognitive model.
The OCL concepts which this group involve are: OCL keywords, variable
definitions, boolean operators and comparison operators.

• Tracing: The OCL concepts related to tracing techniques allow the modeler
to write an expression using properties belonging to other classes or interfaces,
different to the contextual type. With the purpose of analysing tracing, we
have considered those OCL concepts that imply solving dependencies to other
chunks. For example, when a modeler must interrupt the reading of an OCL
expression in order to follow different parts of a UML diagram, such as the
evaluation of a navigation using rolenames and its multiplicity, this is an ac-
tivity related to tracing. Other instances (objects -as parameters- or object
collections), whose types are different to the contextual type, are commonly
accessed by tracing techniques. The concepts related to tracing are: Naviga-
tions, Parameters and Return Values, Messages and User Defined DataTypes.

• Chunking & Tracing: Any reference to the contextual type of the OCL
expression, will be considered as part of the chunking & tracing cognitive pro-
cess. The reason is the following: (1) as it was aforementioned, expression and
diagrams are close related, and a constraint and its main constrained object
should be considered as part of the same process, that is chunking; however,
(2) the reference to an attribute or operation property of the contextual type,
also constitute an interruption during comprehension of the OCL expression4

and the modeler should trace to the classifier representing the contextual type,
that is tracing.

In other words, due to the fact that the OCL expressions are textual add-ons
to UML class diagrams there should be OCL mechanisms for referring, for

4The spatial distance between the OCL expression and the contextual type is shorter than
the distance between the OCL expression and any other coupled object’ type due to at least no
navigations is used in the connections of these entities

186 CHAPTER 7. PSYCHOLOGICAL EXPLANATION

Table 7.2: OCL Concepts which Involve Tracing or Chunking

OCL concept related to Common characteristics
the cognitive technique of the group
Variable definitions, OCL facilities related to the
boolean operators, language itself.

G comparison operators

N Reference to attributes or operations OCL concepts related to the

I of the contextual instance, contextual instance and some of its

K values postfixed by pre properties, values before the

N variables defined through execution of an operation (that is,

U << definition >> constraints. properties postfixed by @ pre) of

H the contextual instance, variables

C G defined through <<definition>>

N constraints in the type represented

I by the contextual instance, etc.

C Navigation and collection operation, OCL concepts which allow an

A parameters whose type are classifiers expression to use properties

R predefined iterator variables, belonging to other classes or

T Messaging, etc interfaces, different to the type of
the contextual instance.

example, to class diagram elements. Implicitly an OCL expression is associated
to a specific artifact (of a UML model) through the contextual instance self,
because self is the main point of reference for the comprehension of the OCL
expression, in this way self is used as the main carrier for chunking the OCL
expression itself. However, each of the reference of the contextual instance´s
properties involve tracing from the OCL expression to the contextual type in
the UML model.

In this group, we have included those OCL concepts that allow one to refer
to some properties of the contextual type: Attribute of the Contextual Type,
Operations of the Contextual Type, <<definition>> Constraints, Predefined
Properties, Values in Postconditions and User Defined DataType.

Table 7.2 shows a synopsis of the main OCL concepts involved in these cognitive
techniques. whereas Table 7.3 show the cognitive technique(s) to which each measure
is concerned.

7.2 Applying Qualitative Methods (PE3)

We had used verbal protocol analysis, a qualitative method, whose underlying prin-
ciple is that any verbalization produced by a subject whilst solving a problem -known

7.2. APPLYING QUALITATIVE METHODS (PE3) 187

Table 7.3: Measures for OCL Expressions of UML/OCL Models

MEASURE CHUNKING TRACING MEASURE

ACRONYM DESCRIPTION

NNR X # of Navigated Relationships
NAN X # of Attributes referred through Navigations
NON X # of Operations referred through Navigations
NNC X # of Navigated Classes
NPT X # of Parameters whose Types are classes

defined in a class diagram
NUDTA X # of User-Defined Data Type Attributes
NUDTO X # of User-Defined Data Type Operations

WNN X Weighted # of Navigations
DN X Depth of Navigations

WNCO X Weighted Number of Collection Operations
NEI, NII X # of Explicit or Implicit Iterator variables

NKW X # of OCL KeyWords
NES X # of Explicit Self
NIS X # of Implicit Self

NBO X # of Boolean Operators
NCO X # of Comparison Operators
NAS X X # of Attributes belonging to the contextual type

that Self represents
NOS X X # of Operations belonging to the classifier

that Self represents
NIO X X # of oclIsTypeOf, oclIsKindOf or

oclAsType Operations
N@P X X # of properties postfixed by @ Pre

as concurrent ’think aloud’- will directly represents the contents of the subject’s
working memory [ES93]. Using the technique, a researcher can obtain an insight
into the subject’s cognitive process and use this to address a research question. For
example, to investigate a subject’s understanding of the problem space [HP03] or
how the current state of the problem solution is evaluated, etc.

We have used verbal protocol analysis in order to give a plausible explanation of
the main categories conforming the mental model of subjects when they deal with
OCL expressions. This chapter is decomposed in:

• Section 7.2.1 explains the technique of verbal Protocols. The technique ba-
sically requires few special arrangements: recorded verbalizations are tran-
scribed into protocols, the protocols are coded using preestablished coding
scheme, and then analysed in accordance with the relevant research question
[HP03].

188 CHAPTER 7. PSYCHOLOGICAL EXPLANATION

• Section 7.2.2 describes a think aloud experiment where the verbal protocol
analysis is applied. Subjects were asked to verbalize his/her thoughts whilst
he/she is concurrently at work on a task which consists of comprehending three
OCL expressions. His/her verbal behaviour forms the basic process data to
be analyzed. The experiment was run at the Castilla La-Mancha University.

7.2.1 Overview of the Verbal Protocol Analysis Technique

Verbal protocol analysis has been applied to a range of problem types, and the
data obtained has been used to create, confirm, or refute hypotheses across a wide
range of research domains. A thorough review of the literature used to appraise the
application of the verbal protocols analysis technique to software engineering can be
obtained in [HP03].

Now we briefly summarize the stages of a verbal protocol, Figure 7.3 depicts the
principal data used for the entire technique:

1. Preparing and Running the session: We shall now describe the practical
procedures which must be applied in experiments where subjects are asked to
think aloud:

(a) Setting: The first thing to do when one wants to get a subject to think
aloud is to make sure that the setting is such that the subject feels com-
fortable. The room should be quiet, a glass of water should be at hand,
the chair should be comfortable. This recommendation are particularly
important to remember when thinking aloud experiments are going to
take quite some time and will be tiresome for the voice and throat of the
subject [SBS94]. An explanation can be given about the purpose of the
research, about what is going to happen and about the protection of the
data. It is important to explain that the obtained data will be handled
in strict confidentiality.

(b) Instructions: The instruction related to thinking aloud should be quite
simple. The essence of the instruction is: Perform the task and say
out loud what comes into your mind. The instruction should be write
down beforehand and should be read to the subject. An example of a
instruction is: ’I will give you a problem. Please keep talking out loud
while solving the problem’. Instruction should not be too long to avoid
the situation of the subjects making up their own interpretations about
what is requested from them.

(c) Warming up: Most subjects need a little training before the real ex-
periment starts. It is important to give the subject an opportunity to
practice thinking aloud. In general it is wise to look for a task which

7.2. APPLYING QUALITATIVE METHODS (PE3) 189

4. Coded Protocols

3. Coding Scheme

2. Segmented Protocols

1. Raw Protocols

A

B

Figure 7.2: Data Transformation in Verbal Protocols

is not too different from the target task. Although most people do not
have much difficulty rendering their thoughts, there are some subjects for
whom this method does not work. This is the case when after a quarter
of an hour a subject finds it hard to verbalize his thoughts. If this is the
case, Someren et al. recommend to stop because is unlikely to provide
useful protocols [SBS94]. The instruction for practice task is the same as
for the main task.

(d) Behaviour of the experimenter and prompting: When the sub-
ject is working on the task, the role of the experimenter is a restrained
one. Interference should only occur when it may be necessary to give
the subject a short reminder to continue verbalizing if there is a period
of silence. Then the experimenter should prompt the subject by simply
saying: ’Please, think aloud’ or ’Please, keep on talking’.

(e) Recording: The sessions are usually recorded on audio- and video-tape.
It may be wise to include the instruction and practising phase, in order
to be able to check afterwards whether the procedure was performed
correctly.

2. Transcribing the Protocol: The actions of transcribing the verbalizations
recorded during the session (depicted as Raw Protocols in Figure 7.3) are
performed without any difficulty. However this task is tedious and time-
consuming, because transcribing a protocol usually means typing it out in a
manner which is as verbatim as possible. As Someren et al. [SBS94] remark
the task of transcribing may take 10 times as much time as the original pro-
tocol, depending on the clarity of the protocol and the fluency of the subject.
In psychological research, in principle everything may be relevant and there-
fore basically everything should be typed out [SBS94]. So, generally speaking,
the typist should try to type it out as faithfully as possible. For instance the
transcription should include:

190 CHAPTER 7. PSYCHOLOGICAL EXPLANATION

• Utterance by the subject which have no bearing on the problem-solving
process at all. For example, asking for a glass of water, remarks about
any interruption during the session (someone came into the room), etc.

• Any subject’s humming and hawing should by transcribed like ’Er, I
er....’. Stammering as well should be typed out just as it occurred.

• Within the transcription special marks as ’...’ are conventionally used to
note recognizable pauses and unusual silences between two words.

3. Segmenting the Protocol: The protocol is segmented, that is divided into
segments (Figure 7.3, Activity A), each of which is given an identification num-
ber. Although there is no standard definition of a segment, most segmentation
schemes are broadly similar, being based upon boundaries of phrases marked
by pauses, an identifiable single unit such as a reference or assertion, etc. In
general, the combination of these pauses and the linguistic structure provide a
natural and general method to segment a think aloud protocol [SBS94]. In the
analysis, segments are often combined into episodes. An episode is a sequence
of segments that corresponds to a single element in the model. However if
the task analysis and the psychological model are very detailed then certain
elements of the psychological model may correspond directly to segments in
the protocol.

4. Constructing a Coding Scheme: The coding scheme specifies how the el-
ements of a cognitive model can be identified in the data and is based on our
knowledge of the way in which cognitive process will be verbalized. Codes must
be developed to correspond to a formalism which will be used to represent the
knowledge [Chi97]. This scheme is useful when comparing the protocol and
the psychological model. Every process or component in the psychological or
cognitive model is stated as how we expect that these processes or components
will appear in the protocols. For example, a model containing a guessing pro-
cess produce that the coding scheme includes a coding category ’guessing’ to
this process, and one would expect to find statements in the protocol indicat-
ing a solution with a certain uncertainty. The subject will for example say:
’Maybe it is X’, ’Could it be X?’, etc. This would appear in a coding scheme
as:

CODING PROCESS Description

Guessing ’Maybe it is X’ or ’Could it be X?’

Categories in the coding scheme can be described in general terms but it
is usually very helpful to give some examples of prototypical statements for
each category. If two or more categories are similar it helps to emphasize the
difference.

7.2. APPLYING QUALITATIVE METHODS (PE3) 191

There are some categories in the coding scheme which are not directly derived
from the model. These are the verbalizations which are not covered by the
model, but may still be anticipated in the protocols. Sometimes the content of
these categories in task performance is not relevant, but the moment at which
they occur is. For example:

(a) Talking about not-task related issues (’Oh, I must not forget to call my
friend’),

(b) Evaluation of the task or task-situation at a meta-level (’It is tiring to
talk so much’),

(c) Comments about oneself (’I am thirsty’),

(d) Silent periods. At times people will briefly stop verbalizing and they may
be prompted to continue.

(e) Actions: The subject performs an action (for example, writes a note or
manipulates a device).

The result of applying the coding scheme to a segmented protocol is a coded
protocol (Figure 7.3, Activity B).

5. Verifying intercoder reliability: Whatever the origin of the coding scheme
is, there should be confidence in the reliability of a scheme’s application to a
set of protocols. The consistency and reliability should be assessed, typically
by means of a second encoder. The original encoding can be compared with
that of the second encoder in order to obtain either the percentage agreement
or the coefficient of agreement (Cohen’s K). The accepted percentage figures
are typically above 75% or above 0.8 K. The Kappa makes a correction for the
correspondence that can be expected from the marginal frequencies. This is a
conservative estimate of intercoder reliability [SBS94].

6. Analysing the code patterns: The encoded protocol is analysed in order to
answer the research questions. The number and type of analyses used typically
reflect the number and type of research questions being asked. Examples
include: enumeration of specific categories, relative distribution of various
activity categories identified, analysis of the pattern of activities, for example
switching between two types of activity and even verbalization rates.

7.2.2 A Think Aloud Experiment

We have carried out a think aloud experiment through which to test a categorical
model5 of the cognitive process of modelers dealing with OCL expressions. The

5Descriptions of cognitive processes can take different forms. The most important forms are
dimensional models, categorical models and procedural models.

192 CHAPTER 7. PSYCHOLOGICAL EXPLANATION

categories concerned whether the utterances obtained by the students pertained to
different coupling aspects: problem objects, relation between problem objects and
reified objects. However we included other categories to describe cognitive factors
such as: task planning, which involve how subject plan to tackle the comprehension
process, the activity of chunking the whole expression, etc.

As we have previously explained the think aloud method involves the analysis of
recorded verbal protocols that resulted from asking subjects to voice their thoughts
when executing particular problem-solving tasks. Within the experiment the tasks
we asked the subject to perform were to comprehend an OCL expression, and to
express the meaning of the OCL expression. Expression consists of suitable short
assertions that are not always easy to understand, specially when a lot of objects
are coupled through the expression.

We carried out a thinking aloud experiment in order to test the following research
questions:

• Does the modelers apply tracing and chunking cognitive techniques while they
comprehend the OCL expression?

• Does the subjects make an attempt at a broad comprehension of the class
diagram before the understanding of the OCL expression?

• Reified objects, the relation between objects and problem objects are the most
important categories of the model of the subject’ cognitive process when they
deal with the OCL expression comprehension.

We gave a training course about OCL language where 10 subjects took part. The
subjects were ten graduate and undergraduate students of the Department of Com-
puter Science at the University of Castilla La-Mancha in Spain. We divided the
course into three groups according to their experience, and then three (one from
each group) were chosen to participate in the think aloud experiment. Their ut-
terances were taped and video-recorded. The use of a relatively small number of
subjects is typical of studies that collect and analyze verbal protocol data [HHC04].
Think-aloud protocols were collected while each subject comprehended each of the
three tests. The three tests had different coupling complexity. The first test was the
easiest test. The second and third tests present different kinds of difficulties. The
difficulty of the second test was due to the use of different rolenames whereas the
difficulty of the third was due to the use of collection operations. Nevertheless we
believed that the last test would be more difficult to solve than the second test.

In order to set the experiment appropriately we took several factors into account
such as: we chose a comfortable and quiet room, we provided the subject with a
glass of water, etc. In order to start the experiment and to give the subject an

7.2. APPLYING QUALITATIVE METHODS (PE3) 193

Table 7.4: Intercoder Agreement
Subject l Subject 2 Subject 3
Protocol # Protocol # Protocol #
1 2 3 1 2 3 1 2 3

Percentage of Agreement 0.75 0.85 0.81 0.88 0.75 0.81 0.85 0.86 0.85
Coehn’ K (Kappa) 0.75 0.85 0.81 0.86 0.69 0.76 0.82 0.83 0.81

opportunity to practice thinking aloud, a warming up session took place before the
real experiment.

Participants verbalizations were transcribed, and nine protocols were obtained,
three protocols from each subject. A researcher checked each transcription against
the video tape in order to make any necessary corrections or to adjust phrasing.
The raw protocols were then broken up into segments which represented the subject’
utterances. Once the verbal protocols were segmented, they were ready to be coded.

These coding categories consisted of whether the explanations and utterances used
by the subjects pertained to reified objects (RO), the Relation between problem ob-
jects (RBPO), the Problem Objects (PO), etc. Table 7.5 shows the coding categories
and a description of each one.

To control the coding reliability, each verbal protocol was coded by two independent
coders. Table 7.4 shows the Coehn’ K across the nine protocols. As we explained
in the previous section the values of Coehn’ K are acceptable due to the fact that
they are greater than 0.8 K.

The RO category was coded as being those utterances which were concerned with
the collection of objects, the collection operation and explicit iterator of collections.
Within the RBPO category we included related problem objects such as the under-
standing of a relationship within the class diagram or the use of OCL navigations.
Within the PO category concepts such as the contextual type, the contextual objects
of the expression (or even their attributes) were included.

The SP category was used when the subjects explanations were related to a state-
ment of the problem whereas the TP category was related to how the subjects
planned to perform the task. The TE category was used when the subject explained
the OCL expression according to its type (all the expression in the experiment were
invariant expressions). The CWE category was used when the subject chunked the
whole OCL expression and described its meaning. We also used special coding cate-
gories (SCC categories) to code some utterance that were not covered by the model
as we have described in the previous section (see the last five entries of Table 7.5.

The number of utterances ranged from 20 to 46. Table 7.6 contains a coded protocol
from a subject to illustrate the coding. The utterances belong to a warm up session

194 CHAPTER 7. PSYCHOLOGICAL EXPLANATION

Table 7.5: Coded Categories
Coding Description

Categories

RO-CO Reified Object: collection manipulation, collection operations, etc.
RO-EI Reified Object: iterator variable within a collection operation.
RO-LOO Looking for the definition of an operation collection in a list of operations
RBPO-CD Relation between problem object: after reading the class diagram
RBPO-NR Relation between problem object: Navigated Relationship
PO-CD Problem Object(s) after reading the class diagram
PO-CC Problem Object(s) a concept of a class from the OCL expression
PO-ACO Problem Object(s): attribute belonging to contextual objects
PO-CA Context Analysis and evaluation
EO Elementary Operation
TE Type of Expression
CWE Chunking the whole OCL expression
TP Task Planning
SP Statement of Problem
SCC-NT Special coding categories: Talking about not task related issues
SCC-EM Special coding categories: Evaluation of the task or task-situation at a meta-

level
SCC-CO Special coding categories: Comments on oneself
SCC-SP Special coding categories: Silent periods.
SCC-A Special coding categories: Actions

using the expression and the class diagram of Figure 7.3.

We did not aggregate the protocol segments into episodes because the grain size of
segments is suitable for testing the hypotheses. Although we coded all the segments
according the coding categories of Table 7.3 we were only interested in RO, RBPO,
PO categories that are related to coupling concepts.

Although we are only interested in some specific process in the protocols, and in
this case it may be more efficient to encode protocols directly from the audio-tape
(i.e. direct encoding) instead of transcribing and coding the transcription it is often
not a method to be recommended [SBS94].

The rest of the categories were used to describe a general process of comprehension
used by the subjects. Special coding categories were also included because these
remarks might be an indication of the level of difficulty of a sub-task or of the
cognitive load of the subject.

7.2.2.1 Analysis

The encoded protocols were analysed to answer the research questions. We per-
formed an analysis of each subject performing the tasks. For each task of each

7.2. APPLYING QUALITATIVE METHODS (PE3) 195

Subway˙Line

letter: String

Subway

id˙subway: Integer

Conductor

id˙conductor: Integer
age: Integer
experience: Integer

Subway˙Ride

id˙ride:Integer
nr˙of˙cars: Integer

has1..*

rides

1..*

subway

1..*

Context Subway˙Line
inv: self.has->select(c | c.age > 50)->isEmpty()

Figure 7.3: Sample of an OCL Expression used in a Warm Up Session

subject we depicted the coded protocols. Two types of figures were obtained to
facilitate the analysis. First, the sequence of coded utterances was represented in a
graph that summarizes each subject’s protocol. In the graph, each dot represents
a subject’ utterance and the coding categories assigned to the utterance. Second,
we depict the number of related coded protocols for each protocol. Second, In the
following we give the analysis for each subject. General conclusions are described in
the next subsection.

7.2.2.1.1 Subject 1 The number of utterances of each protocol obtained from
subject 1 were: 22 (protocol 1), 20 (protocol 2), 33 (protocol 3). The time (in
minutes and seconds) spent in each protocol was: 02:16, 02:24, 5:36.

From Figure 7.4, a graph of the subject’ protocols, we can observe that the subject
does not attempt to understand the class diagram before starting to comprehend
the OCL expression.

The technique applied by subject 1 was the same in the tree protocols: after read-
ing the statement of problem (SP) he analyze the context of the expression and
started to understand its meaning. Nevertheless, he uses the class diagram only
to focus on those relationships and classes (and attributes) of the class diagrams
when they appear within the OCL expression. We believe that the subject takes
an as-needed strategy of the class diagram. So, the understanding of the expression
and the class diagrams is product of an intertwining activity. The OCL expression
is comprehended from left to right, the subject started to capture the meaning ob-
taining different assertions or utterance of the meaning, until the subject chunk the
whole expression. After the meaning is obtained the subject review the expression
to be sure of the meaning. In several segments of protocol it is clear that the subject

196 CHAPTER 7. PSYCHOLOGICAL EXPLANATION

uses many expression such as ’now we are in the X class’, ’now we are going to Y
class’, etc. to reveal the OO-perspective taken by the subject in understanding the
expression. This cognitive perspective is similar to the identification of deictic words
such as here and there in the work of Hutchis et al. to reveal the perspective taken
by the subject in solving the missionary and cannibals problem [HL81].

Table 7.6: Example of a Verbal Protocol from a Pilot Subject
Id Code Utterance

1 SP ... what I’m going to do first is take a look at the class diagram
2 PO-CD Subway Line ...
3 PO-ACO I guess the identification would be to say which is the line
4 RBPO-CD Associated with each subway line there are many subway train, one or more
5 PO-ACO Yes, it is correct, the diagram show the year in which the train was bought...
6 PO-ACO An identification for the subway train and another for the motor...
7 RBPO-CD A subway train operates on more than one subway line
8 RBPO-CD Of course, in a subway line there are many subway trains
9 RBPO-CD A subway train can do many trip

10 RBPO-CD Each trip with a number of coachs
11 RBPO-CD Err ...a trip is conducted obviously by a real conductor, and a real subway

train
12 RBPO-CD The subway line has many conductors
13 RBPO-CD A conductor drives in many subways lines
14 PO-ACO A conductor has an identification, a age, and year of experience
15 RBPO-CD A conductor drives in different trip
16 RBPO-CD Within each trip there is no information about how many conductors there

are?
17 TP Well, having analysed the diagram I will start to understand the expression
18 TE The context is Subway Line, an invariant expression
19 PO-CA That means that the expression represents a constraint that always must

be true
20 RBPO-NR Self dot tiene (self.tiene) is talking about the drivers that the subway line

has,
21 RO-CO then we have a selection with a c variable of conductor
22 RO-EI that means that c select the conductors of each subway line
23 RO-CO c dot edad (c.edad) greater than fifty, that is select the conductors which

have an age greater than fifty, and then the boolean operation ’is empty’ is
applied

24 EO that is the operation should be true
25 CHU The meaning of the expression is ... [writing] each subway line should verify

that ...
26 CHU [writing] none of its associated drivers are more than fifty years old.
27 SCC-NT I’ve finished...

A blue dashed rectangle in Figure 7.4 was depicted to highlight the RO, RBPO, PO
and EO coded utterances during the process of the OCL expression comprehension.
As we can see few dots remain outside the limit of blue rectangle. During task 3

7.2. APPLYING QUALITATIVE METHODS (PE3) 197

he had doubts about the meaning of a collection operation that appear in the OCL
expression and he spent a time using the list of collection operations in order to
look for the meaning. In task 3 the subject made different intentions of chunking
the whole expression before giving the final result.

The composition of the coded utterances for each protocol is depicted in Table 7.7.
The coded utterances related to coupling were grouped into three group RO, RBPO
and PO (reified objects, problem objects and the relationship between them). We
also grouped the special coding categories codes in the SCC group. TP and SP were
depicted together due to the fact that they refer to the problem or the the way the
subject plan to tackle it.

From Table 7.7 we see that the quantity of coupling coded categories increases at
the same time as the import-coupling within the expression increases. Whether we
subtract from the total number of utterance (of each protocol) the number of SCC
coded utterances, which are special coded categories not relevant from the model
itself, the coupling coding categories (RO, RBPO, PO and EO) represents the 0.65%,
0.77%, and the 0.83% of protocol 1, 2 and 3 respectively. That means that coupling
coding categories seems to be a significant proportion of the cognitive process of
subject 1. We conclude that RO category represents a significant proportion of the
utterance in the three tasks; the quantity of RBPO and PO coding categories is
higher in the last two protocols.

0

5

10

R
O

6

R
B
P
O

1

P
O

2

E
O

3

T
E

0

C
W
E

1

T
P
+
S
P

1

S
C
C

8

0

5

10

R
O

7

R
B
P
O

4

P
O

2

E
O

0

T
E

0

C
W
E

2

T
P
+
S
P

2

S
C
C

3

0

10

20

R
O

2
0

R
B
P
O

3

P
O

2

E
O

0

T
E

0

C
W
E

3

T
P
+
S
P

2

S
C
C

3

Protocol 1 Protocol 2 Protocol 3

Table 7.7: Coding Categories from Subject 1

7.2.2.1.2 Subject 2 The number of utterances of each protocol obtained from
subject 2 are: 26 (protocol 1), 45 (protocol 2), 36 (protocol 3). The time (in minutes
and seconds) spent in each protocol (1, 2 and 3) was: 02:52, 08:04, 05:55. The fact
that in protocol 2 the subject spent the longest time understanding a expression is
depicted in the graph of the subject’ protocols (see Figure 7.5). We believe that the
second test was more difficult to verbalize for the subject than the third one.

From Figure 7.5 we can also observe that the subject attempt to understand the
class diagram before starting to comprehend the OCL expression. The same tech-

198 CHAPTER 7. PSYCHOLOGICAL EXPLANATION

Coding categories

Time in seconds - Protocol 1

0 28 56 84 112 140 168 196 224 252 280 308 336

SCC − A
SCC − SP
SCC − CO
SCC − EM
SCC −NT

SP
TP

CHU
TE

PO − CA
EO

PO − ACO
PO − CD

RBPO −NR
RBPO − CD

RO − EI
RO − C

RO − CO
RO − LOO

Coding categories

Time in seconds - Protocol 2

0 28 56 84 112 140 168 196 224 252 280 308 336

SCC − A
SCC − SP
SCC − CO
SCC − EM
SCC −NT

SP
TP

CHU
TE

PO − CA
EO

PO − ACO
PO − CD

RBPO −NR
RBPO − CD

RO − EI
RO − C

RO − CO
RO − LOO

Coding categories

Time in seconds - Protocol 3

0 28 56 84 112 140 168 196 224 252 280 308 336

SCC − A
SCC − SP
SCC − CO
SCC − EM
SCC −NT

SP
TP

CHU
TE

PO − CA
EO

PO − ACO
PO − CD

RBPO −NR
RBPO − CD

RO − EI
RO − C

RO − CO
RO − LOO

Figure 7.4: Coded Protocols of Subject 1

7.2. APPLYING QUALITATIVE METHODS (PE3) 199

nique was applied win the tree protocols: the subject focuses on the relationship
between the classes while chunking the diagram. Moreover, in the last two protocols
the subject look at the contextual type of the expression in order to start to see the
relationships that this contextual type has in the diagram before starting to compre-
hend the expression. We depicted this regular situation with a the green rectangles
which contains all the coded utterances that corresponds to the comprehension of
the class diagram. The subject only focused on relations between classes, he said
nothing about the classes’ attributes.

A blue dashed rectangle in Figure 7.4 was depicted to highlight the RO, RBPO, PO
and EO coded utterances during the process of the OCL expression comprehension.

0

5

10

R
O

6

R
B
P
O

7

P
O

2

E
O

1

T
E

1

C
W
E

4

T
P
+
S
P

2

S
C
C

3

0

10

20
R
O

2
4

R
B
P
O

1
2

P
O

1

E
O

0

T
E

0

C
W
E

1

T
P
+
S
P

3

S
C
C

4

0

10

20

R
O

1
4

R
B
P
O

1
1

P
O

3

E
O

0

T
E

1

C
W
E

2

T
P
+
S
P

1

S
C
C

4

Protocol 1 Protocol 2 Protocol 3

Table 7.8: Coding Categories from Subject 2

The composition of the coded utterances is shown in Table 7.8. From Table 7.8 it is
clear that RO and RBPO coding categories are a significant portions in protocol 2
and 3 respectively, representing almost half of the coupling categories. We observe
that the quantity of coupling coded categories is higher in protocol 2 than protocol 3.
Nevertheless, its ratio (number of coupling categories divided by the number of the
protocol utterance) are 0.82 and 0.77. If we do not consider the SCC coded utterance
from the total number of protocol utterance, this ratio is 0.90 and 0.87 respectively.
The ratio of protocol 1 is 0.58 (considering the total number of utterances) and
0.66 (without the consideration of SCC coded protocols). That means that coupling
coding categories seem to be a significant proportion of the cognitive process of
subject 2.

7.2.2.1.3 Subject 3 The number of utterances of each protocol are: 28 (pro-
tocol 1), 43 (protocol 2), 47 (protocol 3). These quantities include SCC coding
categories. The time (in minutes and seconds) spent in each protocol (1, 2 and 3)
was: 03:07, 06:41, 06:27. From Figure 7.7 we can also observe that the subject does
attempt a broad understanding of the class diagram before starting to comprehend
the OCL expression. The subject applied the same technique in the tree protocols:

200 CHAPTER 7. PSYCHOLOGICAL EXPLANATION

he focused on the relationship between the classes while reading the diagram, he

also focused on the classes involved and their attributes. We depicted this regular
situation with a the green rectangle including the coded utterances related to the
understanding of the relationship between classes in the diagrams as well as the
understanding of the classes and their attributes.

The composition of the coded utterances for each protocol is depicted in Table
7.2.2.1.3. The ratio of coupling coding categories from the total number of utterance
are 0.79, 0.79 and 0.83. Similar values are obtained if we subtract from the total
number of utterances the SCC coded protocols: 0.81, 0.88, 0.89. That means that
coupling coding categories seem to be a significant proportion of the cognitive process
of subject 3. The quantity of RBPO category is similar from protocol 2 and 3,
nonetheless the quantity of PO is slightly higher from protocol 2 than 3 (it should
be remembered that the second protocol uses a expression where the complexity
relies in using different rolenames). The third protocol according to the complexity
of the third OCL expression demands more RO utterances from the subjects than
the first and second protocols.

0

5

10

R
O

4

R
B
P
O

1
1

P
O

7

E
O

0

T
E

1

C
W
E

2

T
P
+
S
P

2

S
C
C

1

0

10

20

R
O

1
0

R
B
P
O

1
7

P
O

7

E
O

0

T
E

0

C
W
E

2

T
P
+
S
P

3

S
C
C

4

0

10

20

R
O

1
6

R
B
P
O

1
7

P
O

6

E
O

0

T
E

0

C
W
E

1

T
P
+
S
P

4

S
C
C

3

Protocol 1 Protocol 2 Protocol 3

Table 7.9: Coding Categories from Subject 3

7.2. APPLYING QUALITATIVE METHODS (PE3) 201

7.2.2.2 Results of the Verbal Protocol

According to each hypothesis, our conclusion are:

1. The scope of comprehension of the class diagram taken by the subjects was dif-
ferent from each other. Nevertheless, the technique that each subject applied
was the same in the three protocols. Subject 1 could understand the OCL
expression correctly without much understanding of the class diagram before
he started to comprehend the OCL expression. However subject 2 focuses on
the relationship between classes in the diagram before he attempt to compre-
hend the OCL expression, whereas the breadth of familiarity with the class
diagram of subject 3 is the widest. Subject 3 focussed on relationships, classes
and attributes before he started to comprehend the diagram. This difference
was depicted using a green rectangle in the graph of the coded utterances (see
Figures 7.4 and 7.5). According to the situation of subject 1 the green rectan-
gle is missing from Figure 7.7 due to the fact that there is no comprehension
of the class diagram at all before the subject started to chunk the expression.

2. Tracing and chunking techniques are applied during the comprehension of OCL
expression. Nonetheless, it is not possible to produce a landscape model from
the verbal protocol data. In order to model a landscape model we need to
use a coarser-grain information during comprehension such us that likened to
tracking eye movements from the UML diagram to the OCL expression (and
the other way around). The eye fixations can support us to indicate what
information is being heeded at any moment in time [Chi97]. Nevertheless, the
verbal protocol provides us with empirical evidence that tracing and chunking
are applied:

• During the comprehension of the OCL expression the subject traces to
the class diagrams, even those subjects who before chunking the expres-
sion take the more systematic comprehension of the class diagram (for
example subject 3). This is confirmed through different verbal utter-
ances related to the relationships (RBPO-CD), problem objects (PO-CD)
which includes aspects of multiplicity of relationships, etc.

• From the recorded video it is possible to visualize that sometimes the
subject follow some navigation using a pencil which is moved over between
classes of diagram.

3. RO, RBPO and PO are significant part of the mental model of subjects when
they deal with the OCL expression comprehension. This was measured ac-
cording to the ratio of coupling coded utterances by the number of utterances
of each protocols. The range of the ratio for all the subjects were between 0.7
and 0.9.

202 CHAPTER 7. PSYCHOLOGICAL EXPLANATION

Coding categories

Time in Seconds - Protocol 1

0 28 56 84 112 140 168 196 224 252 280 308 336 364 392

SCC − A
SCC − SP
SCC − CO
SCC − EM
SCC −NT

SP
TP

CHU
TE

PO − CA
EO

PO − ACO
PO − CD

RBPO −NR
RBPO − CD

RO − EI
RO − C

RO − CO
RO − LOO

Coding categories

Time in Seconds - Protocol 2

0 33 67 100 133 167 200 233 266 300 333 367 400 433 467

SCC − A
SCC − SP
SCC − CO
SCC − EM
SCC −NT

SP
TP

CHU
TE

PO − CA
EO

PO − ACO
PO − CD

RBPO −NR
RBPO − CD

RO − EI
RO − C

RO − CO
RO − LOO

Coding categories

Time in Seconds - Protocol 3

0 28 56 84 112 140 168 196 224 252 280 308 336 364 392

SCC − A
SCC − SP
SCC − CO
SCC − EM
SCC −NT

SP
TP

CHU
TE

PO − CA
EO

PO − ACO
PO − CD

RBPO −NR
RBPO − CD

RO − EI
RO − C

RO − CO
RO − LOO

Figure 7.5: Coded Protocols of Subject 2

7.3. CONTRIBUTION TO THE DISSERTATION 203

7.3 Contribution to the Dissertation

In this chapter we focused on a psychological explanation of how the modelers
deal with OCL expressions. We showed that is possible to reason about the OCL
expression comprehension according to the underlying theory of cognitive and mental
models.

The most important conclusions are:

• Tracing and chunking cognitive process are concurrently applied during OCL
expression comprehension. We obtained empirical evidence of their application
through a thinking aloud protocol. We described which proposed measures
are related to each cognitive technique in turn.

• Landscape models were used to explain how the cognitive process of tracing
and chunking are ideally applied, however landscape models can not be de-
picted from verbal protocol data due to the fact that a more coarser grained
information is needed such us eye movements from OCL expressions to class
diagrams or the other way around.

• Preliminary findings from a thinking aloud experiment show that subjects
take different scope of comprehension of the class diagram before starting to
comprehend an OCL expression. The scope varies in a continuous that runs
from those subjects who did not attempt to comprehend the diagram at all to
those who attempt to systematically comprehend the diagram before chunking
the expression.

• Due to the fact that recently a number of studies [BDW98b], [BDW02], [CW99b],
[CW00] have tested elements of mental model structure supporting the evi-
dence of a separate situation and program model we focus on the Burkhardt
mental model and we described its main structural components [GEMM00].
We provide a mapping between the proposed measures and the structural
component of the Burkhardt model.

• We obtain empirical evidence that problem objects, relations between problem
objects and reified objects are a significant part of the mental model of subjects
when they deal with the OCL expression comprehension.

We think that OCL expression modifications demands a wide scope of comprehen-
sion, and also a high cognitive flexibility from the modelers [CMF04], and they should
apply a systematic comprehension strategy of the surrounding coupled objects to
the contextual type in order to modify the OCL expression. However, we think
that we must obtain empirical evidence of this, and we plan to tackle this issue in
a future work.

204 CHAPTER 7. PSYCHOLOGICAL EXPLANATION

Broadly speaking, we believe that an OCL expression is a key facilitator to the
construction of chunks and also compound chunks, whereas OCL navigation is a
key facilitator for tracing. OCL navigations help the modeler to collect information
about the coupled objects through the expression, and as Davis suggest [Dav95]
the information gathering process is significant in forming a mental representation
(Figure 7.6).

Tracing

Chunking OCL Navigation

Figure 7.6: Tracing and Chunking Techniques

We hypothesize that the ensuring disruption of chunking OCL expression in order
to trace to coupled UML artifacts, leads to comprehension difficulties, and therefore
to a low maintainability. Furthermore, one can argue that many interacting and
coupled objects could overflow short-term memory, would influence maintainability.
The interaction of coupled object is usually manipulated though reified objects such
as collection operations and its operations. So import-coupling seems to affect the
cognitive complexity and external quality attributes of the product. Nevertheless,
more empirical evidence is crucial to support this belief.

7.3. CONTRIBUTION TO THE DISSERTATION 205

Coding categories

Time in Seconds - Protocol 1

0 28 56 84 112 140 168 196 224 252 280 308 336 364 392

SCC − A
SCC − SP
SCC − CO
SCC − EM
SCC −NT

SP
TP

CHU
TE

PO − CA
EO

PO − ACO
PO − CD

RBPO −NR
RBPO − CD

RO − EI
RO − C

RO − CO
RO − LOO

Coding categories

Time in Seconds - Protocol 2

0 28 56 84 112 140 168 196 224 252 280 308 336 364 392

SCC − A
SCC − SP
SCC − CO
SCC − EM
SCC −NT

SP
TP

CHU
TE

PO − CA
EO

PO − ACO
PO − CD

RBPO −NR
RBPO − CD

RO − EI
RO − C

RO − CO
RO − LOO

Coding categories

Time in Seconds - Protocol 3

0 28 56 84 112 140 168 196 224 252 280 308 336 364 392

SCC − A
SCC − SP
SCC − CO
SCC − EM
SCC −NT

SP
TP

CHU
TE

PO − CA
EO

PO − ACO
PO − CD

RBPO −NR
RBPO − CD

RO − EI
RO − C

RO − CO
RO − LOO

Figure 7.7: Coded Protocols of Subject 3

206 CHAPTER 7. PSYCHOLOGICAL EXPLANATION

Chapter 8

Empirical Validation

Product measures are of little value by themselves unless there is empirical evidence
that they are associated with external attributes [BDW99]. So, in this chapter we
describe nine experiments we have carried out to empirically validate the proposed
measures as early comprehensibility and modifiability indicators of OCL expressions
within UML/OCL models.

Due to experiments can be viewed as part of common families of studies, rather
than being isolated events, eight of the experiments presented in this chapter are
part of three families of experiments. Figure 8.1 shows a chronological schedule of
the conducted experiments. Building up a body of knowledge from families of exper-
iments has many benefits for software engineering (see section 2.3.4.1). Moreover,
common families of studies can contribute to important and relevant hypothesis that
may not be suggested by individual experiments.

We have followed some recommendations provided by Ciolkowski et al. [CSB02] on
how to perform family of experiments and the experimental process of Wohlin et
al. [WRH+00] on conducting controlled experiments. Nevertheless we also take into
account the experience and theory of Briand et al. [BAC+99], Perry et al. [PPV00]
and Juristo and Moreno [JM01].

The structure of the chapter is the following: next section, section 8.1, describes
the most important aspects related to the experimental objects and experimental
subjects we stated before running any experiment. Section 8.2 includes the experi-
mental process of a first experiment whereas each of the last sections, 8.3, 8.4, 8.5
describe three families of experiments, respectively. Finally, section 8.6 includes
conclusions as part of the contribution to the dissertation. All the experiments de-
scribed in this chapter were run applying the activities of the method for measure
definition described in chapter 2. So, we titled the main sections accordingly to the
activity they represent and we included the activity number between parenthesis as
a reference.

208 CHAPTER 8. EMPIRICAL VALIDATION

1st Experiment
Students
National Univ. of
Comahue (UNC)
Neuquen, Argentine
comprehensibility
modifiability

2nd Experiment
Students
National Univ. of
Comahue (UNC)
Neuquen, Argentine
comprehensibility
modifiability

3rd Experiment
Students
Castilla La-Mancha
Univ. (UCLM)
Ciudad Real, Spain
comprehensibility
modifiability

4th Experiment
Students
Alicante Univ.
(UA)
Alicante, Spain
comprehensibility
modifiability

5th Experiment
Students
Alicante Univ.
(UA)
Alicante, Spain
comprehensibility
modifiability

6th Experiment
Students
La Matanza Univ.
(ULM)
La Matanza, Argentina
comprehensibility
modifiability

7th Experiment
Students
Austral Univ. of Chile
(UACh)
Valdivia, Chile
comprehensibility
modifiability

8th Experiment
Students
Complutense Univ. of
Madrid (UCM)
Madrid, Spain
comprehensibility
modifiability

9th Experiment
Students
Politecnica Univ. of
Valencia (UPV)
Valencia, Spain
comprehensibility
modifiability

1
st

F
a
m
ily

o
f
E
x
p
e
rim

e
n
ts

2
n
d
F
a
m
ily

o
f
E
x
p
e
rim

e
n
ts

3
rd

F
a
m
ily

o
f
E
x
p
e
rim

e
n
ts

I

I
1
5
-O

c
t-2

0
0
3

1
0
-D

e
c
-2
0
0
3

2
8
-M

a
r-2

0
0
4

7
-A

p
r-2

0
0
4

7
-A

p
r-2

0
0
4

1
2
-O

c
t-2

0
0
4

1
0
-N

o
v
-2
0
0
4

0
3
-M

a
y
-2
0
0
5

1
5
-M

a
y
-2
0
0
5

1
st

E
x
p
e
rim

e
n
t

2
n
d
E
x
p
e
rim

e
n
t

2
n
d
E
x
p
e
rim

e
n
t

2
n
d
E
x
p
e
rim

e
n
t

3
rd

E
x
p
e
rim

e
n
t

3
rd

E
x
p
e
rim

e
n
t

3
rd

E
x
p
e
rim

e
n
t

4
th

E
x
p
e
rim

e
n
t

4
th

E
x
p
e
rim

e
n
t

(1
st

R
e
p
lic

a
)

(2
n
d
R
e
p
lic

a
)

(1
st

R
e
p
lic

a
)

(2
n
d
R
e
p
lic

a
)

(1
st

R
e
p
lic

a
)

F
igu

re
8.1:

O
verv

iew
of

th
e
E
x
p
erim

en
ts

C
on

d
u
cted

8.1. HOW THE EXPERIMENTS WERE CONDUCTED 209

8.1 How the Experiments were Conducted

The design of experiments for OCL expressions within UML models is a challenging
activity due to many factors arise:

• We focus on OCL expressions: OCL is not a stand-alone language [CBC05]
and must be used along with UML diagrams. We used UML class diagrams
as the experimental material where OCL expressions were attached, and we
took into account that the complexity of these provided models do not bias
our results. So, we tried to see that the designed UML diagrams were not
confusing, cluttered, and unwieldy [MM04]. Regarding the modeling of clear
UML diagrams we included only four to five classes. We adopt this limit as a
cognitive threshold of unfamiliar concepts without affecting cognitive burden,
taking into account the studies of Broadbent [Bro75] and Miller [Mil56].

• Type of OCL expressions used: Two of the most important OCL expres-
sions used in class diagrams are invariants and pre- or post-conditions. The
former are attached to classes, the latter are associated to methods. How-
ever as Briand et al. argue [BWL99] in OO system often methods just invoke
other methods, thus passing through the request to another class, and we have
good reasons to assume that a good deal of the cognitive complexity of an
OO system lies in the way the system objects collaborate, and less in the im-
plementation of individual methods. Moreover, from the coupling measures
surveyed in the literature (see chapter 3) mostly were defined at the class level
[BWL99]. So, we decided to focus on expressions attached to classes, i.e. on
OCL expression invariants. Furthermore, many research studies had argue the
importance of constraints [SSR04], [VS02], [VS02] as invariant expressions.

• Experimental context and subject training: Most of the times it is ex-
tremely difficult to access to professional subjects, due to the important cost
in time, effort and resources. That is mainly why researchers carry out their
studies with students in academic environments. Under certain circumstances,
the differences between the students and the professionals are not very impor-
tant, provided that the tasks to perform do not require an excessive experience,
sometimes empirical experiments with students shows many advantage (see
[Ver05], [DBM+96]). However, as Briand et al. argue [BLYP04], in general
students are probably better trained at OCL and software modeling with the
UML than most software professionals. So, regarding external validity we did
not evaluate if the subjects are representative of software professionals. So, our
families of experiments were launched off-line (not in an industrial software
development environment).

Nevertheless, in many universities where we run experiments the students were
not prepared enough to perform our experiment, and in other cases students

210 CHAPTER 8. EMPIRICAL VALIDATION

had no training at all in OCL. Actually, OCL will rapidly become a stan-
dard part of many Computer Science curricula, nevertheless we found that the
training session for student was an important aspect of our experiments plan-
ning and should be carefully evaluated. The training was tailored specifically
for the experiments, ranging between 5, 10 and 20 hours. Despite this, we
think that the fact that students have little (or none) pre-existing knowledge
of OCL could improve the assimilation of concepts [RW02], but maturation
process could not be obtained appropriately in those reduced training session
(for instance, at a session of 5 hours). In some experiments we could not ex-
tend the training session because we were offered to use only this period of
time. In one case we cancelled a replica of an experiment we plan to do (that
was the case of the course in the JCC Jornadas Chilenas de Computación in
Chile in 2005) because the training session was less than 5 hours and we only
teach a course. Nonetheless we think that we had good opportunities to do
replicas of the experiments in different universities and many researchers and
teachers had collaborated with the purpose of our experimentation.

8.2 A First Experiment

We were conscious that it is impossible to conduct an experiment in which all the
OCL concepts being used at the same time in expressions. In fact, it is also im-
practical because such expressions would be quite long probably having an unwieldy
structure (with if expression, let expression, etc) and operating in a large context.
OCL expressions tend to be short, and use different portions of the set of OCL
concepts. So, we selected the more commonly used OCL concepts from the more
relevant literature about OCL.

The first experiment was designed with the intention to obtain an exploratory expla-
nation of the influence of coupling, measured by a set of OCL expression measures,
on comprehensibility and modifiability. Through this experiment we were also inter-
ested to see in this influence if the measures related to tracing -which was described
as a fundamental activity in comprehension- had a more important contribution
rather than chunking measures.

8.2.1 Definition (EF1)

Using the GQM template for goal definition, the goal pursued in this experiment is
shown in Table 8.1.

8.2. A FIRST EXPERIMENT 211

Analyze measures for OCL expressions within UML/OCL models
for the purpose of Evaluating
with respect to The capability to be used as comprehensibility and modifiabil-

ity indicators of OCL expressions
from the point of
view of

OO Software modelers

in the context of Undergraduate Computer Science enrolled in a course related
to OCL, of the Department of Computer Science at the Na-
tional University of Comahue

Table 8.1: Goal of the First Experiment

8.2.2 Planning (EF2)

After the definition of the experiment, the planning phase took place. It prepares
for how the experiment is conducted, including the following six steps:

1. Context selection. The context of the experiment is a group of undergrad-
uate students who had agreed to take part in a course on OCL, and hence the
experiment is run off-line. The subjects were twenty-nine students enrolled in
the third and fourth-year of Computer Science at the Department of Computer
Science at the National University of Comahue in Argentina.

The experiment is specific since it is focused on twelve measures for OCL
expression within UML/OCL combined models. The experiment addresses a
real problem, i.e., which indicators can be used for the comprehensibility and
modifiability of OCL expressions? With this end in view it investigates the
relationship between measures and the time spent on comprehensibility and
modifiability tasks.

2. Selection of subjects. According to [WRH+00] we have applied a proba-
bility sampling technique: a convenience sampling. The nearest subjects we
could choose were undergraduate students who had, in average, one year of
experience in the development of OO systems using UML, and by the time the
experiment took place they were taking a course of OCL we specially prepared
for them.

3. Variables selection. The independent variable (IV) is import-coupling of
an OCL expression. The dependent variables (DVs) are the comprehensibility
and mo-difiability of OCL expressions.

4. Instrumentation. The objects were four UML/OCL combined models, hav-
ing each of them only one OCL expression. The independent variable was
measured through the a set of measures which are related to the most com-
monly used OCL concepts:

212 CHAPTER 8. EMPIRICAL VALIDATION

• measures related to chunking: NKW (Number of OCL Keywords), NES
(Number of Explicit Self), NBO (Number of Boolean Operators), NCO
(Number of Comparison Operators), NEI (Number of Explicit Iterator
variables), NAS (Number of Attributes belonging to the classifier that
Self represents).

• measures related to tracing: NNR (Number of Navigated Relationships),
NAN (Number of Attributes referred through Navigations), NNC (Num-
ber of Navigated Classes), WNN (Weighted Number of Navigations), DN
(Depth of Navigations), WNCO (Weighted Number of Collection Oper-
ations).

The dependent variables (DVs) were measured according to:

• The time each subject carried out the comprehensibility and modifiability
tasks, defined as COM Time and MOD Time respectively.

• The subjects´ ratings of comprehensibility or modifiability. We call this
measure COM or MOD SubComp (comprehensibility or modifiability
subjective complexity).

We have also used as indicators of comprehensibility and modifiability the
following measures:

COM Correctness =
Number of correct answers

Number of questions answered
(2.1)

MOD Correctness =
Number of correct modifications

Number of modifications applied
(2.2)

The number of correct answers represents the correctness of the understand-
ing the questionnaire, i.e. the number of questions correctly answered. The
number of correct answers is a reasonable measure of the understanding since
all the tests have the same design, it has the same quantity of questions.

COM Completeness =
Number of correct answers

Number of questions required
(2.3)

MOD Completeness =
Number of correct modifications

Number of modifications required
(2.4)

5. Hypothesis formulation. We wish to test the following hypothesis (two
hypothesis for each measure for the dependent variables)

(a) H0,1: There is no significant correlation between the OCL measures and
the COM and MOD Time. H1,1 : ¬H0,1

8.2. A FIRST EXPERIMENT 213

Test NNR NAN WNN WNCO NAS NEI NCO NBO NES NKW NNC DN

1 2 1 2 1 1 0 3 2 4 4 2 1
2 4 2 5 4 0 0 3 4 5 6 4 1
3 3 1 4 3 0 1 2 3 5 5 2 3
4 4 2 2 3 2 0 3 2 4 4 4 3

Table 8.2: Measure Values for each UML/OCL Model (1st Experiment)

(b) H0,2: There is no significant correlation between the OCL measures and
COM/MOD correctness/completeness. H1,2 : ¬H0,2

(c) H0,3: There is no significant correlation between the OCL measures and
the COM/MOD SubComp. H1,3 : ¬H0,3

(d) H0,4: There is no significant correlation between the COM/MOD Time
and the COM/MOD SubComp. H1,4 : ¬H0,4

6. Experiment design. We selected a within-subject and balanced design, i.e.,
all the tests (experimental tasks) had to be solved by each of the subjects.
The tests were put in a different order for each subject for alleviating learning
effects.

8.2.3 Operation (EF3)

The operational phase is divided into three steps: preparation, execution and data
validation.

• Preparation. We have selected as experimental subjects a group of students
who have taken a semester class on System Analysis. In this course the stu-
dent had learnt the use of UML. The students were motivated to take a course
on OCL, they were informed that OCL is an expressive language used for
formally expressing additional and necessary information about a model spec-
ified in UML. Later, the students were asked to participate in the course, 29
subjects agreed to take part, so they were volunteers. They were motivated
to take a training session on OCL language and to do some practical exer-
cises as part of the session, but it was not mentioned that these exercises are
constituent of an experiment. The subjects were not aware of what aspects
we intended to study. Neither were they aware of the actual hypothesis stated.

We prepared the material handed to the subjects, consisting of four UML/OCL
models. The experiment material is included in appendix D.1. These diagrams
were related to different universes of discourse that were easy enough to be

214 CHAPTER 8. EMPIRICAL VALIDATION

understood by each of the subjects, and some of them were obtained from the
existent OCL literature. The structural properties of each model is different
as it is revealed from the measures values of each UCL/OCL model (see Table
8.2). Before running the experiment we performed a pilot experiment. We
asked a researcher who has experience on OCL to carry out the experimental
tasks. All the modifications she suggested were considered. Each UML/OCL
model had a test enclosed that included different type of tasks:

� Comprehensibility Tasks (COM Tasks):

∗ The subjects had to answer four questions about the meaning of the
OCL expression. These questions had the purpose to test if the sub-
jects had understood each expression. The first question was related
to navigations concepts, meanwhile the last three questions were a
multiple choice about the meaning of the OCL expression. Each
question has three options, being only one option the correct answer.
They also had to note how long it took to answer the questions. The
COM Time, expressed in minutes and seconds, was obtained from
that.

� Modifiability Tasks (MOD Tasks):

∗ Each UML/OCL model used by the subjects in the COM Task had
also enclosed three new requirements for the OCL expression. Each
subject had to modify the OCL expression according to the new re-
quirements. The modifications to each test were similar, including
defining new navigations, using attributes referred through naviga-
tions, etc.

∗ They also had to write down the time when they started to do the
modifications and when they finished. This time was called MOD
Time.

� Rating Tasks:

∗ The subjects had to rate the COM tasks using a scale consisting of
five linguistic labels (Very difficult to comprehend, A bit difficult to
comprehend, Neither difficult nor easy to comprehend, A bit easy to
comprehend and Very easy to comprehend). As we described previ-
ously we called this measure comprehension Subjective Complexity
(COM SubComp).

∗ We have also used a scale consisting of five linguistic labels similar
to the one used for comprehensibility, so that the subject could rate
the modifiability tasks. We called this measure MOD SubComp.

Moreover, we prepared a debriefing questionnaire. This questionnaire included
personal details and experience (see the questionnaire used in this experiment
in section D.5).

8.2. A FIRST EXPERIMENT 215

• Execution. In the lecture before the experiment was carried out, the subjects
were asked to bring a watch in the next lecture. Those subjects who did not
bring a watch were able to use a clock rendered with a multimedia projector.
The subjects were given all the materials described in the previous paragraph.
We explained to them how to carry out the test, asking for carrying out the
test alone, and using unlimited time to solve it. There was an instructor who
supervised the experiment and any doubt could be asked to him. We collected
all the data, including subjects’ rating obtained from the responses of the
experiment.

• Data validation. Analyzing the debriefing questionnaire, we can corroborate
that the subjects had approximately the same degree of experience in mod-
elling with UML, the profile of the subject is the following: their average age is
24 years old, they have an average of 4 years programming experience, and one
year in modelling UML class diagrams. Taking into account their profile, we
consider their subjective evaluation reliable. However, most of the answers for
the modifiability part of the four tests were not correctly answered, only the
comprehensibility part of the four tests had an optimal rate of answers. We
think that the reason is that the experiment was carried out after two lectures
of 2 hours each, and this period of time was enough for the students to under-
stand OCL expressions but they did not have enough practice in modifying
OCL expressions. We think we exposed the students prematurely to do OCL
expression modification. For that reason we consider only the COM tasks of
the experiment. Regarding this part, three tests were studied as outliers and
12 tests were separated because they have a correctness below 75%. Finally,
we had 101 data sets to be analyzed.

8.2.4 Analysis and Interpretation (EF4)

We had analysed the experiment data in order to test the hypothesis formulated in
section 8.2.2. For this purpose we used the Statistical Package for Social Science
(SPSS) [SPS02]. First we had to check the normality of the data obtained. If the
data was normal, the best option in our case was to use parametric tests because
they are more efficient than non-parametric tests. We applied the Kolmogorov-
Smirnov test to ascertain if the distribution of the data collected was normal. As
the data was non-normal we decided to use a non-parametric test like Spearman´s
correlation coefficient, with a level of significance α = 0.05, which means the level
of confidence is 95 % (i.e. the probability that we reject H0 when H0 is false is of at
least 95 %, which is statistically acceptable). Each of the measures was correlated
separately to the mean of the subjects’ COM Time (see Table 8.3).

All the required tasks were answered so completeness and correctness have the same

216 CHAPTER 8. EMPIRICAL VALIDATION

NNR NAN WNN WNCO NAS NEI

COM. Scc .162 .020 .207 .223 -.172 .348
Time p-value .105 .840 .038 .025 .086 .000
COM Scc -.073 .016 -.180 -.151 .173 -.229
Corr. p-value .465 .877 .071 .131 .084 .021
COM SubComp Scc .093 -.026 .084 .108 -.076 .308

p-value .357 .794 .403 .283 .450 .002
NCO NBO NES NKW NNC DN

Und. Scc -.348 .207 .282 .207 .020 .324
Time p-value .000 .038 .004 .038 .840 .001
COM Scc .229 -.180 -.224 -.180 .016 -.147
Corr. p-value .021 .071 .025 .071 .877 .143
COM SubComp Scc -.308 .084 .166 .084 -.026 .326

p-value .002 .403 .097 .403 .794 .001

Table 8.3: Spearman Correlation between Measures and COM Time (1st Experi-
ment)

Table 8.4: Spearman´s Correlation between Measures and COM SubComp (1st

Experiment)
Correctness Subjective COM

COM Time Scc -.102 .349
p-value .310 .001

value. For a sample size of 101 and α = 0.05, the Spearman cut-off for accepting
H0 is 0.1956. Hence, after analyzing Table 8.3, we can conclude that:

• There is a significant correlation between WNN, WNCO, NEI, NCO, NBO,
NES, NKW and DN measures and subjects’ COM Time.

• There is a significant correlation between NEI, NCO and NES measures and
correctness and completeness.

• There is a significant correlation between the NEI, NCO and DN measures
and the COM SubComp.

Moreover, after analyzing Table 8.4 we can conclude that there is a significant
correlation between the COM Time and the COM SubComp. Nevertheless, these
encouraging findings must be considered as preliminaries. More experimentation
would be necessary in order to obtain more conclusive results.

8.2. A FIRST EXPERIMENT 217

8.2.4.1 Validity Evaluation

Next we will discuss the empirical study´s various threats to validity and the way
we attempted to alleviate them:

• Threats to Conclusion Validity. The only issue that could affect the
statistical validity of this study is the size of the sample data which is perhaps
not enough for non-parametric statistic tests. We are aware of this, so we will
consider the results of the experiment only as preliminary findings.

• Threats to Construct Validity. We proposed an objective measure for the
dependent variable, the COM Time, i.e., the time each subject spent answering
the questions related to each UML/OCL model, which is considered the time
they need to understand the expression. We also proposed measures for the
subjective complexity (using linguistic variables) based on the judgment of the
subjects. As the subjects involved in this experiment have medium experience
in OO system design using UML we think their ratings could be considered
significant. The construct validity of the measures used for the independent
variables is guaranteed by Briand et al.´s frameworks [BMB99], [BMB96],
[BMB97] used to validate them.

• Threats to Internal Validity. The analysis performed here is correlational
in nature. We have demonstrated that several of the measures investigated
had a statistically and practically significant relationship with COM Time,
comprehensibility correctness and subjective complexity. Such statistical rela-
tionships do not demonstrate per se a causal relationship. They only provide
empirical evidence of it. We tried to alleviate some threats: differences among
subjects, knowledge of the universe of discourse among UML/OCL combined
models, accuracy of subjects responses, learning effects, fatigue effects, subject
motivation, plagiarism, etc.

• Threats to External Validity. The greater the external validity, the more
the results of an empirical study can be generalized to actual software engi-
neering practice. Two threats of validity have been identified which limit the
possibility of applying any such generalization:

� Materials and tasks used. In the experiment we have used UML/
OCL models, which can be representative of real cases. Related to the
tasks, the judgment of the subjects is to some extent subjective, and does
not represent a real task.

� Subjects. See remarks of section 8.1.

218 CHAPTER 8. EMPIRICAL VALIDATION

8.2.5 Presentation and Package (EF5)

As we described in section another way to present the findings is through a pub-
lication, so, we have published a paper about this experiment in an international
workshop (see [RGP04a]).

8.2.6 Conclusions of the First Experiment

The experiment reveals that there is a strong correlation between the subjective
comprehensibility rating and the COM Time. The findings we have obtained are:
(1) only the set of measures composed of WNN (Weighted Number of Navigations),
WNCO (Weighted Number of Collection Operations), NEI (Number of Explicit
Iterator variables), NCO (Number of Comparison Operators), NBO (Number of
Boolean Operators), NES (Number of Explicit Self), NKW (Number of OCL Key-
words) and DN (Depth of Navigations) is related with the COM Time. (2) A subset
of this set of measures, that is composed of NEI, NCO and DN has an impact on
the subjective complexity of subjects, and, although the rating is subjective we have
also corroborated that almost the same subset of measures (with exception of NES
although it has a low p-value) is also correlated to the completeness and correctness
of the experimental tests, giving the second finding more significance.

Some aspects of a lesson learned after conducting this experiment are:

• We realized that in order to obtain more solid findings we should conduct a
family of experiments.

• Either a experiment or a family of experiments, we should take care in the
experimental training of the subjects with the purpose of prepare them ap-
propriately for doing MOD tasks, otherwise we could exposed the subject
prematurely to do MOD tasks as it happens in this experiment.

• Regarding the result of the experiment we believe that both cognitive tech-
niques (tracing and chunking) are part of the influence of coupling on com-
prehensibility. However, we think that the two important concepts regarding
the two cognitive aspects involved with coupling are the quantity of concepts
involved (which is related to chunking) and the depth of coupling (related to
tracing) and we plan a controlled experiment to study their influence in com-
prehensibility and modifiability. We intended to reveal if one of these factors
(or its interaction) influences on comprehensibility/modifiability. And this is
the focus on conducting the following family of experiments.

8.3. FIRST FAMILY OF EXPERIMENTS 219

8.3 First Family of Experiments

The main goal of this section is to carefully describe the experimental process we fol-
lowed in order to corroborate if the depth of coupling and quantity of coupled objects
influence on the comprehension and modifiability of OCL expressions. The original
experiment was carried out at the National University of Comahue in Argentina
(UNC experiment) and its replicas at University of Castilla La-Mancha (UCLM
experiment) and University of Alicante (UA experiment) in Spain, respectively.

8.3.1 Experiment Preparation (F1)

We believe that two important factors of the import-coupling are the number of
different objects which are coupled to the contextual instance and the depth of nav-
igation. For measuring these factors we have selected two measures: the number
of navigated classes (NNC) which represents the quantity of coupled objects and
the depth of navigation (DN) which stands for the distance of the farthest coupled
object from the contextual instance. So, the goal pursed of the first family of experi-
ment is defined using the GQM template [BR98], [CPG01] : Analyze <<length and
coupling, measured by DN and NNC respectively >>; for the purpose of <<Eval-
uating>>; with respect to <<The capability to be used as comprehensibility and
modifiability indicators of OCL expressions>>; from the point of view of <<re-
searchers>>: in the context of <<Undergraduate Computer Science students >>.

8.3.2 Context Definition (F2)

We obtained a profile of the subjects who participated in each experiment using a
debriefing questionnaire similar to the previous experiment and including personal
details and experience. A short description of the subjects, how they were invited
to take part of the experiment and the inducement of the experiment are detailed
in the following:

• UNC Experiment (December 2003): In order to select the subjects we
motivated a group of students who had taken a semester on System Analysis
to take an additional and intensive course in the OCL language. The course
consisted of two sessions of 10 hours each one. Fifteen students who attended
the second session participated in the last module. In this session they had
to do some practical exercises, but it was not mentioned that these exercises
were related to any experiment whatsoever. The subjects were not aware of
what aspects we intended to study.

220 CHAPTER 8. EMPIRICAL VALIDATION

• UCLM Experiment (March 2004): The subjects were twelve undergradu-
ate students enrolled in the fifth-year of Computer Science in the Department
of Computer Science at the University of Castilla La-Mancha in Spain. The
experiment was run in a practical session of the Software Engineering II course.
Before the experiment was run the subjects participated in three lectures about
OCL of one hour each one. These lectures were given by the same professor
who supervised the experiment. The subjects were motivated to participate
in the practical session because we told them that similar exercises could be
included in the final exam. However, not all the students who participated in
the experiment attended all the lectures, having the subjects different back-
grounds in the OCL language. This issue could be the most important threat
to the internal validity of this replica.

• UA Experiment (April 2004): The subjects were twenty nine students
enrolled in the third-year of Computer Science at the Department of Computer
Science at the University of Alicante (UA), Spain. They were students of the
first Software Engineering course. We invited the students to participate in
a short seminar about OCL and to do a test as part of the seminar. The
subjects were motivated to participate in the experiment because they could
obtain an extra point in the final score of the Software Engineering course if
and only if they completed all the tests. The extra point we gave them was
only dependent on finishing the exercise, not on how the exercise was done.

8.3.3 Design Framework of the First Family of Experiments
(F3)

Hereafter, we will summarize the main experimental process steps common to the
original experiment and its replicas.

The planning phase deals with how the experiment is conducted, including the

0

15

30

U
N
C

2
1

U
C
L
M

2
2

U
A

2
1

0

2

4

U
N
C

1
.5

U
C
L
M

2
.5

U
A

2
.5

0

1

2

U
N
C

0
.5

U
C
L
M

1

U
A

1

Average Age Average Experience Average Experience
in OO programming in Modeling with UML

Table 8.5: Subject Profile (1st Family of Experiments)

8.3. FIRST FAMILY OF EXPERIMENTS 221

following steps:

• Variables selection. The independent variables (IVs) are the quantity of
coupled objects and the depth of coupling. The dependent variables (DVs)
are the comprehensibility and modifiability of OCL expressions.

• Instrumentation. The material to be handed to the subjects consists of
four UML/OCL models with one OCL expression in each one. As we proceed
in the previous experiment we evaluate that the complexity of the universes
of discourse of the models do not bias the results and we also did a pilot
experiment.

The quantity of coupled objects were measured by the Number of Navigated
Classes (NNC) and the depth of coupling by the Depth of Navigations (DN)
measures. The DVs were measured according to the COM Time and MOD
Time and also to Comprehensibility Efficiency (COM Eff) and the Modifiabil-
ity Efficiency (MOD Eff) defined as:

COM Efficiency =
Number of correct answers

COM Time
(3.5)

MOD Efficiency =
Number of correct modifications

MOD Time
(3.6)

• Hypothesis formulation. We wished to test the following hypotheses:

� Hypotheses 1, H0,1: There is no effect of the depth of coupling (measured
by DN) on the COM Time of OCL expressions // H1,1: ¬ H0,1

� Hypotheses 2, H0,2: There is no effect of the quantity of coupled objects
(measured by NNC) on COM Time of OCL expressions. // H1,2: ¬ H0,2

� Hypotheses 3, H0,3: There is no interaction effect between depth of cou-
pling (measured by DN) and the quantity of coupled-objects (measured
by NNC) on COM Time of OCL expressions. // H1,3: ¬ H0,3

Similar hypotheses were defined for MOD Time (Hi,j, i=0,1 ; j=4,5,6), COM
Eff (Hi,j, i=0,1 ; j=7,8,9) and MOD Eff (Hi,j, i=0,1 ; j=10,11,12).

Besides, we wish to test the following hypothesis:

� Hypotheses 13, H0,13: The COM subjective complexity distribution is the
same for all the treatments. H1,13: ¬ H0,13

� Hypotheses 14, H0,14: The MOD subjective complexity distribution is the
same for all the treatments. H1,14: ¬ H0,14

Table 8.6 explains the hypotheses and the tests used to verify them.

222 CHAPTER 8. EMPIRICAL VALIDATION

Table 8.6: Synopsis of Hypotheses and the Statistical Test Applied (1st Family of
Experiments)

Time Efficiency
Measures COM Time MOD Time COM Eff MOD Eff
DN Hypotheses 1 Hypotheses 4 Hypotheses 7 Hypotheses 10

Test: ANOVA
NNC Hypotheses 2 Hypotheses 5 Hypotheses 8 Hypotheses 11

Test: ANOVA
DN and NNC interaction Hypotheses 3 Hypotheses 6 Hypotheses 9 Hypotheses 12

Test: ANOVA

Subjective Complexity
COM SubComp MOD SubComp
Hypotheses 13 Hypotheses 14

Test: W of Kendall

Table 8.7: A 2 × 2 Factorial Design (1st Family of Experiments)

DN
low high

NNC low 2, 1 (group 1) 2, 3 (group 3)
high 4, 1 (group 2) 4, 3 (group 4)

• Experiment Design. Taking the hypotheses into account, we considered two
factors: NNC and DN with two levels each one (low, high), 1 and 3 for DN, and
2 and 4 for NNC. The 2x2 crossed factorial design is shown in Table 8.7. For
each group we designed one UML/OCL model composed of one class diagram
with one OCL expression. We selected a within-subject design experiment,
i.e. all the tasks of the four models had to be solved by each of the subjects.
The four models were randomly assigned in different order to the subjects to
avoid learning effects.

Experiment Tasks. Each UML/OCL model had an enclosed test that in-
cluded the same types of tasks as the first experiment described. The tests used
in the experiment are included in the appendix B, see D.1. Each UML/OCL
model had an enclosed test that included two types of tasks: COM and MOD
Tasks as we used in the previous experiment.

Experimental Execution. The experiments were run in one session. We ex-
plained to them how to carry out the tests. A same instructor supervised each of
the experiments.

Data validation. Once the data were collected, we checked them and noted down
the different times and the number of answered (right and wrong) questions. Their

8.3. FIRST FAMILY OF EXPERIMENTS 223

COM and MOD Eff was calculated.

From these values, we calculated four measures of the dependent variable, two of
them are COM and MOD Correctness defined in the previous experiment and the
other two are new, defined as COM and MOD Eff (see their definition in Instru-
mentation item).

8.3.4 Data Analysis and Interpretation (F5)

8.3.4.1 Descriptive Analysis

Fig. 8.2 shows a descriptive plot of the time spent by the subject in comprehending
and modifying OCL expressions whereas Fig. 8.3 shows the subject’ efficiency. Both
tables shows the time and the efficiency for each group (G1, G2, G3 and G4). The
more time consuming COM task for UA and UCLM experiment’ subject was the
G2 group. However they were more efficient in this group rather than the other. It
seems that G3 group was the more time consuming MOD task for the UA and UCLM
experiment’ subjects. From Table 8.3 we can see that subjects of UA experiment
were less efficient in modifying G3 and G2 tasks.

Mean COM Time in Gi Mean MOD Time in Gi

G
1

G
2

G
3

G
4

100

200

300

400

500

G
1

G
2

G
3

G
4

100

200

300

400

500

600

UA UCLM UNC

Figure 8.2: Mean COM and MOD Time (1st Family of Experiments)

8.3.4.2 Testing the Hypotheses

Two different analysis were performed for each experiment of the family. The anal-
ysis only differs in the instrumentation for measuring the DVs. The results of the
first analysis were already published in [RGP04b] and [RGP04c], however the last
analysis is new. In the first analysis we discarded those tests that were incomplete
(completeness = 0) and also tests having a correctness than 0.75. We believe that
discarding tests according to the correctness we loose valuable information, and

224 CHAPTER 8. EMPIRICAL VALIDATION

Mean COM Eff in Gi Mean MOD Eff in Gi

G
1

G
2

G
3

G
4

0.006
0.007
0.008
0.009
0.010
0.011
0.012
0.013
0.014

G
1

G
2

G
3

G
4

0.002

0.004

0.006

0.008

0.010

0.012

0.014

UA UCLM UNC

Figure 8.3: Mean COM and MOD Efficiency (1st Family of Experiments)

Table 8.8: Shapiro Wilk Normality Test for COM and MOD Time (1st Family of
Experiments)

Group Shapiro-Wilk significance level
G1 G2 G3 G4

COM Time 0.200 0.555 0.530 0.682
MOD Time 0.093 0.237 0.734 0.060

we decided to include those tests discarded in the second analysis. In the second
analysis we use as DV the COM/MOD Eff instead of the COM/MOD Time.

We selected the best test to apply to our data for obtaining results susceptible of
being interpreted. For the three analysis we performed similar tests. Before testing
the formulated hypothesis we evaluated if the data follow a normal distribution or
not using the Shapiro-Wilk test, with α =0.10 which means a 90% level of confidence.

8.3.4.3 Analysis of COM/MOD Time in the UNC Experiment

Shapiro-Wilk tests results are shown in Table 8.8 for COM and MOD Time. Only
two groups were not normal (G1 and G4) in the MOD Time and we decided to
carry out an ANOVA with repeated measures because this type of analysis allow
us to analyse interaction between the independent variables under study and the
measurement of the dependent variable is repeated.

All the data were complete. There were no outliers in the comprehensibility part,
however in the case of the modifiability part the tests belonging to eleven subjects
were discarded as outliers. Due to the number of outliers were high in the modi-
fiability part, we decided to tests the hypothesis twice, with outliers and without
them.

8.3. FIRST FAMILY OF EXPERIMENTS 225

Table 8.9 (a) shows the ANOVA results for the COM Time. The eighth column of
Table 8.9 (a) represents the level of significance which will allow us to reject or accept
the hypothesis we have formulated, significant coefficient at level 0.10 are shown
in bold font. In each row of the table we have the factors (DN, and NNC), their
interaction, and their errors. The last column of Table 8.9 (a) shows the observed
power. Analyzing Table 8.9 (a) we can conclude that:

• The value of the DN and NNC measures affect the COM Time of an OCL
expression within UML/OCL models, but there is no effect of their interaction.

• The power of the length (measured by DN) main effect was .996, which indi-
cates that there is 99.6% chance of detecting a genuine effect. The power of
the coupling (measured by NNC) main effect was 0.535, which indicates that
the chance of detecting a genuine main effect is fairly low, 53.5%. Finally, the
power of the length by coupling interaction was 0.276, which indicates that
the chance of detecting a genuine interaction effect is low, 27.6%.

We found many outliers in the MOD tasks and few subjects remains (only four), so
we did two ANOVAS, one where outliers were removed and another including the
whole data. Table 8.9 (b) and (c) shows the ANOVAs for MOD Time for the whole
set of data of UNC experiment. Table 8.9 (b) shows the results after removing the
outliers whereas Table 8.9 (c) shows the results including outliers. Nevertheless the
results from Table 8.9 (b) and 8.9 (c) are the same.

The conclusion is the DN and NNC factors affect the COM Time and the factor
that affects the MOD Time is DN.

8.3.4.4 Analysis of COM/MOD Time in the Experiment Replicas

As most of the details of the analysis of the replicas were very similar to the first
experiment, we will only focus on different aspects. Tables 8.10, 8.11 and 8.12
include their principal results, the first table shows the number of tests that were
discarded (completeness = 0) and the results of the Shapiro Wilk test. The second
table, table 8.11 includes the quantity of outliers we found. Table 8.12 contains
the significance level and observed power for ANOVA Tests respectively. Table 8.13
summarize the results for the three experiments. The main conclusions are:

• The COM Time is affected by DN and the interaction of DN and NNC for
UCLM experiment. However in UA experiment only the interaction between
DN and NNC affects the COM Time. That means that individually each main
factor (DN or NNC) does not affects the COM Time but their interaction does.
In order to try to understand the interaction, we need to look at the means

226 CHAPTER 8. EMPIRICAL VALIDATION

a. COM Time
Source DN NNC Sum of df mean F-ratio Sig. Observed

squared squared level Power
DN L 91182.0167 1 91182.0167 20.5736 0.0004 .996

Error(DN) L 62047.7333 14 4431.98095
NNC L 33464.8167 1 33464.8167 3.3151 0.0900 .535

Error(NNC) L 141324.933 14 10094.6381
DN * NNC L L 5782.01667 1 5782.01667 1.1923 0.2932 .276

Error(DN*NNC) L L 67889.7333 14 4849.26667

b. MOD Time without Outliers
Source DN NNC Sum of df mean F-ratio Sig. Observed

squared squared level Power
DN L 63504 1 63504 12.3137 0.0392 0.829

Error(DN) L 15471.5 3 5157.1666
NNC L 4624 1 4624 1.3056 0.3361 0.233

Error(NNC) L 10624.5 3 3541.5
DN * NNC L L 992.25 1 992.25 0.2405 0.6574 0.125

Error(DN*NNC) L L 12377.25 3 4125.75

c. MOD Time including Outliers
Source DN NNC Sum of df mean F-ratio Sig. Observed

squared squared level Power
DN L 115720.417 1 115720.417 10.805 .005 .930

Error(DN) L 149939.333 14 10709.952
NNC L 1050.017 1 1050.017 .115 .740 .118

Error(NNC) L 128080.733 14 9148.624
DN * NNC L L 277.350 1 277.350 .020 .891 .103

Error(DN*NNC) L L 198479.400 14 14177.100
L means Lineal

Table 8.9: ANOVA with Repeated Measures for the UNC Experiment (1st Family
of Experiments, 1st Experiment)

for the interaction. Figure 8.4 show the estimated marginal means in a profile
plot for each experiment. The vertical axis of a profile plot represents the
dependent variable, the COM Time. DN factor was selected to be represented
as the horizontal axes, whereas NNC factors will be displayed as separate lines
or plots. A simple overview of the plot clearly shows that the two lines are
not parallel. The fact that the lines are not parallel is the defining feature
of an interaction, due parallel lines would indicate no interaction. The line
representing the NNC = 2 is relatively flat for UCLM experiment, whereas
it has a positive slope in UA experiment. In the last case it means that
the larger the DN factor the worse the COM Time the subjects spent on
the model. The line representing the NNC = 4 has a negative slop in both
experiments, the larger the DN factor the better the COM Time. Moreover,
we can say that if the depth of the navigation is low, better COM Time are
obtained if the quantities of classes involved are low (NNC= 2) than high

8.3. FIRST FAMILY OF EXPERIMENTS 227

Table 8.10: Analysis of the Shapiro Wilk Normality and Number of Test Discarded
for Incompleteness (1st Family of Experiments)

Completeness UNC UCLM UA UNC+UCLM+UA
COM comp = 0 0 0 0 0
MOD comp = 0 0 0 3 3
Dependent Variable UNC UCLM UA UNC+UCLM+UA
COM group1 .200 .224 .464 .036
Time group2 .555 .130 .000 .000

group3 .530 .090 .159 .032
group4 .682 .477 .373 .199

MOD group1 .093 .481 .373 .000
Time group2 .237 .681 .005 .039

group3 .734 .246 .133 .003
group4 .060 .012 .056 .001

Table 8.11: Quantity of Outliers Detected for COM/MOD Time (1st Family of
Experiments)

UNC UCLM UA UNC+UCLM+UA
COM Time 0 2 3 7
MOD Time 9 4 8 19

(NNC= 4). However if the depth of the navigation is high, better COM Time
are obtained if the quantities of classes involved are high (NNC= 4) than low
(NNC= 2). The last case, DN= 3 and NNC = 2 represents navigation using
reflexive relationships which seems to be more difficult to understand than
simple navigations involving two different classes.

• The MOD Time is affected by the NNC in the UCLM experiment, and by DN
and NNC in the UA experiment. The interaction does not affect the MOD
Time for both experiments.

Regarding the results for the three experiments we decided to analyze the whole
data for the family, we add a precedence factor (PR) as we did in analysing COM
and MOD Time. We obtain as the results that DN, NNC and their interaction affect
the COM Time (see Table 8.14 (a)), and DN and NNC affect the MOD Time but
not their interaction (see Table 8.14 (b)). However if we consider the precedence
factor of the data neither factors nor their interaction affect COM or MOD Time.

228 CHAPTER 8. EMPIRICAL VALIDATION

Table 8.12: The Analysis Results of ANOVAs COM/MOD Time (1st Family of
Experiments)

Dependent Variable UCLM UA
of p-value Observed # of p-value Observed

Subject p-value Power Subject p-value Power
COM DN 10 .058 .640 27 .434 .200
Time NNC 10 .376 .223 27 .666 .131

Interaction 10 .027 .784 27 .004 .923
MOD DN 8 .393 .213 21 .000 .996
Time NNC 8 .026 .812 21 .006 .911

Interaction 8 .295 .271 21 .121 .469

UNC UCLM UA

D
N
=
1

D
N
=
3

100

200

300

400

500

D
N
=
1

D
N
=
3

100

200

300

400

500

D
N
=
1

D
N
=
3

100

200

300

400

NNC=2 NNC=4

Figure 8.4: Estimated Marginal Means in a Profile Plot for COM Time (1st Family
of Experiments)

Table 8.13: Summary of the Results (1st Family of Experiments)

Experiments COM Time MOD Time
DN NNC Interaction DN NNC Interaction

Experiment at UNC Yes Yes Yes
Experiment at UCLM Yes Yes Yes
Experiment at UA Yes Yes Yes

8.3. FIRST FAMILY OF EXPERIMENTS 229

a. COM Time
Source DN NNC Sum of df mean F-ratio Sig. Observed

squared squared level Power
DN L 38086.598 1 38086.598 3.600 .064 .589

DN * PR L 47629.698 2 23814.849 2.251 .117 .568
Error(DN) L 486715.118 46 10580.763

NNC L 25707.735 1 25707.735 3.216 .080 .549
NNC * PR L 9823.327 2 4911.663 .614 .545 .238

Error(NNC) L 367763.347 46 7994.855
DN * NNC L L 80007.813 1 80007.813 12.186 .001 .964

DN * NNC * PR L L 13955.422 2 6977.711 1.063 .354 .337
Error(DN*NNC) L L 302009.272 46 6565.419

b. MOD Time
Source DN NNC Sum of df mean F-ratio Sig. Observed

squared squared level Power
DN L 252680.667 1 252680.667 23.152 .000 .999

DN * PR L 704.709 2 352.355 .032 .968 .107
Error(DN) L 371070.210 34 10913.830

NNC L 84567.366 1 84567.366 8.437 .006 .885
NNC * PR L 36205.754 2 18102.877 1.806 .180 .482

Error(NNC) L 340804.543 34 10023.663
DN * NNC L L 6685.417 1 6685.417 .923 .343 .246

DN * NNC * PR L L 4617.133 2 2308.566 .319 .729 .170
Error(DN*NNC) L L 246246.543 34 7242.545

L means Lineal

Table 8.14: ANOVA with Repeated Measures of MOD Time (1st Family of Experi-
ments)

8.3.4.5 Analysis of the COM/MOD Efficiency in the UNC Experiment

Table 8.15 shows the normality of the data for the COM and MOD Eff. However,
analysing the data obtained three outliers were identified in the COM part. In the
case of the MOD part, the tests belonging to five subjects were discarded as outliers.
Analyzing Table 8.16 we can conclude that:

• the value of the DN measure, NNC measure, and they interactions affect the
COM Eff of an OCL expression. The value of DN affects the MOD Eff.

8.3.4.6 Analysis of the COM/MOD Efficiency in the Experiment Repli-
cas

As we proceed previously, in Table 8.17 we include the results of the normality
analysis.

230 CHAPTER 8. EMPIRICAL VALIDATION

Table 8.15: Shapiro Wilk Normality Test Results for COM and MOD Efficiency (1st

Family of Experiments, 1st Experiment)

Group Shapiro-Wilk significance level
G1 G2 G3 G4

COM Eff 0.060 0.651 0.840 0.921
MOD Eff 0.149 0.553 0.929 0.895

a. COM Efficiency
Source DN NNC Sum of df mean F-ratio Sig. Observed

squared squared level Power
DN L 6.3599E-05 1 6.3599E-05 7.310 0.020 0.813

Error(DN) L 9.5698E-05 11 8.6998E-06
NNC L 0.00013692 1 0.00013692 23.793 0.000 0.998

Error(NNC) L 6.33E-05 11 5.7546E-06
DN * NNC L L 2.9885E-05 1 2.9885E-05 5.716 0.035 0.724

Error(DN*NNC) L L 5.751E-05 11 5.2282E-06

b. MOD Efficiency
Source DN NNC Sum of df mean F-ratio Sig. Observed

squared squared level Power
DN L 1.6296E-05 1 1.6296E-05 3.590 0.090

Error(DN) L 4.0849E-05 9 4.5388E-06
NNC L 2.8348E-06 1 2.8348E-06 0.523 0.487

Error(NNC) L 4.8748E-05 9 5.4164E-06
DN * NNC L L 1.4308E-06 1 1.4308E-06 0.632 0.446

Error(DN*NNC) L L 2.0355E-05 9 2.2616E-06
L means Lineal

Table 8.16: ANOVA with Repeated Measures (1st Family of Experiments, 1st Ex-
periment)

Table 8.17: Shapiro Wilk Normality Test Results for COM and MOD Efficiency (1st

Family of Experiments)

Completeness UNC UCLM UA UNC+UCLM+UA
COM comp = 0 0 0 0 0
MOD comp = 0 0 0 3 3
Dependent Variable UNC UCLM UA UNC+UCLM+UA
COM group1 .060 .802 .579 .962
Time group2 .651 .256 .643 .791

group3 .840 .430 .278 .385
group4 .921 .607 .808 .054

MOD group1 .149 .415 .098 .187
Time group2 .553 .320 .467 .809

group3 .929 .497 .275 .409
group4 .895 .286 .965 .658

8.3. FIRST FAMILY OF EXPERIMENTS 231

Table 8.18: Quantity of Outliers Found in Each Experiment (1st Family of Experi-
ments)

UNC UCLM UA UNC+UCLM+UA
COM outliers 3 1 1 3
MOD outliers 5 4 2 7

Table 8.19: Analysis Results of ANOVAs COM/MOD Efficiency (1st Family of
Experiments)

UCLM UA
Dependent Variable # of p-value Observed # of p-value Observed

Subject p-value Power Subject p-value Power
COM DN 11 .079 .569 25 .004 .918
Time NNC 11 .479 .179 25 .173 .391

Interaction 11 .103 .511 25 .003 .939
MOD DN 8 .873 .104 24 .001 .985
Time NNC 8 .002 .995 24 .002 .967

Interaction 8 .786 .111 24 .287 .323

We run different ANOVAs according to the three analysis applied and the three ex-
periment launched, their results are included in Table 8.18, 8.19 and 8.20. Through
experimentation we can conclude that:

• DN measure affects the COM Eff of the three experiments, the interaction
of DN and NNC affects the COM Eff in the UNC and UA experiments, and
COM Eff is also affected by NNC in UNC experiment.

• In the case of MOD Eff is affected by DN in UNC and UA experiments and
also for NNC in the UCLM and UA experiments. The interaction of the factor
does not affect the MOD Eff.

Regarding the results for the three experiments we decided to analyze the whole data
for the family, we add a precedence factor (PR) when we gather all the information

Table 8.20: Summary of the Results of Hypothesis (1st Family of Experiments)

Experiments COM Eff MOD Eff
DN NNC Interaction DN NNC Interaction

Experiment at UNC Yes Yes Yes Yes
Experiment at UCLM Yes Yes
Experiment at UA Yes Yes Yes Yes

232 CHAPTER 8. EMPIRICAL VALIDATION

a. COM Time
Source DN NNC Sum of df mean F-ratio Sig. Observed

squared squared level Power
DN L 3.7027E-05 1 3.7027E-05 2.45011122 0.125 .459

DN * PR L 0.00014466 2 7.233E-05 4.78613491 0.013 .857
Error(DN) L 0.00063473 42 1.5113E-05

NNC L 0.00010965 1 0.00010965 8.0955151 0.006 .876
NNC * PR L 3.4223E-05 2 1.7111E-05 1.26334196 0.293 .378

Error(NNC) L 0.00056887 42 1.3545E-05
DN * NNC L L 0.00017744 1 0.00017744 21.1263877 .000 .998

DN * NNC * PR L L 2.8715E-05 2 1.4358E-05 1.70941261 0.193 .468
Error(DN*NNC) L L 0.00035276 42 8.3991E-06

b. MOD Time
Source DN NNC Sum of df mean F-ratio Sig. Observed

squared squared level Power
DN L 9.8859E-05 1 9.8859E-05 13.359565 0.000 .975

DN * PR L 2.0653E-05 2 1.0326E-05 1.39549725 0.258 .406
Error(DN) L 0.00031819 43 7.3998E-06

NNC L 6.6571E-05 1 6.6571E-05 11.3090939 0.001 .952
NNC * PR L 6.9431E-05 2 3.4716E-05 5.89750125 0.005 .917

Error(NNC) L 0.00025312 43 5.8865E-06
DN * NNC L L 3.671E-06 1 3.671E-06 1.04285488 0.312 .265

DN * NNC * PR L L 1.7683E-06 2 8.8414E-07 0.2511656 0.779 .156
Error(DN*NNC) L L 0.00015137 43 3.5201E-06

L means Lineal

Table 8.21: ANOVA with Repeated Measures (1st Family of Experiments)

(PR = 1 for UNC, PR = 2 for UCLM, and PR = 3 for UA). We obtain as the
results: that DN, NNC and their interactions affects the COM Eff (see table 8.21
(a)), and DN and NNC affect the MOD Eff but not their interaction (see table 8.21
(b)). However if we consider the precedence factor of the data DN only affects
COM Eff and NNC affects the MOD Eff.

Figure 8.5 depict the estimated marginal means in a profile plot for COM and MOD
Eff. The vertical axis of a profile plot represents the dependent variable (the COM
or MOD Eff). As we proceed in the plots of Figure 8.4, DN factor was selected
to be represented as the horizontal axes, whereas NNC factors will be displayed as
separate plots. A simple overview of the plot clearly shows that the two lines are
not parallel in COM Eff (interaction of DN and NNC seems to affects COM Eff),
and indeed they are parallel in the MOD Eff (indicating no interaction of DN and
NNC). Here we summarize the conclusions:

• In the COM Eff we can say that if the depth of the navigation is low, better
COM Eff is obtained if the quantities of classes involved are low (NNC= 2)
than high (NNC= 4). However if the depth of the navigation is high, better

8.3. FIRST FAMILY OF EXPERIMENTS 233

COM MOD

D
N
=
1

D
N
=
3

0.007

0.008

0.009

0.010

0.011

0.012

D
N
=
1

D
N
=
3

0.005

0.006

0.007

0.008

0.009

NNC=2 NNC=4

Figure 8.5: Estimated Marginal Means in a Profile Plot (1st Family of Experiments)

COM Eff are obtained if the quantities of classes involved are high (NNC= 4)
than low (NNC= 2). The last case happens when DN= 3 and NNC = 2, and
represent navigations using reflexive relationships in a class which seems to be
more difficult to understand than simple navigations involving two different
classes (see a similar conclusion in section 8.3.4.4).

• In the MOD Eff whichever the plots (representing the NNC = 4 or NNC =2)
they have a negative slop in both experiments, also their slop seem to be
proportional. Moreover, considering the plot, the larger the DN factor the
worse the MOD Eff. This reveals an important aspect, despite of the quantity
of classes being high (NNC = 4) or low (NNC = 2), if they are loosely coupled
(DN is low) the better the MOD Eff, if they are highly coupled the worse
MOD Eff.

8.3.4.7 Analysis of the COM/MOD Subjective Complexity

The average range of the Rating for the four models is shown in Table 8.22 and Figure
8.6. The easiest models were when DN is low (G1 and G2), the more difficult was
G3 (DN is high and NNC is low), the models which includes reflexive navigations.
According to the results shown in Table 8.23, we reject hypothesis H0,7 for UNC
and UA experiment, and we reject H0,8 for the three experiments, meaning that for
most of the cases, the rating distribution is not the same for all the treatments.

Looking for an answer of how the rating distributes along with the treatments, we
study the rating depending of the combination of treatments. Due to the number
of treatments are four we have to study six cases (G1-G2, G1-G3, G1-G4, G2-G3,
G2-G4 and G3-G4). The results included in Table 8.24 allow us to conclude:

234 CHAPTER 8. EMPIRICAL VALIDATION

Table 8.22: Summary of the Average Range of COM and MOD Subjective Com-
plexity (1st Family of Experiments)

Experiment COM SubComp MOD SubComp
UNC UCLM UA UNC UCLM UA
Avg. Avg. Avg. Avg. Avg. Avg.
Range Range Range Range Range Range

G1 1.80 2.33 1.90 1.80 2.88 2.29
G2 2.70 2.29 2.60 2.63 1.67 2.00
G3 3.23 2.71 3.02 2.73 3.33 3.17
G4 2.27 2.67 2.48 2.83 2.13 2.54

Table 8.23: Summary of the Average Range (W of Kendall) of COM and MOD
Subjective Complexity (1st Family of Experiments)

Experiment COM SubComp MOD SubComp
UNC UCLM UA UNC UCLM UA
Avg. Avg. Avg. Avg. Avg. Avg.
Range Range Range Range Range Range

N 15 12 26 15 12 24
W of Kendall .383 .042 .205 .230 .521 .232
Chi-square 17.216 1.5 15.988 10.330 18.740 16.706
Gl 3 3 3 3 3 3
Sig. .001 .682 .001 .016 .000 .001

Table 8.24: Summary of the W of Kendall (1st Family of Experiments)

DV Exp G1 G2 G1 G3 G1 G4 G2 G3 G2 G4 G3 G4
COM SubComp UNC .008 .001 .317 .059 .102 .014

UCLM 1.0 .480 .480 .414 .180 .705
UA .012 .003 .46 .035 .763 .033

MOD SubComp UNC .58 .20 .011 .655 .705 .655
UCLM .02 .317 .102 .002 .083 .005
UA .317 .012 .366 .000 .134 .052

8.3. FIRST FAMILY OF EXPERIMENTS 235

COM SubComp MOD SubComp

G
1

G
2

G
3

G
4

Very easy

A bit easy

Neither difficult nor easy

A bit difficult

Very difficult

G
1

G
2

G
3

G
4

Very easy

A bit easy

Neither difficult nor easy

A bit difficult

Very difficult

UNC UCLM UA

Figure 8.6: Average Range’ Plot of COM and MOD Subjective Complexity (1st

Family of Experiments)

• Either DN is high (G3-G4) or low (G1-G2), the COM rating depends of NNC
for UNC and UA experiments. For these two experiment the rating also de-
pends of DN when NNC is low (G1-G3). The rating also depends of G2-G3
for the UA experiment, that situation happens when NNC is high and DN is
low. In all the other combinations, there is no relation between treatments
and rating.

• In the MOD case, different cases were found, for example, in the UCLM ex-
periment the rating depends of NNC for DN high or low, in the UNC depends
of DN when NNC is low. Three significant results were found when NNC and
DN has different values (one is high and the other is low, or the other way
around), these are the case of G1-G4 in the UNC experiment, and G2-G3 in
the UCLM and UA experiments.

8.3.4.8 Validity Evaluation

Next we will discuss the means by which we attempted to alleviate the issues that
could threaten the validity of the family experiments:

• Threats to Conclusion Validity. In the conclusion validity we want to
make sure that there is a statistical relationship, i.e. that our conclusions are
statistically valid.

� Low statistical power. The power of a statistical test is the ability
of the test to reveal a true pattern in the data. If the power is low,
there is a high risk that an erroneous conclusion will be drawn. We have
considered the observed power of the ANOVAs in our analysis, and when

236 CHAPTER 8. EMPIRICAL VALIDATION

we evaluate the results for the whole family we also add a PR factor as
an inter-subject factor.

� Violated assumption of statistical tests. Violating the assumptions
of a test may lead to wrong conclusions. In our case we used a robust
test, the ANOVA.

� The error rate. The error rate is concerned with the actual significance
level. In order to improve the power of the test we have selected α = 0.10
significance level which is common in ANOVA tests.

• Threats to Construct Validity. In this family we proposed an objective
measure for the variables used in the hypothesis: (1) for the dependent variable
we use a measure of how precise the subjects answering tasks per time are (the
COM and MOD Eff) as well as the time the subject spent on different tasks
(the COM and MOD Time)1. (2) for those hypotheses related to cognitive
aspects of the subjects we have used a qualitative and objective measure of
the subject’s subjective opinion, and we use linguistic labels, providing a scale
to rate tasks. (3) for the independent variables, their validity is guaranteed by
Briand et al.’s framework which was used to validate them [BMB99], [BMB96],
[BMB97].

An issue we also dealt with is:

� Confounding constructs and levels of constructs. In some relations
they are not primarily related to the presence or absence of a construct,
but to the level of the construct which is of importance to the outcome
[WRH+00]. We selected subjects having knowledge in UML language,
but the years of experience with UML is different: UNC students have
two years of experience, UCLM students have one year of experience, and
UA students have less than a year.

• Threats to Internal Validity. We have dealt with the following issues:

� History. An existent risk is that history affects the experimental results,
since the circumstances are not the same on the experiments [WRH+00].
This is the situation in the UA experiment, in which case we ran the
experiment in the final lecture before Easter Holidays, and we realized
that during the experiment they were eager to finish the exercise. We also
became aware of that because, before the seminar started, many students
had asked us about the ending time of the seminar. We think that this
could have affected the results obtained in this replica because in general,
the tests’ correctness was low.

1The first time we used efficiency was in this family. We believe that efficiency is a more accurate
indicator of the DVs

8.3. FIRST FAMILY OF EXPERIMENTS 237

� Maturation. Subjects may react differently as time passes by. For
example, the subjects are affected negatively during the experiment if
they get tired or bored [WRH+00]. We dealt with this issue and we ran
a pilot experiment in order to estimate the average time the subject will
spend performing the four tests. The estimation was of one hour and we
believe that it would not produce a boredom effect [JM01]. In fact, after
running the experiment we proved that the estimated time was right.

� Selection. This is the effect of natural variation in human performance.
Depending on how the subjects are selected from a larger group, the se-
lection effects may vary [WRH+00]. The selection of subjects was not the
same in the three experiments as described in section 8.3.2. Here, a short
description of subjects’ selection. The UNC experiment was composed of
volunteers, who decided to take part of an OCL course, and as Wohlin
[WRH+00] argues the effect of letting volunteers may influence the results
because their motivation and adequacy for a new task. In the case of UA
experiments all the students of a software engineering’s course decided to
participate in a seminar where the experiment was run. In the UCLM
experiment only those subjects who participate in a some lectures of a
software engineering’s course did the experiment.

• Threats to External Validity. The greater the external validity, the more
the results of an empirical study can be generalized to actual software engi-
neering practice. Three threats of validity have been identified which limit the
possibility of applying any such generalization:

� Interaction of selection and Treatment. See the evaluation of this
issue in section 8.1.

� Interaction of setting and treatments. This is the effect of not
having representative experimental setting or material. In the experiment
we used UML/OCL models which can be representative of real cases.
Moreover, we give a course on OCL using the same terminology as its
last version (2.0)

� Interaction of history and treatment. The aforementioned issue
related to history in the internal validity could affect the result of UA
experiments. Students were eager to finish the exercises in the last day
before Easter Holidays, and by finishing them they could obtain an extra
point and this point was only dependent on finishing the exercise, not on
how the exercise was done.

238 CHAPTER 8. EMPIRICAL VALIDATION

8.3.5 Conclusions of the First Family of Experiments (F6)

We presented the analysis of a family of experiments (a experiment and its two
replicas) to ascertain if any relations exists between the navigation depth (measured
by DN) and the quantity of different object coupled (NNC) of an OCL expression
and its comprehensibility and maintainability. Both measures constitute new kinds
of coupling, and were defined in terms of a fundamental OCL concept related to it:
’the navigation’. Whenever a navigation occurs in an OCL expression the modeler
should apply a tracing cognitive technique interrupting the chunking of an OCL
expression in order to find out other chunks through the relationships which are
navigated. High values of DN indicates that the objects of a class where the OCL ex-
pression is specified, is highly coupled of distant objects in the diagrams. In [WK03]
is recommended to limit the object’s knowledge to only its direct surroundings.
That means, DN should be kept as lower as possible. Through experimentation we
obtained that OCL expression comprehensibility and modifiability are dependent
on how far objects coupled to the contextual instance are (DN), and also how many
different objects are coupled to the contextual instance (NNC). Moreover, the in-
teraction of DN and NNC affects the comprehensibility of OCL expressions but not
the modifiability where each principal factors affects but separately.

Through experimentation (see summary results in Table 8.25) we can conclude that
both measures (DN and NNC) affect the COM and MOD Time and efficiency of
OCL expressions. The interaction of DN and NNC affects the COM Time and COM
efficiency, but not the MOD Time and MOD efficiency.

As Cant et al. states [CHSJ94], [CJHS92] tracing and chunking techniques are
synergically and concurrently applied. We conducted a new family of experiment
in order to go further studying the influence of coupling on OCL expression com-
prehensibility and modifiability. We design a family of experiments, similar to the
first one explained in section 8.2, but improving its design (mainly its experimental
objects).

8.4 Second Family of Experiments

8.4.1 Experiment Preparation (F1)

The purpose of this family of experiment is to ascertain if any relationship exists be-
tween OCL expression import-coupling and two maintainability sub-characteristics:
comprehensibility and modifiability of OCL expressions. Our belief is that the inner
definition of OCL as a textual add-on to UML models makes that within an expres-
sion being possible to refer to UML artifacts but not the other way around, so, the
coupling locus of impact of an OCL expression is primary of import-coupling. As

8.4. SECOND FAMILY OF EXPERIMENTS 239

Table 8.25: Summary of the Results (1st Family of Experiments)

Experiment COM Time MOD Time
DN NNC Interaction DN NNC Interaction

Experiment at UNC Yes Yes
Experiment at UCLM Yes Yes
Experiment at UA Yes Yes Yes
All the Experiments Yes Yes Yes Yes Yes

Experiment COM Eff MOD Eff
DN NNC Interaction DN NNC Interaction

Experiment at UNC Yes Yes Yes Yes
Experiment at UCLM Yes
Experiment at UA Yes Yes Yes Yes
All the Experiments Yes Yes Yes Yes Yes

we defined in section 3.2.1.2 import-coupling a criterion defined in [BDW99] which
focus on the client entity in the client-supplier relationship defining a coupling con-
nection. Within this context, modelers should be aware that OCL expressions with
high import-coupling operate in large context and to comprehend the meaning of the
expression modelers need to know all the services an OCL expression relies on. We
believe that high import-coupling (artifacts) can influence on the cognitive complex-
ity of modelers (subjects), and high cognitive complexity leads to OCL expressions
will exhibit undesirable external qualities, such as less comprehensibility or reduced
modifiability.

Within import-coupling, object coupling -the more complex software attribute in
OO systems- is an important aspect that should be reduced as a good practice of any
design of high quality [BBD01]. Usually these objects are linked in OCL expressions
through the use of navigations. A navigation creates coupling between the objects
involved and the coupled objects are usually manipulated through collections and
its collection operations (to handle its elements). So three important aspect of the
import-coupling in OCL expressions is specified in terms of navigation, collection
and collection operations concepts.

8.4.2 Context Definition (F2)

The first experiment took place in April 2004 and it was replicated twice in October
and November 2004 respectively.

• UA Experiment (April 2004): We invited the third-year students of Com-
puter Science at the University of Alicante (UA, Spain) to do a short seminar

240 CHAPTER 8. EMPIRICAL VALIDATION

Table 8.26: Measures Used for Measuring IV (2nd Family of Experiments)

Measure Measure Description
NNR Number of Navigated Relationships
NAN Number of Attributes referred through Navigations
NNC Number of Navigated Classes
WNCO Weighted Number of Collection Operations
DN Depth of Navigations
WNN Weighted Number of Navigations
NEI Number of Explicit Iterator variables
NKW Number of OCL KeyWords
NES Number of Explicit Self
NCO Number of Comparison Operators

about OCL (only 5 hours) and to do an experiment as part of the seminar.
Sixty undergraduate students agreed to take part in a course. They were mo-
tivated to participate in the experiment because they would be able to obtain
an extra point in the final score of the Software Engineering course if and only
if they completed a test. The extra point we gave them was only dependent
on finishing the exercise, not on how the exercise was done. The collected data
was called ’UAE’.

• ULM Experiment (October 2004): Twenty six students who participate
in a course of the Eighth International School of Computer Science (celebrated
in Argentina in La Matanza University) were the subjects of the first replica.
The duration of the course was 20 hours and during the last two hours we
ran the experiment replica. The subjects were undergraduate students of
different universities, graduate students and teachers. The data obtained in
this replication, was called ’ULME’ data.

• UACh Experiment (November 2004): Twenty nine students of fifth year
enrolled on a Software Engineering course of the Austral University of Chile
participated in a course of 20 hours about OCL. As an inducement to do the
course, students were informed that they would do a test and its result would
be considered as a point of a the course of Software Engineering. The collected
data was called ’UAChE’.

Table 8.36 shows a brief description of the profile of the subjects, all the quantities
are in years. We think that the course duration, the inducement for students to take
the course, and their profile could have affected the experimental results.

8.4. SECOND FAMILY OF EXPERIMENTS 241

Table 8.27: Measure Values for each Model (2nd Family of Experiments)
object Tracing Chunking

NNR NNC WNN DN WNCO NAN NEI NES NCO ObjClass
Model1 1 1 1 1 2 1 1 1 0 LC
Model2 1 1 1 1 2 1 1 1 1 LC
Model3 2 2 2 1 2 0 0 2 1 LC
Model4 3 2 6 4 3 0 1 2 0 MC
Model5 3 2 5 4 1 0 1 2 1 MC
Model6 3 2 6 4 3 0 1 2 0 MC
Model7 2 2 3 4 7 2 2 2 1 HC
Model8 3 3 3 3 5 2 2 1 1 HC
Model9 3 3 6 3 8 1 3 1 1 HC

0

15

30

U
A

2
2

U
L
M

2
2

U
A
C
h

2
1

0

2

4
U
A

2

U
L
M

3

U
A
C
h

2
0

1

2

U
A

0
.5

U
L
M

1

U
A
C
h

1

Average Age Average Experience Average Experience
in OO programming in Modeling with UML

Table 8.28: Subject Profile (2nd Family of Experiments)

8.4.3 Design Framework of the Second Family of Experi-
ments (F3)

In this section we will summarize the main experimental process steps common to
the three experiments.

• Independent and dependent variables: The independent variable (IV)
is the coupling defined in OCL expressions. It was measured through the
measures shown in Table 8.26. We used NNR , NNC, WNN, DN, WNCO, NES
and NAN measures, because in all of them an aspect of the navigation concept
is captured in its intent. We also used the NEI measure which is related to
the collection operation iterator variables, and allows us to define the context
inside the collection operations. The rest of the measures NWK (number of
keywords) and NCO (number of comparison operators) were not related to
collection operations but they are needed to define simple OCL expressions.
Because we are not interested in studying the last two measures we try to keep
their value as constant as possible. For example all the OCL expressions used
in experimental object are defined with three OCL keywords. The dependent

242 CHAPTER 8. EMPIRICAL VALIDATION

variables (DVs) are two maintainability sub-characteristics: comprehensibility
and modifiability.

• Experimental Material: The experimental objects were nine UML/OCL
combined models, each model having an OCL expression. Since we wanted to
have objects of different complexity we designed them covering a wide range
of the measure values (except in the case of NES, NWK, and NCO). But in
reality, it is impossible to cover all of the possible combination of measures
values. Fifteen model were initially designed, but we thought that some models
were quite similar, and the fact of having many models of the same complexity
could bias the experiment result. For that reason we carried out a hierarchical
clustering of the 15 models to group them into three groups: Low, Medium or
High Complexity (we identify each complexity by using the acronyms LC, MC,
HC respectively). This clustering was run using the measure values. Finally,
we obtained three models of each group (see Table 8.27). The clustering
provided us with an objective classification of the UML/OCL models, which
we called ObjClass.

• Tasks: During the test each subject had to perform three tests. The tests
have the following required tasks:

� COM-Tasks: The subjects had to answer a questionnaire consisting of
4 questions that reflected whether or not they had understood the OCL
expression attached to the class diagram.

� Modifiability tasks (MOD-Tasks): The subjects had to modify the OCL
expressions according to a new requirement expressed in natural lan-
guage.

� Rating Tasks: After finishing any task the subject uses the same scale
of five linguistic labels used in the experiment of section 8.2. This rate
indicates the perception of the subjects of how complex it was for them
to do COM-Tasks or MOD-Tasks. The collected data was called COM
SubComp or MOD SubComp. This information is vital to estimate
the cognitive load of subjects dealing with artifacts.

All three tests assigned to any subject had three different complexities, ie.
HC, MC or LC, which means there is no subject doing two tests of the same
complexity. However, the tests were randomly assigned to the subjects. We
identify as C1 the collection of the first tests performed by all the subjects, C2

the second collection, and C3 the third one.

• Experiment Hypotheses: We formulated different hypotheses along with
distinct beliefs:

8.4. SECOND FAMILY OF EXPERIMENTS 243

Table 8.29: Synopsis of Hypotheses and the Statistical Test Applied (2nd Family of
Experiments)

Efficiency Time Subjective
Complexity

Relation between COM Eff COM Time COM SubComp
MOD Eff MOD Time MOD SubComp

OCL expr. measures Hypotheses 1 Hypotheses 2
Test: Spearman Test: Spearman

COM SubComp Hypotheses 4 Hypotheses 3
MOD SubComp Test: τ Kendall Test: τ Kendall

� Belief 1: The structural properties related to import-coupling in OCL
expressions influences the degree of correctness of the performed Tasks
per time, i.e. the subject’s efficiency (COM or MOD Eff). The hypotheses
is:
Hypotheses 1: H0,1 There is no significant correlation between the OCL
expression measures related to import-coupling and their COM Eff /MOD
Eff. H1,1 = ¬ H0,1

� Belief 2: The structural properties related to import-coupling in OCL
expressions influences the subjective rate provided by subjects (COM
SubComp or MOD SubComp) tasks. If so, we will be able to find an
early indicator of the subject’s cognitive load. The hypotheses is:
Hypotheses 2: H0,2 There is no significant correlation between the OCL
expression measures related to import-coupling and the SubComp Eff.
H1,2= ¬ H0,2

� Belief 3: The COM (or MOD) Time is a valued factor that influences the
subjective criteria of subjects when they have to rate tasks. For exam-
ple, we expect subjects to rate time-consuming comprehensibility tasks
as ’quite difficult to understand’ or ’barely understable’.
Hypotheses 3: H0,3 The subjective complexity (SubComp) is not cor-
related with the COM and MOD Time; otherwise H1,3: ¬ H0,3

� Belief 4: We believe the degree of correctness of the tasks performed per
time, i.e. the COM or MOD Eff, could be an indicator of the subjective
complexity of subjects when they have to rate tasks.
Hypotheses 4: H0,4 The subjective complexity (COM or MOD Sub-
Comp) is not correlated with the COM and MOD Eff; otherwise H1,4: ¬
H0,4

244 CHAPTER 8. EMPIRICAL VALIDATION

8.4.4 Data Analysis and Interpretation (F5)

In this section we will summarize the main aspects of the analysis. As previously
mentioned we have three different observations for each subject, these three obser-
vation for each subject have a different complexity (HC, MC or LC). Ci represents
the collection of the i-tests performed by all the experimental subjects. Now we will
describe which statistic test we used. Because all the hypotheses defined in the last
section are concerned with dependency degree between two variables, a correlation
coefficient can be used. Coefficients such as Spearman or Tau of Kendall, work with
pairs of observation, (Xi, Yj), over n-objects (in our case 9 diagrams), but obser-
vations must be independent. That means for example, if we study a dependent
variable, said COM Eff, of the subject ’j’ in the i-diagram we are not allowed to
consider any other observation of the same j-subject. So, the correlations of the
formulated hypothesis are tested for each Ci. In same way, studying the correlation
for each Ci will indicate whether our hypotheses are dependent on the learning curve
of subjects during the experiment. The analysis of the empirical data is laid out
as follows. First we will make a descriptive and exploratory study (section 5.1). In
section 5.2, we will study hypotheses 1, the correlation between the proposed mea-
sures and the dependent variable is studied, in order to discover whether the former
could predict the latter. In this section we also study the correlation between the
cognitive aspects of subjects (SubComp) and the dependent variable. Afterwards
(section 5.3) we study whether the time has influenced the students to rate the OCL
expressions within UML/OCL models, or if their efficiency has a correlation with
the SubComp (section 4.3).

8.4.4.1 Descriptive and Explanatory Studies

The fact that the dependent variables do not follow a normal distribution was cor-
roborated using the Shapiro Wilk tests. Table 8.30 shows some descriptive statistics.
At the top of Figure 8.7 we depict the COM and MOD Time as time passed. As
previously described, the set of Ci represents the order of the performed tasks, which
allows us to show how the time spent on each task decreases as new tasks are solved
by subjects. COM and MOD Time decrease during the experiment’s execution. In
the case of COM Eff and MOD Eff, we expected the subject rump up efficiency but
it does not improve as time goes on, except in the UA experiment for COM Eff.
However if we arrange the collected data according to the objective classification
(see bottom of Figure 8.7) the COM Time and COM Eff improves as we diminish the
complexity. This is not the case for MOD Time and MOD Eff because the Medium
Complexity (MC) tasks were more difficult to modify than the tasks corresponding
to High Complexity. This situation occurs in the three experiments. The main dif-
ference between MC and HC models is that in the former the complexity is mainly
based on combined navigations, (see the value of WNN) whereas in the latter the

8.4. SECOND FAMILY OF EXPERIMENTS 245

Mean COM Time in Ci Mean MOD Time in Ci

C
1

C
2

C
3

200

250

300

350

400

450

C
1

C
2

C
3

200

300

400

500

UA ULM UACh

Mean COM Time in Models Mean COM Eff in Models

H
C

M
C

L
C

150

200

250

300

350

400

H
C

M
C

L
C

0.006

0.008

0.010

0.012

0.014

0.016

0.018

UA ULM UACh

Figure 8.7: Descriptive Analysis (2nd Family of Experiments)

complexity is mainly based on an intertwining collection operations (see the value of
WNCO). We believe that for the subjects it was more difficult to identify and trace
which relationships they should use (its rolename, attribute name, etc.) in MOD
Tasks, instead of identifying which operation collections should be used to modify
the expression. The descriptive statistics for mean COM Time and mean MOD
Time have higher values in UAChE compared with ULME and UAE, and between
the last two, the smallest mean values are from UAE. Chilean students have low
experience in UML, so they required a certain amount of necessary extra time to
undertake any task. Although UAE presents a higher mean COM Time than ULME
their COM Eff are similar, if we compare the Ci.

8.4.4.2 Testing Hypotheses 1 and 2

To test the first two hypotheses, a correlation analysis was performed using Spear-
man’s correlation coefficient with a level of significance α = 0.05, which means the
level of confidence is 95% (i.e. the probability that we reject H0 when H0 is false is at
least 95%, which is statistically acceptable). Tables 8.31 and 8.33 show the Spear-

246 CHAPTER 8. EMPIRICAL VALIDATION

man coefficient rho between measures and efficiency’ DVs, and between measures
and SubComp variables respectively. The conclusions are:

• Hypotheses 1:

� According to the Table 8.31 we draw the following conclusions:

∗ The NNC, WNCO and NEI measures have several correlations with
the COM Eff in the UAE and UAChE. This is logical, meaning that
the number of classes (NNC), the number of collection operation
(WNCO) and the number of collection operation’s iterator variables
(NEI) influences the subjects’ efficiency. This influence seems to be
independent of the order of the tasks performed for UAE because we
find a correlation for all Ci.

∗ The stronger correlation is between WNN and the Eff MOD in the
UA experiment. This correlation reveals that UA students were less
efficient when values of the weighted number of navigation WNN
were high. Another relevant situation is how NNR become more
correlated with the MOD Eff according to the order of performed
tasks (Ci).

� According to Table 8.32, which show the analysis for the family, the
conclusions are:

∗ NNR, NNC, WNN, WNCO, NAN and NEI have several correlations
with the COM Eff.

∗ NNR, WNN, DN, NES and NCO have several correlations with the
MOD Eff.

• Hypotheses 2:

� According to Table 8.33 the conclusions are:

∗ There are few correlations in UAE and UACh. From the set of mea-
sures that present a correlation none of them are correlated in more
than one Ci.

∗ NNR, WNN and DN are correlated with the subjective complexity
of the subject for MOD tasks. DN has the stronger correlation in
UAE, independent of the tasks’ order. However in this experiment,
the correlation of NNR and WNN is stronger as time goes on.

� From the analysis of the family, see Table 8.34, we can draw the following
conclusions:

∗ There are no significant correlations between measures and COM
SubComp.

∗ NNR, WNN and DN are correlated with the SubComp of the subject
for MOD tasks.

8.4. SECOND FAMILY OF EXPERIMENTS 247

Table 8.30: Mean COM/MOD Eff and COM/MOD Time during the Time (2nd

Family of Experiments)
UAE ULME UAChE

IQR Mean SE IQR Mean SE IQR Mean SE
COM Eff C1 0.035 0.012 0.007 0.026 0.013 0.008 0.05 0.011 0.01
COM Eff C2 0.027 0.014 0.007 0.045 0.015 0.012 0.059 0.012 0.01
COM Eff C3 0.059 0.017 0.01 0.034 0.014 0.008 0.037 0.012 0.008

MOD Eff C1 0.03 0.007 0.009 0.021 0.006 0.006 0.03 0.007 0.008
MOD Eff C2 0.05 0.006 0.011 0.05 0.008 0.011 0.05 0.006 0.01
MOD Eff C3 0.033 0.006 0.008 0.033 0.007 0.009 0.031 0.006 0.009

COM Time C1 822 311.88 152.92 567 361.57 188.84 1038 425.538 255.15
COM Time C2 455 263.08 103.41 644 340.88 182.29 956 365.89 208.02
COM Time C3 703 232.15 112.08 505 308.73 150.70 871 343.28 180.64

MOD Time C1 749 266.1 162.93 998 361.61 222.79 1775 497.25 415.22
MOD Time C2 611 213.6 125.74 807 324.23 210.22 1198 396.10 306.53
MOD Time C3 843 214.96 130.36 729 366.92 210.58 1823 356.83 336.00

8.4.4.3 Testing Hypotheses 3 and 4

In order to test the 3rd and 4th hypotheses, we study the correlation using measures
for ordinal data. We transform the involved variables in the following way:

• Subjective complexity (SubComp): For carrying out the data analysis of lin-
guistic labels we assigned numbers to each label: ranging from 1 (assigned
to ’Easily understandable/modifiable’) to 5 (which correspond with ’Barely
understandable/ modifiable’).

• COM and MOD Time: In order to relate these variables of ratio scale we have
changed the ratio scale to an ordinal scale.

After the data was transformed we used a Kendall’s tau coefficient to analyze the
correlation of H0,3 and H0,4. The statistics for ordinal measures are summarized in
Table 8.35 which allow us to conclude the following:

• COM SubComp and COM Time: In the UA and UACh experiments there
is a statistically significant relationship between the SubComp variable and
the COM Time. However in the ULME we only found correlation in one trial
(C2).

• MOD SubComp and MOD Time: Regarding the MOD Time, almost the same
results as the previous case are obtained. Only in UAE and UAChE is there
a statistically significant relationship between the SubComp variable and the
MOD Time.

248 CHAPTER 8. EMPIRICAL VALIDATION

Table 8.31: Correlation between Measures and COM/MOD Eff (2nd Family of Ex-
periments)
Spearman correlation between measures and COM Eff

Measures for import-coupling
NNR NNC WNN DN WNCO NAN NEI NES NCO

UAE C1 0.058 0.001 0.2 0.103 0.011 0.155 0.128 0.179 0.579
UAE C2 0.034 0.041 0.026 0.418 0.026 0.646 0.029 0.202 0.047
UAE C3 0.174 0.000 0.409 0.686 0.000 0.000 0.000 0.082 0.127

UAChE C1 0.094 0.000 0.552 0.999 0.010 0.004 0.001 0.035 0.051
UAChE C2 0.161 0.062 0.083 0.239 0.002 0.173 0.010 0.500 0.532
UAChE C3 0.025 0.04 0.187 0.103 0.322 0.624 0.297 0.616 0.538

ULME C1 0.081 0.053 0.076 0.128 0.021 0.103 0.013 0.451 0.952
ULME C2 0.063 0.393 0.115 0.112 0.488 0.894 0.197 0.781 0.02
ULME C3 0.595 0.375 0.312 0.093 0.225 0.012 0.065 0.004 0.057

Spearman correlation between measures and MOD Eff
Measures for import-coupling

NNR NNC WNN DN WNCO NAN NEI NES NCO
UAE C1 0.201 0.403 0.061 0.000 0.329 0.061 0.316 0.000 0.015
UAE C2 0.129 0.86 0.112 0.004 0.329 0.453 0.075 0.77 0.336
UAE C3 0.36 0.322 0.154 0.001 0.184 0.015 0.146 0.000 0.003

UAChE C1 0.117 0.364 0.685 0.413 0.532 0.907 0.953 0.954 0.751
UAChE C2 0.013 0.497 0.013 0.004 0.418 0.286 0.387 0.355 0.024
UAChE C3 0.003 0.089 0.115 0.246 0.559 0.446 0.868 0.918 0.201

ULME C1 0.166 0.374 0.479 0.057 0.903 0.68 0.977 0.241 0.831
ULME C2 0.023 0.559 0.057 0.004 0.684 0.104 0.909 0.07 0.122
ULME C3 0.07 0.403 0.05 0.225 0.929 0.02 0.34 0.101 0.824

• SubComp and COM/MOD Eff: There is a statistically significant relationship
between SubComp and COM Eff and, between SubComp and MOD Eff varia-
bles, in the case of UA and UACh experiments. In the ULME we found that
SubComp is correlated with the MOD Eff.

8.4.4.4 Validity Evaluation

A fundamental question concerning any experimental results is how valid they are.
We had considered a number of validity issues inherent to this family of experiments.
However for the sake of brevity we only describe the more important threats.

• Threats to the External Validity: The remarks of section 8.1 are valid
for this family. Besides, we believe that subjects of the ULM experiment were
not homogeneous. In fact, they were students coming from different universi-
ties, professionals and teachers also participated in the course. The subjects’

8.4. SECOND FAMILY OF EXPERIMENTS 249

Table 8.32: Correlation between Measures and COM/MOD Eff for the Family (2nd

Family of Experiments)
Spearman correlation between measures and UAE + UAChE + ULME COM Eff

Measures for import-coupling
NNR NNC WNN DN WNCO NAN NEI NES NCO

C1 0.002 0.000 0.038 0.081 0.000 0.000 0.000 0.416 0.163
C2 0.002 0.006 0.002 0.066 0.001 0.388 0.000 0.160 0.004
C3 0.069 0.000 0.447 0.672 0.000 0.000 0.000 0.040 0.090

Spearman correlation between measures and UAE + UAChE + ULME MOD Eff

Measures for import-coupling
NNR NNC WNN DN WNCO NAN NEI NES NCO

C1 0.015 0.854 0.046 0.000 0.332 0.252 0.423 0.001 0.030
C2 0.000 0.460 0.000 0.000 0.336 0.499 0.078 0.125 0.008
C3 0.002 0.521 0.004 0.000 0.229 0.001 0.184 0.000 0.004

Table 8.33: Correlation between Measures and COM/MOD SubComp (2nd Family
of Experiments)

Spearman correlation between measures and COM SubComp
Measures for import-coupling

NNR NNC WNN DN WNCO NAN NEI NES NCO
UAE C1 0.175 0.007 0.296 0.362 0.062 0.439 0.212 0.260 0.061
UAE C2 0.038 0.203 0.04 0.221 0.141 0.877 0.256 0.588 0.006
UAE C3 0.126 0.058 0.061 0.072 0.002 0.127 0.007 0.931 0.291

UAChE C1 0.506 0.100 0.817 0.728 0.175 0.053 0.179 0.203 0.834
UAChE C2 0.663 0.914 0.651 0.53 0.608 0.832 0.580 0.763 0.053
UAChE C3 0.014 0.162 0.069 0.022 0.726 0.728 0.615 0.310 0.379

ULME C1 0.222 0.132 0.264 0.51 0.343 0.709 0.187 0.909 0.591
ULME C2 0.133 0.608 0.395 0.123 0.954 0.831 0.222 0.76 0.278
ULME C3 0.790 0.439 0.511 0.328 0.229 0.018 0.048 0.017 0.096

Spearman correlation between measures and MOD SubComp
Measures for import-coupling

NNR NNC WNN DN WNCO NAN NEI NES NCO
UAE C1 0.064 0.749 0.053 0.000 0.676 0.388 0.802 0.008 0.421
UAE C2 0.012 0.372 0.025 0.000 0.291 0.639 0.055 0.704 0.048
UAE C3 0.003 0.317 0.009 0.008 0.446 0.015 0.586 0.064 0.136

UAChE C1 0.356 0.255 0.977 0.716 0.352 0.047 0.167 0.159 0.424
UAChE C2 0.051 0.635 0.146 0.019 0.960 0.222 0.859 0.122 0.088
UAChE C3 0.016 0.530 0.032 0.035 0.892 0.239 0.873 0.427 0.011

ULME C1 0.070 0.437 0.03 0.015 0.396 0.917 0.461 0.289 0.084
ULME C2 0.027 0.534 0.041 0.000 0.643 0.532 0.301 0.169 0.466
ULME C3 0.693 0.921 0.756 0.685 0.235 0.839 0.741 0.850 0.641

250 CHAPTER 8. EMPIRICAL VALIDATION

Table 8.34: Correlation between Measures and COM/MOD SubComp for the Family
(2nd Family of Experiments)

Spearman correlation between measures and UAE + UAChE + ULME COM SubComp

Measures for import-coupling
NNR NNC WNN DN WNCO NAN NEI NES NCO

C1 0.088 0.000 0.377 0.500 0.014 0.054 0.030 0.972 0.087
C2 0.818 0.585 0.845 0.243 0.832 0.766 0.680 0.280 0.160
C3 0.486 0.148 0.499 0.875 0.714 0.514 0.981 0.254 0.122

Spearman correlation between measures and UAE + UAChE + ULME MOD SubComp

Measures for import-coupling
NNR NNC WNN DN WNCO NAN NEI NES NCO

C1 0.000 0.120 0.015 0.009 0.653 0.542 0.513 0.325 0.138
C2 0.357 0.707 0.834 0.927 0.323 0.319 0.398 0.852 0.851
C3 0.000 0.111 0.000 0.000 0.919 0.011 0.740 0.051 0.001

heterogeneity could explain why the results obtained in ULME were quite dif-
ferent from the other two experiments in most of the hypothesis. We have
carefully considered other factors such as the knowledge of the universe of dis-
course among the material used, learning effects as well as subject motivation
and other factors (plagiarism, fatigue effects).

• Threats to the Conclusion Validity: In the conclusion validity we want to
make sure that our conclusions are statistically valid. Two threats can be de-
scribed. Firstly, it was not possible for us to plan the selection of a population
sample by using any of the common sampling techniques, so we decided to take
the whole population of the available classes in software engineering courses
of universities that collaborate with our research. Secondly, the quantity and
quality of the data collected and the data analysis were enough to support our
conclusion, mainly as described in previous sections, concerning the existence
of a statistical relationship between independent and dependent variables.

• Threats to Construct Validity: Idem the remarks of the first family for
this criterion.

• Threats to Internal Validity: The internal validity is the degree of confi-
dence in a cause-effect relationship between factors of interest and the observed
results. We had alleviated some issues: knowledge of the universe of discourse
among the material used, accuracy of response, learning effects as well as sub-
ject motivation and other factors (plagiarism, fatigue effects).

8.4. SECOND FAMILY OF EXPERIMENTS 251

Table 8.35: Correlation between Subjective Complexity (SubComp) and
COM/MOD Time, COM/MOD Eff (2nd Family of Experiments)

UAE ULME UAChE
Coef. p-value size coef. p-value size coef. p-value size

COM SubComp-COM Time C1 .243 .015 60 .136 .406 26 .439 .000 39
COM SubComp-COM Time C2 .269 .007 60 .401 .010 26 .430 .001 39
COM SubComp-COM Time C3 .376 .000 60 .060 .702 26 .471 .000 39

MOD SubComp-MOD Time C1 .366 .000 60 .438 .005 26 .289 .018 39
MOD SubComp-MOD Time C2 .277 .005 60 .251 .103 26 .296 .018 38
MOD SubComp-MOD Time C3 .172 .086 58 .105 .503 26 .281 .025 37

COM SubComp-COM Eff C1 -.317 .001 60 -.111 .497 26 -.458 .000 39
COM SubComp-COM Eff C2 -.300 .002 60 -.401 .010 26 -.519 .000 39
COM SubComp-COM Eff C3 -.411 .000 60 -.165 .293 26 -.452 .000 39

MOD SubComp-MOD Eff C1 -.423 .000 60 .436 .007 26 -.544 .000 39
MOD SubComp-MOD Eff C2 -.439 .000 60 -.544 .001 26 -.428 .002 38
MOD SubComp-MOD Eff C3 -413 .000 58 -.355 .030 26 -5.12 .000 37

8.4.5 Conclusions of the Second Family of Experiments (F6)

We launched a family of experiments in order to ascertain whether any relationship
exists between the coupling defined in OCL expressions and the comprehensibility
and modifiability of OCL expressions. The experiment was run at the University
of Alicante (UA) with undergraduate students, and was replicated twice at the
University of La Matanza (ULM) and Austral University of Chile (UACh). In order
to study the comprehensibility and modifiability of the OCL expression we have
considered not only the time subjects spent on tasks related to this activities, but
also their efficiency and their subjective perception of their activities. We think
that quantitative (COM and MOD Eff) and qualitative (subject’s rating of their
cognitive load) information is important to obtain an empirical validation. Through
a thorough analysis of the collected data of the experiment and its two replicas we
can summarize the obtained results as follows:

• We have used as experimental objects nine models consisting of a UML class
diagram and one attached OCL expression. We obtain an objective classifi-
cation of them according to a hierarchical cluster in order to obtain balanced
models of different complexity.

• From descriptive analysis, we can conclude that Mean COM Time diminishes
as time passes. Moreover, the mean COM and MOD Time is different if
we arrange the collected data according to their complexity. The higher the
complexity of the OCL expression, the greater is the COM Time spent by
subjects and the lower their efficiency. However, models of Medium complexity

252 CHAPTER 8. EMPIRICAL VALIDATION

(MC) were more difficult to modify for the subjects than models of High
complexity (HC). The former (MC models) were models in which students
should have traced from different navigations. In the latter (HC models),
students should identify which collection operations they have to use and how
to combine them. Their experience in collection operations and the difficulty
of tracing in class diagrams influences this situation.

• We found that there is a statistically significant relationship between many
measures, especially those related to tracing, and the efficiency of comprehen-
sibility and modifiability. For example, the number of classes (NNC) used in
navigations, the number of collection operations (WNCO) and the number of
collection operation’s iterator variables (NEI) influences the subjects’ COM
Eff. The number of navigations used in navigation (NNR), the weighted num-
ber of navigations (WNN) and more importantly the length of navigations
(DN) has a correlation with the cognitive load when subjects rate MOD Tasks.

• We realize that we are not able to conclude that only the measures related
to tracing (or chunking) are correlated with efficiency, due to the fact only
some of the measures related to tracing (or chunking) present a significant
correlation with the efficiency. We think that this is valid because chunking
and tracing are concurrently and synergically applied [CHSJ94]. So, we believe
that in order to go further in a more clear explanation we should carry out an
analysis in the context of mental model approach to comprehension So, next
family of experiments, which indeed improve the second family of experiments,
is described using mental model’s theory.

• Finally, in the UA and UACh experiments the subjects’ subjective ratings
(comprehensibility or modifiability rating) is influenced by the time they used
to understand or modify the OCL expression, ie. both times seems to affect
their appreciation of the level of complexity of an OCL expression. In these
two experiment the COM or MOD Eff is also correlated with the subjective
complexity, in stronger way.

The MOD tasks correctness still reveals that this kind of task is difficult to perform
by subjects. MOD tasks require that a subject to modify a expression according to
new requirements. This activity demands more cognitive flexibility [CMF04] than
comprehension tasks, and require a wide knowledge of the language.

Besides, the required modification of an OCL expression can be solved in different
ways because OCL is too expressive and allows the modelers to specify in different
manner the same meaning. In this way, two modelers can provide (each of them) a
correct answer but the complexity of the answer of the OCL expression each provide
can vary significantly, i.e. the structural properties of their correct answer could be
too different. We believe that we must control this during experimentation, and we

8.5. THIRD FAMILY OF EXPERIMENTS 253

opted to redesign MOD tasks in a new family. We think that instead of asking the
subject to specify the modification of an expression according a new requirement,
we could ask the subject to select from three expressions that expression which
represents the modification according to the new requirement. So, we conducted a
new family of experiments which is described in the following section.

8.5 Third Family of Experiments

We believe that our conclusion regarding MOD tasks of the second family of ex-
periments were not clear enough because the correctness of the performed MOD
tasks was low. Probably in the second family of experiments we expected from
the subjects to write different OCL expressions (in MOD Tasks) and they were not
sufficiently trained for writing expressions from scratch. This fact motivated us to
undertake a new family of experiments using the material of the second family but
changing their MOD tasks. The new family intends to strength the conclusions and
external validity of the second family of experiments, trying to confirm if import-
coupling (defined through navigations and collection operations) has really influence
on the COM and MOD of OCL expressions.

8.5.1 Experiment Preparation (F1)

The experiment goal was to confirm if import-coupling (defined through naviga-
tions and collection operations) has really influence on the comprehensibility and
modifiability of OCL expressions.

8.5.2 Context Definition (F2)

In order to fulfill the experiment goal we conducted a family of experiments, com-
posed of two experiments, executed in two Spanish universities:

• UPV Experiment (May 2005): Forty six students who were enrolled in a
fifth-year course of Software Engineering at the Technical University of Valen-
cia (UPV) were invited to participate in a seminar of 10 hours about OCL.
As an inducement to do the course, students were informed that they would
do an assessment and its result would be considered to obtain an extra credit
as part of its course passing process. The collected data was called ’UPVE’.

• UCM Experiment (June 2005): Third-year students of Computer Science
at the Complutense University of Madrid (UCM, Spain) were invited to take

254 CHAPTER 8. EMPIRICAL VALIDATION

0

15

30

U
P
V

2
2

U
C
M

2
2

0

2

4

U
P
V

2

U
C
M

3

0

1

2

U
P
V

0
.5

U
C
M

1

Average Age Average Experience Average Experience
in OO programming in Modeling with UML

Table 8.36: Subject Profile (3rd Family of Experiments)

an elective seminar course about OCL (only 10 hours). A number of elective
seminar courses in different subjects are offered each semester in UCM. The
participants were notified that they must do an assessment as part of the
seminar course. They were motivated to participate in the assessment because
they could obtain a credit of free configuration if and only if they passed a
test. The collected data was called ’UCME’.

8.5.3 Design Framework of the Third Family of Experi-
ments (F3)

Although we followed the experimental process suggested by Ciolkowski et al. and
Wohlin et al. [WRH+00], due to the experimental design is similar to the second
family of experiments we will specifically focus in the main aspects of the family.

• Independent and Dependent Variables: The same of the previous family,
see the corresponding item in section 8.4.

• Experimental Material: The experimental objects were six UML/OCL
combined models, each model having one OCL expression. This models were
six models of the nine models used in the second family of experiments. We
carried out a hierarchical clustering of the six models to group them into three
groups according to their measures values: Low, Medium or High Complexity
(we identify each complexity by using the acronyms LC, MC, HC respectively).
Finally, we obtained two models of each group, i.e. six models.

Each model had a test enclosed including the following types of tasks:

� COM Tasks: The subjects had to answer a questionnaire consisting of
4 questions that reflected whether or not they had understood the OCL
expression attached to the class diagram.

8.5. THIRD FAMILY OF EXPERIMENTS 255

� MOD Tasks: These tasks were different from the previous family of
experiments where the subjects had to write a new OCL expression ac-
cording to a new requirement. In this family, two different modifications
were asked, in the form of new requirements expressed in natural lan-
guage. For each modification, the subjects had to select one of three
OCL expressions which represent the modification of the original OCL
expressions (the one associated to the model) according to the new re-
quirement (this is a multiple choice task). The correct OCL expression
which should be selected by the subjects had the same measures’ values
as the original expression associated to the model, i.e. present the same
structural properties. MOD Tasks of this family are included in appendix
D.

� Rating Tasks: The subject uses a scale of five linguistic labels to rate
the tasks. The scale is the same as the previous family of experiments.

We assigned to each subject the six tests. The first three tests (and the second
three ones) assigned to the subjects had a model of different complexity, i.e.
HC, MC or LC models. However, the tests were assigned to the subjects in
such a way that there were no two subjects doing the six tests in the same
order. We identify as C1 the collection of the first tests performed by all the
subjects, C2 the second collection, and so on. It is important to notice, that
our purpose is that the six models were examined by the same number of
subjects in each Ci. That was possible in the UPV experiments but in the
UCM there were not enough subjects for balancing the models.

The independent variable was measured through the measures used in the
previous family, i.e. NNR, NNC, WNN, DN, WNCO, NES, NEI, NKW, NCO
and NAN measures.

We think that the time each subject spent doing each required tasks (i.e.,
COM Time and MOD Time) is not the most accurate measure for studying
their relationships with measures (as IVs). Therefore we used the same two
measures of the DVs as the one defined in the previous family (COM and
MOD Eff).

Moreover, through the rating tasks we obtained two subjective measures called
COM Subjective Complexity (COM SubComp) and MOD Subjective Com-
plexity (MOD SubComp), respectively. These measures are essential to esti-
mate the cognitive load of subjects when dealing with UML/OCL combined
models.

• Experiment Hypotheses: We formulated different hypotheses along with
distinct beliefs. We explain them in the following and we summarized them
in Table 8.37:

256 CHAPTER 8. EMPIRICAL VALIDATION

� Belief 1: The Efficiency of the subjects would be different for the models
they should perform.
Hypotheses 1: H0,1 The ranks of the (COM or MOD) Eff do not differ
from their expected value, i.e. the mean efficiency is the same for all the
models. H1,1 = ¬ H0,1

� Belief 2: The import-coupling in OCL expressions influences the degree
of correctness of the performed tasks per time, i.e. the subject’s efficiency
(COM or MOD Eff). The greater the import-coupling the lower the sub-
jects’ efficiency.
Hypotheses 2: H0,2 There is no significant correlation between the mea-
sures defined for OCL expressions (related to import-coupling) and their
(COM or MOD) Eff. H1,2 = ¬ H0,2

� Belief 3: The import-coupling in OCL expressions influences the sub-
jective rate provided by subjects (COM SubComp or MOD SubComp)
tasks. This means that if the import-coupling increases the subjects per-
ceive the tasks as more difficult.
Hypotheses 3: H0,3 There is no significant correlation between the OCL
expression measures related to import-coupling and the (COM or MOD)
SubComp. H1,3 = ¬ H0,3

� Belief 4: The subjective criteria of subjects when they have to rate
tasks has been influenced by the COM (or MOD) Time. For example,
we expect subjects to rate time-consuming COM tasks as ’quite difficult
to understand’ or ’barely understandable’.
Hypotheses 4: H0,4 The COM or MOD SubComp are not correlated
with the COM or MOD Time. H1,4: ¬ H0,4

� Belief 5: We believe the degree of correctness of the tasks performed per
time, i.e. the COM or MOD Eff, could be an indicator of the subjective
rating given by the subjects about the complexity of the required tasks.
This means that the perception of the subjects about the complexity of
the tasks is influenced by their efficiency when performing such tasks.
Hypotheses 5: H0,5 The COM or MOD SubComp are not correlated
with the COM or MOD Eff . H1,5:¬ H0,5

8.5.4 Data Analysis and Interpretation (F5)

First we will carry out a descriptive and an exploratory study. Later on, we will
test the formulated hypotheses. As all the formulated hypotheses are concerned
with dependency degree between two variables, a bi-variate correlation analysis was
used. In Table 8.37 we also explain the hypotheses and the correlation test used,
the tests are similar to those applied in the the second family (see section 8.4.4).

8.5. THIRD FAMILY OF EXPERIMENTS 257

Table 8.37: Synopsis of Hypotheses and the Statistical Test Applied (3rd Family of
Experiments)

Efficiency Time Subjective
Complexity

Relation between COM Eff
MOD Eff COM Time COM SubComp
Hypotheses 1 MOD Time MOD SubComp
Test: Chi-square Test

OCL expr. measures Hypotheses 2 Hypotheses 3
Test: Spearman Test: Spearman

COM SubComp Hypotheses 5 Hypotheses 4
MOD SubComp Test: τ Kendall Test: τ Kendall

So, the descriptive analysis and the correlations of the formulated hypotheses are
tested for each Ci (the i-tests performed by all the experimental subjects), ranging
i from 1 to 6. Studying the correlation for each Ci was not possible for the UCM
experiment, due the small size of the population and consequently the small number
of tests analyzed. Moreover, in UCM the assigned tests in each Ci were not correctly
balanced. So we only test the five hypotheses for the UPV experiment and we use
only the UCME data for validating the results obtained in the UPV experiment.
For the validation we will use the whole set of data (UPVE and UCME) and we test
the five hypotheses again. Previous to doing the analysis for the whole set of data
obtained in both experiment we carried out statistical tests to prove that this was
possible.

8.5.4.1 Descriptive and Exploratory Studies for UPVE Experiment

We depict in left-top side of Figure 8.8 the subjects’ efficiency along with each Ci.
In this figure we show that subjects are more efficient in MOD tasks (dash line)
than in COM tasks (solid one). Indeed, the subjects were more efficient than in the
previous family. As it was previously explained we change MOD tasks, instead of
writing a new OCL expression according to a new requirement, the subjects should
select one of three proposed OCL expressions which represented an OCL expression
modeling the new requirement. However in both kinds of tasks subjects improved
their efficiency as time goes on. In relation to the subjective complexity (SubComp)
during the time, see right-top size of Figure 8.8, it seems that subjects rated MOD
tasks as more difficult than COM tasks. The collected data grouped by the model
complexity (LC, MC, HC) is depicted at the bottom of Figure 8.8, according to the
subject efficiency and subjective complexity respectively. The COM Eff is decreasing
as the complexity of models increase (note that the horizontal axis shows the two
models of each complexity, from low to high complexity). The same was expected

258 CHAPTER 8. EMPIRICAL VALIDATION

Descriptive Statistics of Mean values of DVs for Ci
Efficiency in Ci SubComp in Ci

C
1

C
2

C
3

C
4

C
5

C
6

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.028

0.030

0.032

C
1

C
2

C
3

C
4

C
5

C
6

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

COM MOD

Descriptive Statistics of Mean Values of DVs for Models
Efficiency of Models SubComp of Models

L
C
1

L
C
2

M
C
1

M
C
2

H
C
1

H
C
2

0.01

0.02

0.03

0.04

0.05

0.06

L
C
1

L
C
2

M
C
1

M
C
2

H
C
1

H
C
2

1.5

2.0

2.5

3.0

3.5

4.0

COM MOD

Figure 8.8: Descriptive Statistics of Mean Values of DVs (3rd Family of Experiments)

to prove in MOD Eff, however as we found in a previous study 8.4, the subjects
were less efficient performing MC models than HC models. The findings regarding
the subjects’ efficiency (grouped by the model complexity) is similar to the findings
of their subjective complexity. An increasing subjective complexity is observed in
COM Tasks as model complexity increase, however in MOD Tasks, MC models are
rated as more difficult than HC models. The main difference between MC and HC
models is that in the former the complexity is mainly based on combined navigations,
(see the value of WNN) whereas in the latter the complexity is mainly based on an
intertwining collection operations (see the value of WNCO). We believe that for the
subjects it was more difficult to identify and trace which relationships they should
use (its rolename, attribute name, etc) in MOD Tasks, instead of identifying which
operation collections should be used to modify the expression. Finally, through
Shapiro-Wilk tests, we found that the dependent variables do not follow a normal
distribution.

8.5. THIRD FAMILY OF EXPERIMENTS 259

Table 8.38: Mean COM/MOD Eff and COM/MOD Time (3rd Family of Experi-
ments)

COM Eff MOD Eff
UPVE UCME UPVE UCME

N 46 14 46 14
Chi-square 105.035 50.122 114.091 44.531

gl. 5 5 5 5
sign. .000 .000 .000 .000

8.5.4.2 Testing Hypotheses for UPVE Experiment

In this section we will describe how the hypotheses formulated in section 8.5.3 were
tests along with its psychological explanations.

8.5.4.2.1 Testing Hypothesis for UPVE Experiment To test the first hy-
potheses, we used Friedman chi-square test (a non-parametric test for multiple re-
lated samples) which tests the null hypothesis that mean Eff is the same in all the
considered models. The results were significant (p-values were equal to 0.000, less
than 0.05), i.e. the mean efficiency of subjects when performing COM and MOD
tasks is different according the complexity of the diagrams. The results of chi-square
tests for UPVE are shown in the second and fourth columns of Table 8.38.

8.5.4.2.2 Testing Hypotheses 2 and 3 for UPVE Experiment To test the
hypotheses 2 and 3, a correlation analysis was performed using Spearman’s corre-
lation coefficient due to this statistics measure the rank-order association between
two scale or ordinal variables. We used a level of significance α = 0.05, which means
the level of confidence is 95% (i.e. the probability that we accept H0 when H0 is
true is 0.95). We studied the correlation for independent observations, i.e. for each
Ci, as it was justified at the beginning of this section. Table 8.39 summarizes the
significant coefficients we found at level 0.05 between measures and DVs for the Ci.
For example, reading the intersection between COM Eff’s rows and NNR column,
five Ci present a significant correlation in C2 = 0.0018, C3 = 0.0000, C4 = 0.0158, C5

= 0.0011 and C6 = 0.0022. In relation to the second hypotheses we concluded that:
(1) the NNR, NNC, WNN, DN, WNCO and NEI measures have a strong correlation
with the COM Eff for almost the six models; (2) the NNR, WNN, DN and NCO
have a strong correlation with the MOD Eff for almost the six models. It seems that
many factors influences the efficiency of COM tasks, as classes, relationships, the
navigations, the collection operations and the iterators variables, but only relation-
ships, collection operations and the depth of navigations influences the efficiency of
MOD tasks. These results are similar to the one obtained in the previous family,

260 CHAPTER 8. EMPIRICAL VALIDATION

Table 8.39: Correlation between Measures and COM/MOD Eff (3rd Family of Ex-
periments, 1st Experiment)
Spearman correlation between measures and UPVE COM Eff

Measures for import-coupling
NNR NNC WNN DN WNCO NAN NEI NES NCO

C1 0.2543 0.0388 0.0928 0.0438 0.0003 0.0069 0.0002 0.5852 0.5248
C2 0.0018 0.0006 0.0002 0.0001 0.0000 0.1938 0.0001 0.3604 0.2885
C3 0.0000 0.0033 0.0000 0.0000 0.0001 0.4702 0.0126 0.2179 0.0004
C4 0.0158 0.0001 0.0037 0.0195 0.0000 0.0230 0.0000 0.6745 0.6215
C5 0.0011 0.0000 0.0004 0.0583 0.0000 0.2601 0.0002 0.3791 0.8205
C6 0.0022 0.0000 0.0007 0.0036 0.0000 0.4339 0.0047 0.2755 0.5546

Spearman correlation between measures and UPVE MOD Eff
Measures for import-coupling

C1 0.0553 0.3154 0.0213 0.0002 0.5806 0.3639 0.7056 0.2123 0.0000
C2 0.0013 0.7019 0.0001 0.0000 0.0295 0.6063 0.0864 0.2049 0.0000
C3 0.0002 0.8617 0.0000 0.0000 0.2342 0.0615 0.5163 0.155 0.0000
C4 0.0253 0.9343 0.0077 0.0001 0.1503 0.6771 0.3236 0.1323 0.0005
C5 0.0058 0.8213 0.0014 0.0000 0.1236 0.5381 0.1745 0.4385 0.0000
C6 0.0000 0.1425 0.0000 0.0000 0.0009 0.7194 0.0083 0.4455 0.0000

nevertheless in the results of the current experiment we found a bigger quantity of
significant coefficients for the Ci than in the previous family.

Regarding the third hypotheses (see Table 8.40): the NNR, NNC, WNN, DN,
WNCO and NEI measures are correlated with the subjective complexity of the
subject for COM tasks in more than four Ci (more than the half of the Ci-s they are
six in total) and NNR, WNN, DN, WNCO and NCO measures are correlated with
the subjective complexity of the subject for MOD tasks in more than four Ci-s.

8.5.4.2.3 Psychological Explanation of Testing Hypotheses 2 and 3. Re-
garding the conclusions and the distinct measures affecting COM and MOD tasks,
we can add the following:

1. Problem objects (NNC, NEI), relation of problems objects (NNR, WNN, DN)
and reified objects (WNCO) seems to affect the COM Eff (Hypothesis 2).
However only Relation of problems objects (NNR, WNN, DN) affects MOD
Eff. Almost the same set of groups affects the COM and MOD SubComp
(Hypothesis 3). We think that during comprehension a broad familiarity of
the expression and its contextual information should be gathered by the sub-
jects, however during modification, the focus of the comprehension was only
in relationship between problem objects.

2. Measures related to chunking and tracing affects COM tasks, and mainly trac-

8.5. THIRD FAMILY OF EXPERIMENTS 261

Table 8.40: Spearman Correlations between Measures and COM/MOD SubComp
(3rd Family of Experiments, 1st Experiment)
Spearman correlation between measures and UPVE COM SubComp

Measures for import-coupling
NNR NNC WNN DN WNCO NAN NEI NES NCO

C1 0.2168 0.369 0.0756 0.0005 0.0214 0.2122 0.0806 0.062 0.2587
C2 0.0223 0.0711 0.008 0.0017 0.0069 0.6988 0.0507 0.1929 0.1202
C3 0.0013 0.0181 0.0002 0.0003 0.0006 0.7989 0.0097 0.3693 0.036
C4 0.0049 0.0047 0.0025 0.0451 0.0018 0.6767 0.0119 0.831 0.375
C5 0.0466 0.0138 0.043 0.5306 0.0211 0.6685 0.0420 0.2894 0.941
C6 0.0042 0.0025 0.0013 0.0056 0.0002 0.488 0.0067 0.5813 0.3315

Spearman correlation between measures and UPVE MOD SubComp
Measures for import-coupling

NNR NNC WNN DN WNCO NAN NEI NES NCO
C1 0.0363 0.6885 0.012 0.0002 0.2679 0.5982 0.3771 0.2865 0.0001
C2 0.0119 0.2705 0.0045 0.0048 0.0362 0.8769 0.0823 0.712 0.0188
C3 0.0001 0.3085 0.0000 0.0000 0.0236 0.2788 0.14 0.1273 0.000
C4 0.0024 0.1901 0.0011 0.0041 0.0474 0.4929 0.1424 0.6767 0.0041
C5 0.0000 0.1637 0.0000 0.0010 0.0856 0.0395 0.333 0.5398 0.000
C6 0.0000 0.009 0.0000 0.0004 0.0006 0.8451 0.0111 0.656 0.0123

ing affect the MOD tasks.

8.5.4.2.4 Testing hypotheses 4 and 5 for UPVE Experiment. In order
to test the 4th and 5th hypotheses, we transformed the variables COM SubComp
and MOD SubComp, assigning numbers to the linguistic labels: ranging from 1 (as-
signed to ’Easily understandable/modifiable’) to 5 (which correspond with ’Barely
understandable/modifiable’). After the data was transformed we used a Kendall’s τ
coefficient to contrast the hypotheses H0,4 and H0,5. As the results were significant
(p-values ranged from 0.000 and 0.018), see Table 8.41, we can conclude that there
seem to exist a statistically significant correlation between the COM/ MOD Sub-
Comp variable and the COM/MOD Time, and between COM/MOD SubComp and
COM/MOD Eff. Coefficients are negative for the efficiency and positive for Time,
i.e. those tasks rated as difficult were time-consuming tasks and the subjects were
less efficient. Moreover, the observed p-values of COM/MOD Eff are smaller (and
coefficients are greater) than COM/MOD Time, meaning that the relationship of
efficiency and the subjective complexity is stronger than the influence between time
and subjective complexity.

8.5.4.2.5 Psychological Explanation of Testing hypotheses 4 and 5 The
fact that the instrumentation we used for the OCL expression maintainability is
correlated with the subjective complexity means that the perception of the subjects

262 CHAPTER 8. EMPIRICAL VALIDATION

Table 8.41: Correlation between SubComp and COM/MOD Time, and between
SubComp and COM/MOD Eff (3rd Family of Experiments, 1st Experiment)

H4: τ UPVE H5: τ UPVE
Kendall coef p-value size Kendall coef p-value size

COM SubComp-COM Time C1 .170 .072 46 COM SubComp-COM Eff C1 -.186 .054 46
COM SubComp-COM Time C2 .373 .001 46 COM SubComp-COM Eff C2 -.443 .000 46
COM SubComp-COM Time C3 .529 .000 46 COM SubComp-COM Eff C3 -.597 .000 46
COM SubComp-COM Time C4 .411 .000 46 COM SubComp-COM Eff C4 -.384 .000 46
COM SubComp-COM Time C5 .398 .000 46 COM SubComp-COM Eff C5 -.374 .001 46
COM SubComp-COM Time C6 .403 .000 46 COM SubComp-COM Eff C6 -.423 .000 46
MOD SubComp-MOD Time C1 .358 .002 46 MOD SubComp-MOD Eff C1 -.350 .003 46
MOD SubComp-MOD Time C2 .304 .008 46 MOD SubComp-MOD Eff C2 -.324 .005 46
MOD SubComp-MOD Time C3 .539 .000 46 MOD SubComp-MOD Eff C3 -.511 .000 46
MOD SubComp-MOD Time C4 .271 .018 46 MOD SubComp-MOD Eff C4 -.390 .001 46
MOD SubComp-MOD Time C5 .392 .001 46 MOD SubComp-MOD Eff C5 -.464 .000 46
MOD SubComp-MOD Time C6 .426 .000 46 MOD SubComp-MOD Eff C6 -.448 .000 46

about the complexity of the tasks is influenced by the COM (or MOD) Time and
also by their COM (or MOD) Eff when performing such tasks.

8.5.4.3 Testing Hypotheses for UPVE + UCME Experiments.

As we expressed in the beginning of this section the UPVE and UCME data were
analysed together, because the UCME data by itself could not be analysed due to
the size of the population and the unbalanced order of the assigned tests to the
subjects. Before analysing the results for both experiments (UPVE+UCME) we
studied if it is possible to study them together, we compare the mean Efficiency and
the Mean SubComp for each model in the UPVE and UCME separately. We used
the T-student Test for non-ordinal (Eff) data and Mann-Whitney Test for ordinal
data (SubComp). Results were not significant, so we gather the whole data from
both experiments and we test the formulated hypotheses.

8.5.4.3.1 Testing hypotheses 1 for UPVE + UCME Experiments. The
Friedman test was carried out in the same way as we did when we test hypotheses
1 for UPVE only. The result was reaffirmed, i.e. the mean efficiency of subjects
when performing COM and MOD tasks is different according the complexity of the
diagrams.

8.5.4.3.2 Testing hypotheses 2 and 3 for UPVE + UCME Experiments.
In order to test the 2nd and 3rd hypotheses, a Spearman correlation analysis was

8.5. THIRD FAMILY OF EXPERIMENTS 263

Table 8.42: Correlation between Measures of Import-coupling and COM/MOD Eff
(3rd Family of Experiments)
Spearman correlation between measures and UPVE + UCME COM Eff

Measures for import-coupling
NNR NNC WNN DN WNCO NAN NEI NES NCO

C1 0.0275 0.0004 0.0063 0.0036 0.0000 0.0112 0.0000 0.6766 0.6551
C2 0.0000 0.0000 0.0000 0.0000 0.0000 0.6105 0.0002 0.1319 0.0579
C3 0.0000 0.0001 0.0000 0.0000 0.0000 0.4913 0.0073 0.0318 0.001
C4 0.0056 0.0000 0.0003 0.0010 0.0000 0.0005 0.0000 0.2794 0.6785
C5 0.0017 0.0000 0.0004 0.0363 0.0000 0.0736 0.0000 0.3135 0.9025
C6 0.0049 0.0000 0.0009 0.0044 0.0000 0.0775 0.0001 0.8546 0.8723
Spearman correlation between measures and UPVE + UCME MOD Eff

Measures for import-coupling
NNR NNC WNN DN WNCO NAN NEI NES NCO

C1 0.0044 0.954 0.0012 0.0000 0.3620 0.1335 0.7648 0.0947 0.0000
C2 0.0003 0.5768 0.0000 0.0000 0.0311 0.2676 0.1417 0.1075 0.0000
C3 0.0000 0.8288 0.0000 0.0000 0.1325 0.0155 0.6603 0.0091 0.0000
C4 0.0103 0.5085 0.0014 0.0000 0.1513 0.7143 0.2693 0.0672 0.0000
C5 0.0003 0.8778 0.0000 0.0000 0.0169 0.716 0.0275 0.4016 0.0000
C6 0.0000 0.1223 0.0000 0.0000 0.0000 0.9437 0.0005 0.8235 0.0000

performed as we did for UPVE (see previous section). Results are reaffirmed and
more cohesive, compare Tables 8.39 and 8.42, and Tables 8.40 and 8.43.

• From table 8.42, we conclude that NNR, NNC, WNN, DN, WNCO and NEI
measures are significant correlated with the COM Eff for all the Ci, and the
NNR, WNN, DN and NCO are significant correlated with the MOD Eff for
all the Ci.

• Table 8.43 shows The NNR, NNC, WNN, WNCO and NEI measures are signif-
icant correlated with the subjective complexity of the subject for COM tasks
in all the Ci (DN is correlated in five Ci) and NNR, WNN, DN and NCO mea-
sures are significant correlated with the subjective complexity of the subject
for MOD tasks in all the Ci (WNCO is correlated in five Ci).

8.5.4.3.3 Testing hypotheses 4 and 5 for UPVE + UCME Experiments.
In order to test the 4th and 5th hypotheses, we transform the data in the same way we
did for UPVE (see previous section). Results of UPVE were confirmed, we conclude
that there seems to exist a statistically significant correlation between the COM
/ MOD SubComp variable and the COM/MOD Time, and between COM/MOD
SubComp and COM/MOD Eff.

264 CHAPTER 8. EMPIRICAL VALIDATION

Table 8.43: Correlation between Measures of Import-coupling and COM/MOD Sub-
Comp (3rd Family of Experiments)
Spearman correlation between measures and UPVE + UCME COM SubComp

Measures for import-coupling
NNR NNC WNN DN WNCO NAN NEI NES NCO

C1 0.0312 0.0061 0.0096 0.0004 0.0002 0.1363 0.0063 0.0533 0.6050
C2 0.0002 0.0068 0.0000 0.0000 0.0005 0.7401 0.0347 0.0232 0.0080
C3 0.0066 0.0314 0.0015 0.0003 0.0004 0.4421 0.0035 0.3693 0.0833
C4 0.0043 0.0050 0.0008 0.0072 0.0000 0.1304 0.0003 0.4385 0.4205
C5 0.0284 0.0175 0.0180 0.3092 0.0037 0.2506 0.0030 0.0503 0.7979
C6 0.0134 0.0005 0.0041 0.0138 0.0000 0.1687 0.0022 0.7266 0.8604
Spearman correlation between measures and UPVE + UCME MOD SubComp

Measures for import-coupling
NNR NNC WNN DN WNCO NAN NEI NES NCO

C1 0.0300 0.9940 0.0100 0.0004 0.2574 0.5269 0.4587 0.2011 0.0004
C2 0.0072 0.1216 0.0029 0.0052 0.0161 0.8495 0.0535 0.6631 0.0273
C3 0.0000 0.2528 0.0000 0.0000 0.0189 0.1583 0.1605 0.0725 0.0000
C4 0.0037 0.4635 0.0007 0.0001 0.0278 0.9904 0.0564 0.6653 0.0014
C5 0.0000 0.0731 0.0000 0.0000 0.0037 0.1982 0.0327 0.5908 0.0000
C6 0.0023 0.0801 0.0004 0.0002 0.0011 0.5466 0.0056 0.7529 0.0237

8.5.5 Conclusions of the Third Family of Experiments (F6)

Regarding its application in an empirical work, we described a family of experiments
run in May and June (2005) at the Technical University of Valencia (UPV) and
Complutense University of Madrid (UCM) respectively. In order to study the COM
and MOD of the OCL expressions we have considered not only the time subjects
spent on the COM and MOD tasks required in the experimental material, but also
their efficiency and their subjective perception of the difficulty when carrying out
these tasks. We think that, both quantitative (COM and MOD Eff) and qualita-
tive (subject’s rating or SubComp) information is important to obtain more solid
findings. The results reveal that there is empirical evidence that import-coupling
defined in an OCL expression is strongly correlated with the maintainability of OCL
expressions (hypothesis 2), but this finding is strengthened by the following facts:

1. From the descriptive and exploratory analyses, we can conclude that the ef-
ficiency of subjects when they had to understand and modify the OCL ex-
pressions, increased as time passed. We obtained a considerable improvement
of subjects’ efficiency in MOD tasks. In this new family MOD tasks differ
considerably from those in the previous experiments where subjects’ MOD Eff
was lower. Moreover, subjects were more efficient in MOD tasks than in COM
tasks. COM and MOD efficiency are different if we arrange the collected data
according to the model complexity. The higher the complexity of the OCL ex-

8.5. THIRD FAMILY OF EXPERIMENTS 265

pression, the lower is the COM Eff of the subjects. However, models of Medium
Complexity (MC) were more difficult to modify for the subjects than models
of High Complexity (HC). The former (MC models) were models in which stu-
dents should have traced from different navigations. In the latter (HC models)
subjects should identify which collection operations they have to use and how
to combine them. We think that their experience in collection operations and
the activities of tracing relationships between classes could have produced this
situation. Due to the size of the population from the UCM experiment the
formulated hypotheses of the experiments could not be tested in the same way
as we analyzed the hypotheses for the UPV experiment. However, we used the
UCM data to confirm the findings obtained in UPV gathering the whole set
of data from both experiments (after using statistical tests needed to realize
if this is possible and enable us to collect all the data). We found different re-
sults for the hypotheses that were confirmed once we gathered the whole data
set. We summarize the findings for each hypothesis in Table 8.44. The results
reveal again that there is empirical evidence that import-coupling defined in
an OCL expression through navigations and collection operations is strongly
correlated with the maintainability of OCL expressions.

2. The main goal of the experiment of explaining the influence of import-coupling
on the maintainability of OCL expressions although it is verified through hy-
pothesis 2, it was reaffirmed using a triangulation of hypothesis relating the
import-coupling and cognitive complexity (hypothesis 3), and between the
cognitive complexity and the maintainability of OCL expressions (hypothesis
4 and 5). We found different results for the formulated hypotheses which we
summarize in Table 8.44.

3. Considering the COM and MOD tasks, the import-coupling structural prop-
erty of OCL expressions impact in the cognitive complexity in different way
(hypothesis 3), and this effect is explained as follow using the cognitive theory:

(a) We observed that MOD tasks were more localized than COM tasks, see
that a subset of the measures which influences in COM Eff also influ-
ence in MOD Eff, possibly indicating that an as-needed comprehension
strategy was applied.

(b) The subjects in COM tasks gained a broad understanding of OCL ex-
pressions through Problem objects (NNC, NEI), Relation of problems ob-
jects (NNR, WNN, DN) and Reified objects (WNCO). However once this
breath of familiarity with the OCL expressions was gained the modelers
mainly concentrate during MOD tasks in Relation of Problems Objects
(NNR, WNN, DN).

(c) With regard to the cognitive process of Cant et al. modelers applied
chunking and tracing cognitive process in COM tasks whereas in MOD

266 CHAPTER 8. EMPIRICAL VALIDATION

tasks tracing was the more relevant process applied. Notice that mainly
relations (NNR) and navigations (WNN and DN) affect MOD Eff.

(d) Measures related to chunking and tracing affect COM tasks, and mainly
tracing affect the MOD tasks.

4. COM and MOD SubComp is correlated to the COM and MOD Time (hypoth-
esis 4) and also with COM and MOD Eff (hypothesis 5).

5. The set of measures that are correlated with the maintainability of OCL ex-
pression (hypothesis 2) is almost the same as the set of measure correlated
with COM and MOD SubComp (hypothesis 3).

Table 8.44: Synopsis of Hypotheses and the Statistical Tests Applied (3rd Family of
Experiments)

Efficiency Time Subjective Complex-
ity

Relation COM Eff COM Time COM SubComp
between MOD Eff MOD Time MOD SubComp

Hypotheses 1
Test: Chi-square Test
The mean efficiency of COM and

MOD tasks is different according

to the complexity of diagrams

OCL Hypotheses 2 Hypotheses 3
expressions Test: Spearman Test: Spearman
measures (1) the NNR, NNC, WNN, DN,

WNCO and NEI measures have

are significant correlated with the

COM Eff (2) the NNR, WNN, DN

and NCO have significant corre-

lated with the MOD Eff

The NNR, NNC, WNN, DN,

WNCO and NEI measures are sig-

nificant correlated with the COM

subjective complexity; and NNR,

WNN, DN, NCO and WNCO

measures are significant corre-

lated with the MOD subjective

complexity

COM Hypotheses 5 Hypotheses 4
MOD Test: τ Kendall Test: τ Kendall
SubComp The subjective ratings are influ-

enced by the COM and MOD Eff

The subjects’ subjective ratings

(COM or MOD rating) are in-

fluenced by the time they spent

understanding or modifying the

OCL Expressions, i.e. both times

seem to affect their perception of

the level of complexity of an OCL

expression

8.6. CONTRIBUTION TO THE DISSERTATION 267

8.6 Contribution to the Dissertation

In order to empirically validate the proposed measures this chapter carefully de-
scribes three families of experiments. The obtained findings shows that the struc-
tural properties that capture import-coupling seems to exert a significant influence
on the comprehensibility and modifiability of OCL expressions.

According to the results we claim that a high number of coupled objectgs, navi-
gations and collection operations will increase the import-coupling in an OCL ex-
pression, and also bring serious difficulties in OCL expression comprehension and
correspondingly in comprehension-related tasks, such as OCL expression modifia-
bility. As guidelines we suggest that navigations should be used moderately during
modeling taking these concerns into account:

• You should try to reduce the number of import-coupling in an OCL expression.
The larger the set of coupled objects (and its properties) to be chunked the
greater the context to be understood.

• You should try to reduce the number of combined navigations to improve
the comprehension of OCL expressions. An intertwining specification of re-
lationships could reduce the comprehension of an OCL expression and make
the contextual instance know details of distant objects. Whenever possible,
limit the knowledge of coupled objects to the immediate surroundings of the
contextual instance.

• The number of collection operations should be as low as possible in order to
obtain OCL expressions more easily to comprehend.

• The relationship between the coupled objects could seriously affect the mod-
ifiability of OCL expressions. Try to use the lower number of relationships
in order to reduce the tracing during comprehension and modification. As a
future work we plan to study how the subject has reasoned while solving the
COM and MOD tasks. We will record students while they reason aloud to
discover more about the relationship between OCL expressions and cognitive
complexity [Hen02].

We are aware that the next step is to obtain a multivariate regression analysis in
order to continue interpreting the collected data obtained, and to run new experi-
mental replicas. In this way we will strengthen the conclusion and external validity
respectively. The empirical validation of the rest of the measures is also pending.
Moreover, we will work in a generalization of the benefits of the set of measures
defined for OCL expressions, trying to obtain a global complexity of UML/OCL
models (note that all the proposed measures are defined in terms of a single OCL
expression).

268 CHAPTER 8. EMPIRICAL VALIDATION

Chapter 9

Conclusions

This chapter analyses the achievement of the objectives outlined at the beginning
of the Ph.D. thesis, then the main contributions and conclusions of this thesis are
presented and the principal publications are listed. Finally, the lines of work which
are left open are described.

9.1 Analysis of Achievement of Objectives

At the beginning of this document, chapter one shows the partial objectives pursued,
which led us to the achievement of the main goal of this Ph.D. Thesis, which is:

ASSESSING THE INFLUENCE OF IMPORT-COUPLING ON
THE MAINTAINABILITY OF OCL EXPRESSIONS THROUGH A
MEASUREMENT-BASED APPROACH

And, on the basis of the main objective, a series of partial objectives have arisen:

Obj-1. Analyse the existing measures for UML models and measures for coupling: Af-
ter a thorough review of the existing literature related to measures for UML
diagrams which we presented in the State of The Art (see chapter 3), we have
shown measures that can be applied to use case diagrams, class diagrams and
statecharts diagrams. Although various proposed measures for different kinds
of diagrams do exist, and have been theoretically and empirically validated
there are no measures for UML diagrams when they are complemented by
OCL expressions.

In the State of the Art we also showed that the quantity of measures for

270 CHAPTER 9. CONCLUSIONS

coupling is vast and numerous empirical studies suggest that coupling has
an impact on several external quality attributes. Nevertheless, the coupling
defined through OCL expressions was not analyzed in none of the existing
studies from the literature.

Furthermore after analysing the literature related of OO measures, we found
that the majority of existing measures have been designed to be applied at an
advanced design level and not for a PIM model.

Obj-2. Extend and refine the method for the definition of valid measures: We have
refined and extended the method for measure definition specified by Calero et
al. [CPG01] which pursues three main goals and phases: measure definition,
theoretical validation and empirical validation (see chapter 2). The enhance-
ment of the method, in terms of refinement and extensions, is described as
part of the main contribution of this dissertation (see section 9.2).

Obj-3. Propose a set of measures for measuring the structural properties of OCL expres-
sions within UML/OCL models: A proposal of measures for structural properties
of OCL expressions within UML/OCL combined models is presented in chap-
ter 4. We consider OCL expressions that are commonly written for UML class
diagrams but without loss of generality many of these measures can be applied
for OCL expressions used in other kinds of diagrams. In this way 21 measures
for OCL expressions have been defined considering the main elements of the
OCL Metamodel that most frequently appear in OCL expressions.

Obj-4. Carry out the formal definition of the proposed measures: In order to avoid
misunderstanding and misinterpretation with the definition of measures in
natural language we have presented in chapter 5 the formal specification of
the measures (proposed in chapter 4) using OCL upon the OCL metamodel.

Obj-5. Perform the theoretical validation of the proposed measures using the most
suitable frameworks: In chapter 5 we have theoretically validated the pro-
posed measures according to the formal framework of Briand et al. [BMB96],
[BMB97], its adaptation for interaction-based measures for coupling and cohe-
sion [BMB99] and the Poels and Dedene´s framework [PD99]. We theoretically
validated fifteen measures as interaction-based measures for coupling based on
context-dependent properties for import-coupling.

Obj-6. Describe the rationale of the measures using a psychological explanation from a
cognitive point of view: The rationale behind the software measures, that is the
cognitive complexity of modelers dealing with OCL expressions was described
from a cognitive point of view. Mental models and cognitive models were used
to obtain a clear goal definition and also to interpret the experimental findings
in the empirical validation. Using verbal protocols we prove that coupling

9.2. MAIN CONTRIBUTIONS AND CONCLUSIONS 271

cognitive categories such as: problem objects, relationships between problem
objects and reified objects are important components of the mental burden
of modelers dealing with OCL expressions. These categories are inherently
related to the influence of import-coupling on cognitive complexity.

Obj-7. Perform the empirical validation of the proposed measures to find early indicators
of OCL maintainability: Three families of experiments have been carried out
for validating the proposed measures as early indicators of the maintainability
of OCL expressions. The findings have been shown in chapter 8. We em-
pirically validated that the structural properties that capture import-coupling
dependencies exert significant influence on the comprehensibility and modifia-
bility of OCL expressions. More experimentation would be necessary in order
to obtain more conclusive results.

As we have shown the achievement of all the objectives, we believe that we have suc-
cessfully come to achieve our primary objective ’ASSESSING THE INFLUENCE OF
IMPORT-COUPLING ON THE MAINTAINABILITY OF OCL EXPRESSIONS
THROUGH A MEASUREMENT-BASED APPROACH’. This lead us to conclude
that the initial hypothesis has been satisfied and we can assert that:

IT IS FEASIBLE TO ASSESS THE INFLUENCE OF IMPORT-
COUPLING ON THE MAINTAINABILITY OF OCL EXPRESSIONS
THROUGH A MEASUREMENT-BASED APPROACH

9.2 Main Contributions and Conclusions

A systematic use of models as primary engineering artifacts throughout a model-
driven engineering will increase the importance of their maintainability [AWÁF02].
However, maintainability has been and will continue to be an expensive and challeng-
ing task poorly managed [DJ03] unless proven measures for software maintainability
would be used.

It is widely believed that predicting the maintenance at early stages (such as during
the specification of a platform independent-model) will help software designers and
maintainers to alter the architecture of the software system for better quality that
leads to the overall reduction of maintenance costs [MPKS00]. However, what makes
a model be of better quality than another is a subject that should be carefully
analysed, due to the fact that quality is a composite of many internal attributes.
We believe that during the maintainability of models, maintainers should apply a

272 CHAPTER 9. CONCLUSIONS

principle which many text books admonish as a good practice, they should reduce
coupling among software artifacts and improve cohesion within them.

However, in an OO setting, there are many forms of coupling that can arise in
systems, and establishing what the different forms of coupling are and which are the
most harmful are open research questions [BAC+99]. This thesis is focused on this
direction. We studied the influence of import-coupling on OCL expression main-
tainability. We take a measurement-based approach in the study. We theoretically
and empirically validated that the structural properties that capture dependencies
among OCL expressions and its associated system (in our case UML models), exert
significant influence on the comprehensibility and modifiability of OCL expressions.

At the same time we discovered new forms of coupling, we defined a set of measure
to deal with it. These measures may be useful to (1) optimize OCL expressions in
case of arbitrary model changes [AHK07], [CW99a] and transformations [AWÁF02]
(a relevant aspect within the newly emerged modeling technologies -MDE, MDA,
MDD-), (2) to improve constraint specification, behaviour specification of query
operation and initial and derived property values.

The assessment of the impact of coupling on OCL expression maintainability was
a challenging activity due to the many issues that appeared:

• Language characteristics: As was mentioned in chapter 3 the language itself
has many roots: (1) set theory [Baa00] (represented by the OCL collections and
many collections operations) (2) predicate logic and (3) operational semantics:
iterate construct, the basis of most of the collection operations [Baa00].

• Graphical and Textual information: OCL should be used along with graphical
information (the textual specification of OCL expressions complements the
information provided by graphical information [CCBC04]). OCL is a clear
integration of formal and informal aspects.

• Domain of the Measure: Although the expression can be seen as short textual
description many times its extent involves many coupled objects of the model.

The diversity and complexity of the aforementioned aspects makes the assessment
a difficult activity. To tackle our goal in a proper manner we based the assessment
following a method for measure definition. In fact, we also focus on the redefinition
of the method itself due to the fact that the method applied is based on a previous
work which was refined and extended.

The main contributions of this Ph.D. thesis are:

• Related to the Method for Measure Definition: The extension and
refinement of the method was modelled in chapter 2 using UML activity di-
agrams. The method had been strengthening not only in the order of its

9.2. MAIN CONTRIBUTIONS AND CONCLUSIONS 273

activities but also identifying object flows between activities and important
decisions that should be evaluated during the activities. The application of
the new method will help the researcher to methodically obtain reliable and
consistent measures.

The refinements of the method were introduced in:

� Identification step (Ii activities, i= 1, .., 7): Within the refinement of this
activity we specified not only the order in which goals and questions are
specified but also a decision action to verify that questions fit the goals.
New activities were added such as the identification of abstractions for
measuring structural properties, the statement of general hypotheses, etc.

� Creation step (Ci activities, i=1, .., 4): Although the main steps of the
creation activity were already defined in the previous methods, we refined
important node decisions and object flows between subactivities.

� Empirical Validation Step (Ei, Fj and EFk activities, i=1,2, j=1,..,6,
k=1,..,5): We identified the more relevant activities in carrying out fam-
ilies of experiments and isolated experiments.

The extension of the method were focused on:

� Definition in Natural Language (Ni activities, i=1,..,4): We used a tem-
plate to define the measures which is composed of the acronym, the
definition itself, the goal pursued by the measure and one example.

� Formal Definition of Measures: (Di activities, i=1, 3, 4): We identify the
more important activities that should be performed in a formal definition
of measures.

� Theoretical Validation using Property-based Frameworks (Pi activities,
i=1,..,5). Within the method we differentiate between the application of
generic properties and context-dependent properties.

� Psychological Explanation (PEi activities, i=1,..,3): Three relevant ac-
tivities were detected in a psychological explanation of how the subjects
deal with the software artifact which is measured.

• Related to the Definition of Measures: We defined 21 measures for
structural properties of OCL expressions: 15 measures for measuring import-
coupling concepts of OCL expressions, 1 measure for length and 9 measures
to control the size. During the definition we analyze all the concepts men-
tioned in the OCL metamodel which are related to coupling, length and size
attributes. Originally, the measures were introduced in natural language. The
rationale and goal of each measure are carefully explained.

274 CHAPTER 9. CONCLUSIONS

• Related to the Formal Specification of the Measures: Measures were
defined using OCL upon the OCL metamodel (OCL2). The definition of the
measures was not an easy activity due to the fact that the concepts involved
in their definition are related to many OCL metaclasses. The number of OCL
metaclasses involved is considerably big (more than fifty metaclasses). We had
selected a strategy so as not to clutter the OCL metaclasses and we decided
to used a pattern-based approach for the formal definition of the measures.

• Related to the Theoretical Validation: One important contribution in the
theoretical validation of the measures was the definition of context-dependent
properties using the property-based framework of Briand et al. [BMB99]. Its
application will allow us to prove that the 15 measures are interaction-based
measures for coupling. We did not find in the literature about measurement,
any application of context-dependent properties with exception of the defini-
tion and application provided by its authors [BMB99].

• Related to the Psychological Explanation: The definition of measures
and their empirical validation were enriched through a plausible explanation
of the cognitive complexity of modellers dealing with OCL expressions. We
based our reasoning using mental models and cognitive models, and we related
these cognitive theories to explain the rationale behind the measure and how
the modellers deal with OCL expressions. Another important contribution of
this thesis is the application of qualitative methods which help us to delve the
complexity of human role in software engineering tasks [Sea99]. In our case,
we run a think aloud experiment to explain the more important categories
that compose the mental model of modellers during comprehension activities.
We also found that modellers use different attempt to comprehend the class
diagram associated to the OCL expressions.

Related to the psychological explanation we can draw the following conclu-
sions:

� In order to comprehend and modify an OCL expression modelers use
two important cognitive techniques: tracing and chunking. These tech-
niques defined in the CCM Model [CHSJ94] constitute relevant aspect
in OCL expression comprehension. On one hand, OCL subexpressions
are suitable mechanisms which facilitates the chunking activities due to
the fact any OCL expression can be read and evaluated from left to
right combining different properties, similarly to the composition of func-
tions. Properties can be combined to make more complicated expressions
through the use of chunking cognitive technique. On the other hand,
tracing technique is guided by OCL navigations through a UML model.

� When modelers deal with OCL expressions, the three more important
categories of the modelers’ mental model are (see Figure 9.1): objects

9.2. MAIN CONTRIBUTIONS AND CONCLUSIONS 275

from the application domain (i.e. problem objects), relationships between
problem objects and reified objects (they are not problem domain objects
per se) such as collections. Regarding the last component, OCL provides
the modellers with a rich set of built-in collections and collections oper-
ations. Probably, this issue of the language is one the most important
similarity of OCL with OO programming languages due to the fact that
dealing with collection is an important features of OO languages 1. We
evaluate the contribution of collection and collection operations during
import-coupling through the definition of the WNCO measure and the
consideration of reified objects within a plausible explanation of cognitive
complexity of modellers.

Problem Objects

Relationships between Problem Objects

Reified Objects

Figure 9.1: Main Categories of the Mental Model of Subjects dealing with OCL
Expressions

• Related to the Empirical Validation: We carried out three families of
experiments across seven universities of Spain, Argentina and Chile.

We can draw several conclusions from the empirical validation:

� Through a specific family of experiment (the 1st family of experiments of
chapter 8) we evaluated whether the number of classes (NNC, a measure
of the quantity of problem objects), the depth of navigations (as a mea-
sure of the length of coupling, DN), and its interactions affect the OCL
expression maintainability. Both aspects and their interactions seem to
affect the impact of import-coupling on OCL expressions maintainability.
We found through experimentation that reflexive relationships are more
subtle and difficult to understand than simple relationships, i.e. even
when a less quantity of objects are coupled in an expression if the depth
of navigation is high (this happens when reflexive navigation is used) the
OCL expression comprehension could be deeply decreased.

1The notation is also recognized as a similarity of OCL with OO programming language, having
a very positive psychological effect [Baa00].

276 CHAPTER 9. CONCLUSIONS

� Modifications of OCL expressions are more difficult to deal with than
comprehension (see 2nd family of experiments). Although chunking and
tracing cognitive techniques influence on OCL expressions comprehen-
sion, the modification of an OCL expression demands that these tech-
niques are applied in an intertwining way. Modelers during OCL modi-
fications should identify new problem objects, new relationships between
objects and collections operations to specify the modifications. The iden-
tification of these aspects during modification and how they must be com-
bined demands from modelers to be more cognitively flexible [CMF04]
than when they are comprehending OCL comprehensions.

� We also observed (see 2nd and 3rd families of experiments) that the OCL
learning curve of subjects is an important issue that should be considered,
we showed that the efficiency of subjects is higher as time passes during
experimentation.

� We also found that the coupling’ complexity which is based on the ma-
nipulation of collection operations was less difficult to deal with than the
coupling’ complexity which is based on dealing with different problem
objects and relationships. Probably this happens due to the fact that the
experimental objects we used in all the experiments were from different
application domain, and the recurrent aspect was dealing with OCL ex-
pressions, i.e. the recurrent aspect was the language knowledge rather
than the domain knowledge. Empirical results would be different whether
the experimental objects belong to the same application domain. So, we
think that the efficiency depends not only of the language knowledge but
also of domain knowledge (see Figure 9.2). Nevertheless we think that
more experimentation would be necessary in this topic to obtain more
conclusive results.

Domain knowledge

Efficiency

Language knowledge

Figure 9.2: Language and Domain Knowledge Affect Subject Efficiency Dealing with
OCL Expressions

9.3. CONTRAST OF RESULTS 277

9.3 Contrast of Results

The partial results obtained during the investigation have been published and pre-
sented in different forums, some of which will be presented next.

9.3.1 Book Chapter

1- L. Reynoso, M. Genero and M. Piattini, Measuring OCL Expressions: An Ap-
proach Based on Cognitive Techniques. Chapter 5 in ”Metrics for Software
Conceptual Models”. M. Genero, M. Piattini and C. Calero Editors. pp:
161-206. Imperial College Press, UK. 2005.

This chapter presents, the definition in a methodological way of a set of mea-
sures for structural properties of OCL expressions, considering those OCL
concepts specified in its metamodel which involves the use of two cognitive
techniques, tracing and chunking. The chapter also shows the theoretical
validation of the measures using the property-based framework proposed by
Briand et al [BMB99].

9.3.2 International Journals

2- L. Reynoso and M. Genero and M. Piattini, Towards a metric suite for OCL
Expressions expressed within UML/OCL models. Journal of Computer Science
and Technology. Journal of Computer Science and Technology JCS&T. Issue
Volume 4 Number 1, pp: 38-44. ISSN 1666-6038. April 2004.

The definition of a measure suite for OCL expressions is presented in this pa-
per. Within the definition we evaluated whether each measure is related to
either tracing or chunking cognitive techniques. The theoretical validation of
the measures using property-based frameworks is outlined.

3- M. Genero, M. Piattini, J. A. Cruz-Lemus and L. Reynoso, Metrics for UML
Models. UPGRADE. The European Journal for the Informatics Professional.
ISSN 1684-5285. Volume 5 (2). pp: 43-48. http://www.upgrade.- cepis.org/.
2004. Also published as:
M. Genero, M. Piattini, J. A. Cruz-Lemus and L. Reynoso, Métricas para
Modelos UML. Revista Novática. Revista de la Asociación de Técnicos de
Informática. ISSN 0211-2124. http://www.ati.es/novatica. Volume 170, pp:
61-65. Spain. 2004.

278 CHAPTER 9. CONCLUSIONS

These are informative articles that describe a thorough state of the art of
the relevant literature related to measures for UML models. Different set of
closed-ended measures for class diagrams, statechart diagrams, use case dia-
grams and OCL expressions were included.

4- L. Reynoso, M. Genero, M. Piattini and E. Manso, El Efecto del Acoplamiento
en la Comprensibilidad y Modificabilidad de Expresiones OCL: Un Anlisis Ex-
perimental. IEEE Latin America. Vol 4, Issue 2. pp: 62-67. April, 2006.

This paper includes an improved and expanded spanish version of a paper
published in JISBD 2005. It was selected from the JISBD 2005 Proceeding.

9.3.3 International Conferences

5- L. Reynoso and M. Genero and M. Piattini, A Controlled Experiment for Val-
idating Metrics for OCL Expressions. ACM-IEEE International Symposium
on Empirical Software Engineering. ISESE 2004. pp. 15-16. 19-20 August
2004 Redondo Beach, CA, USA., 2004.

This short paper describes the first experiment of the first family of experi-
ments. The main goal of the paper is to ascertain if any relation exists between
the measures DN and NNC and the comprehensibility and modifiability of
OCL expressions.

6- L. Reynoso and M. Genero, M. Piattini and E. Manso, Assessing the Impact
of Coupling on the Understandability and Modifiability of OCL Expressions
within UML/OCL Combined models. 11th IEEE International Software Met-
rics Symposium IEEE METRICS 2005. 19-22 September. Como, Italy,
2005. pp:14.

This paper presents the second family of experiments. The results reveal that
there is empirical evidence that import-coupling defined in an OCL expression
through navigations and collection operations is significant correlated with the
maintainability of OCL expressions. The findings are preliminary and more
experimentation is needed.

7- L. Reynoso and M. Genero, M. Piattini and E. Manso, Does Object Coupling
Really Affect the Understandability and Modifiability of OCL Expressions?.
21st ACM Symposium on Applied Computing. ACM SAC-SE 2006. Dijon,
France. April 2006. pp: 1721-1727.

9.3. CONTRAST OF RESULTS 279

This paper presents the first experiment of the third family of experiments.
The experiment confirms the results of the second family of experiments: ob-
ject coupling affects the maintainability of OCL expressions. In this paper we
show that we obtained a considerable improvement of the subject’s efficiency
in modifying OCL expressions, which was the reason to start the third family
of experiments.

8- L. Reynoso and M. Genero and E. Manso, Measuring Object Coupling in OCL
Expressions: A Cognitive Theory-Based Approach. IEEE Instrumentation and
Measurement Technology Conference. IEEE IMTC 2006. pp: 1087-1092.
Sorrento, Italy. April 2006.

This paper presents the third family of experiments, the experiment and its
replica. An analysis of the whole data for the family is performed. The results
of the experiment are explained using a cognitive theory-based approach using
a relationship between the main components of the mental model of Burkhardt
et al. [BDW02] and the concepts captured by the measures for OCL expres-
sions.

9- L. Reynoso and M. Genero and M. Piattini, Using Verbal Protocols for Assessing
the Influence of Import-Coupling on the OCL Expression Comprehensibility.
Sixth IEEE International Conference on Cognitive Informatics. IEEE ICCI
2007 6-9 August 2007 Lake Tahoe, CA, USA, 2007.

This paper shows the use of verbal protocols to explain the main categories
in the mental model of the subjects dealing with OCL expressions. It also
describes the different approaches that the modellers attempt in order to com-
prehend the class diagrams associated to the OCL expression. We detail the
more important steps using verbal protocols and we applied them in a think-
aloud experiment carried out at the Castilla La-Mancha University.

10- L. Reynoso, J. A. Cruz-Lemus, M. Genero and M. Piattini, Formal Definition
of Measures for UML Statechart Diagrams Using OCL. 23rd ACM Symposium
on Applied Computing. ACM SAC-SE 2008. Fortaleza, Ceará, Brazil.
March 16-20, 2008. (to appear)

In this paper we show the formal definition of measures for UML statechart
diagrams using OCL, upon the UML statechart metamodel. Originaly the
measures were defined by Cruz-Lemus [CL07] and its formal definition is in-
cluded in this paper. The use of a formal definition upon a metamodel assure
that measures capture the concepts they intend for.

280 CHAPTER 9. CONCLUSIONS

9.3.4 National Conferences

11- L. Reynoso, M. Genero and M. Piattini. Una Propuesta de Métricas para
Expresiones OCL basada en ”Tracing”. Jornadas sobre Innovación y Calidad
del Software. JICS 2003. Universitat Politecnica de Catalunya. June 2003.
Barcelona, Spain.

A set of open-ended measures for OCL expressions are presented in this paper.
This document shows the first attempt of defining a set of measures focused on
tracing as the main factor that affects the comprehension of OCL expressions.

12- L. Reynoso and M. Genero, M. Piattini and E. Manso, Validating OCL Metrics
through a Family of Experiments. IX Jornadas de Ingenieŕıa del Software y
Base de Datos. JISBD 2004. November 10-12. Málaga, Spain, 2004.

This paper presents a controlled experiment and two replicas (the first family
of experiments) for assessing if two of the proposed measures, DN and NNC,
are related with to the comprehensibility and modifiability of OCL expressions.

13- L. Reynoso and M. Genero, M. Piattini and E. Manso, The Effect of Coupling on
Understanding and Modifying OCL Expressions: An Experimental Analysis.
X Jornadas de Ingenieŕıa del Software y Base de Datos. JISBD 2005. pp:
139-146. September 14-16. Granada, Spain, 2005.

In this paper we present the second family of experiments in order to anal-
yse the effect of coupling on the understandability and modifiability of OCL
expressions. We found a statistically significant correlation between many
measures, specially those related to tracing, and the understandability and
modifiability efficiency.

9.3.5 International Workshops

14- L. Reynoso, M. Genero and M. Piattini. Measuring OCL Expressions: a
Tracing-based Approach. Workshop on Quantitative Approaches in Object-
Oriented Software Engineering. QAOOSE 2003. 21-25 July 2003. Germany.

A preliminary work of the measures for OCL expressions were presented in
this paper. We explain the goal of the measures using cognitive techniques of
Cant et al. [CHSJ94].

15- L. Reynoso, M. Genero and M. Piattini, Validating Metrics for OCL Expres-
sions Expressed within UML/OCL Models, International Workshop on Soft-
ware Audits and Metrics. ISBN 972-8865-04-X. SAM 2004. April 13-14,
2004 - Porto, Portugal, 2004. pp: 59-68.

9.3. CONTRAST OF RESULTS 281

In this paper we show the first experiment we carried out. Although this ex-
periment is an isolated experiment which does not belong to any family, it
was useful to comprehend the different phases in the experimental process.
Preliminary findings were obtained.

16- L. Reynoso, M. Genero and M. Piattini, OCL2: Using OCL in the Formal
De- finition of OCL Expression Measures, 1st Workshop on Quality in Model-
ing QIM 2006 co-located with the ACM/IEEE 9th International Conference
on Model Driven Engineering Languages and Systems (MODELs 2006). 1st.
October, 2006. Genova, Italy. pp: 95-107.

In this paper the measures proposed for OCL expressions were formally de-
fined using OCL upon the OCL metamodel. We explain the strategy we used
and we exemplify how the value of a measure is obtained using abstract syntax
trees for OCL expressions.

9.3.6 Latinoamerican Conferences

17- L. Reynoso, M. Genero and Piattini M. Definición de métricas para la Comple-
jidad de Expresiones OCL de Forma Metodológica. Workshop on Computer
Science 2003. WICC 2003. 22-23 May 2003. Tandil, Argentina. pp: 461-465.

This paper presents the initial method we used for the definition of valid mea-
sures. The creation step is carefully explained.

18- L. Reynoso, M. Genero and Piattini M. Métricas para Expresiones OCL Rela-
cionadas con la Técnica Cognitiva de Chunking. XXIX Conferencia Lati-
noamericana de Informática. CLEI 2003. September 29- October 2, 2003.
La Paz, Bolivia.

A set of open-ended measures for OCL expressions are presented in this pa-
per. This document shows the first attempt of defining measures focused on
chunking as an important factor that affects the comprehension.

19- L. Reynoso, M. Genero and M. Piattini. Métricas para Propiedades Estruc-
turales de Expresiones OCL Relacionadas con la Técnica de Chunking. 6-10
October 2003. IX Argentinian Congress on Computer Science. CACIC 2003.
La Plata, Argentina. pp: 1099-1111.

This paper presents a set of open-ended measures for OCL expressions. The
definition is focused on the analysis of the structural properties of OCL ex-

282 CHAPTER 9. CONCLUSIONS

pressions related to chunking cognitive technique.

20- L. Reynoso, M. Genero and Piattini M. An Experiment Family for OCL Ex-
pressions within UML/OCL Model. Argentine Symposium on Software Engi-
neering. ASSE 2004. September 20-22, 2004. Cordoba, Argentina.

The first family of experiments is presented in this paper. However we only
show preliminary analysis of the data. We only include the time that subjects
spent on tasks as the dependent variables for measuring comprehensibility and
modifiability of OCL expressions.

9.4 Future Research Lines

There are many more directions this work could take in the future. Possible topics
for further research that will provide valuable information include:

1. Specify the Measures using Maude: The proposed measures can be de-
fined using Maude formal language [CDE+02], [CDE+00]. Maude [CDE+98]
may offer a reasoning power over the specifications that OCL does not, allow-
ing in this way the chance of identifying interesting transformation to apply
on a model or comparing several specifications for semantic equivalences.

Another important difference between OCL and Maude is related to their
execution capacity, Maude allows executing its specifications. Although there
are tools that allow executing OCL restrictions on models, these have not
reached the same development level as Maude yet [CL07].

Once the measures are defined in Maude, a comparison between both specifi-
cations (Maude and OCL) will be done.

2. Delve into the Psychological Explanation Step: The cognitive complex-
ity of modelers dealing with OCL expressions is an aspect that needs further
studies and analyses. It is important to run a family of qualitative methods
such as thinking aloud [SBS94] experiments or even interviews in order to delve
the way the different coupling categories affect the maintainability of OCL ex-
pressions. Moreover, the inclusion of qualitative methods within quantitative
empirical validation is also possible and should be carefully considered (e.g.
[Sea99]).

3. Use Data Analysis Techniques: The analysis of the families of the exper-
iments may be further analysed using different techniques:

9.4. FUTURE RESEARCH LINES 283

• Analyse Principal Component Analysis: Part of the information
that these proposed measures provide might be redundant, which in sta-
tistical terms is equivalent to saying that measures might be correlated.
This justifies the interest of analyzing the information that each measure
captures to eliminate such redundancy. We should better understand the
underlying and orthogonal dimensions captured by the measures, which
in turn will help us to interpret subsequent results. For that purpose,
we should perform a principal component analysis (PCA) [Dun89] on
our coupling measures. Nevertheless, the principal component analysis
should be performed carefully because it is heavily affected by the scal-
ing of the variables and the identity of the original variables is lost, so
interpretation can be more difficult.

• Build Prediction Models: Another goal of a future work is to build
prediction models for understandability and modifiability of OCL expres-
sions. These prediction models can be validated by using experimental
data from the experiments we run or even from data obtained in real
projects. We plan to use Multivariate Regression Models [KKM88] How-
ever, the prediction models obtained can be compared using several tech-
niques such as: rough sets, bayesien nets, genetic algorithms, etc.

• Apply Meta-Analysis: According to research activity in Software En-
gineering, rarely a single experiment or study provides sufficiently defini-
tive answers. However, when several studies address a set of related
research hypotheses, a meta-analysis may combine the results from them.
The meta-analysis makes good use of independent studies with the pur-
pose of integrating the findings. It has been used in different research
areas such as psychology, medicine, etc. So, the analysis of the results
from a group of studies can allow more accurate data analysis [PJ97],
[Mil00], [LEH01].

4. Extend and Refine the Acceptation, Application and Accreditation
Activities: The last three high level activities (activities M3, M4 and M5 of
Figure 2.1) of the method for measures definition were neither extended nor
refined. Due to the fact that more experimentation would be necessary in real
environments and projects, we think that at the same time they are carried
out we would be able to study the aforementioned activities of the method.

5. Study the Maintainability of Expressions in Different UML models:
We should study the proposed measures in the maintainability of UML state-
chart diagrams and component diagrams, which are, after the class diagrams,
important diagrams where OCL expressions are more widely used:

• Within a statechart diagram, OCL expressions can be used to specify
guard, specific target of actions, actual parameter values, change events

284 CHAPTER 9. CONCLUSIONS

and state constraints [WK03]. We believe that OCL facilities within
statechart diagrams can change substantially the comprehensibility and
expressiveness of these models.

• Regarding component diagrams OCL expressions are used to specify the
pre and post conditions of component interfaces [WK03]. Having a clear
specification of the component interface is the first step in comprehending
and correctly using a component.

6. Study the Maintainability of Different Types of OCL Expressions:
We should study the maintainability of different types of OCL expressions
(for instance, pre- and post-condition, query expressions, etc.) in UML/OCL
models. We believe that results obtained for invariant expression of the Ph.D.
thesis are sufficiently generalizable so that they can also be used on other kinds
of expressions. However, empirical validation of their application is needed.

7. Define Cohesion Measures: We plan to assess the influence of cohesion
on the maintainability of OCL expressions, through the definition of cohesion
measures. Although many empirical studies found no relationship between
cohesion and several external quality attributes (for instance in fault prone-
ness [BWDP00], [BWL01], and maintainability [DJ03]) other authors argue
that coupling and cohesion are dimensions that should be jointly analysed
[DS05]. Nevertheless, many time authors could not apply cohesion measures
to the analysed systems in their empirical validation because they did not have
enough information about the method implementation at early stages of soft-
ware development. However, at design level stage using UML/OCL models,
we have declarative semantic descriptions about the contract of interfaces and
many cohesion measures could be computed in order to reason about their
impact on external quality attributes.

In order to compute cohesion measures, most of the coupling measures defined
in this thesis could be redefined in such a way they could obtain the set of im-
ported features of an OCL expression. For instance instead of NAN measures
(number of navigation referred through navigation), we should use a function
to obtain the set of attributes referred through navigations (not the quantity).
Once the redefinition of many measures was performed, the intersection of sets
of imported features of two OCL expressions could be used to obtain cohesion
measures.

8. Scale the Measures up to Class Granularity: We should scale the cou-
pling and cohesion measures up to the granularity of classes. We think this is
an important step in obtaining useful measures for UML/OCL models. Never-
theless it is important to take into account other measures which were defined
at a class-level in order to derive reliable measures.

Bibliography

[Aag98] J. Aagedal. Towards an ODP-Compliant Object Definition Language
with QoS-Support. In IDMS ’98: Proceedings of the 5th International
Workshop on Interactive Distributed Multimedia Systems and Telecom-
munication Services, pages 181�194, London, UK, 1998. Springer-
Verlag.

[ADSJ01] B. Anda, H. Dreiem, D. I. K. Sjoberg, and M. Jorgensen. Estimating
Software Development Effort Based on Use Cases-Experiences from
Industry. In UML ’01: Proceedings of the 4th International Conference
on The Unified Modeling Language, Modeling Languages, Concepts,
and Tools, pages 487�502, London, UK, 2001. Springer-Verlag.

[AHK07] M. Altenholfen, T. Hettel, and S. Kusterer. Ocl support in an industrial
environment. In Proceedings of MoDELS 2006 Workshops. LNCS 4364,
pages 169�178, 2007.

[AK03] C. Atkinson and T. Kuhne. Model Driven Development: A Metamod-
eling Foundation. IEEE Software, 20(5):36�41, 2003.

[Ale01] I. F. Alexander. Capturing use cases with doors. In RE ’01:
5th IEEE International Symposium on Requirements Engineering,
Toronto, Canada, page 264. IEEE Computer Society, 2001.

[APA84] APA. Publication Manual of the American Psychological Association.
American Psychological Association, Washington, DC, USA, third edi-
tion, 1984.

[Ari02] E. Arisholm. Dynamic Coupling Measures for Object-Oriented Soft-
ware. In METRICS ’02: Proceedings of the 8th International Sympo-
sium on Software Metrics, page 33, Washington, DC, USA, 2002. IEEE
Computer Society.

[AWÁF02] J. Araújo, J. Whittle, J. A. Toval Álvarez, and R. B. France. Integration
and transformation of uml models. In ECOOP Workshops, volume
2548 of LNCS, pages 184�191. Springer, 2002.

286 BIBLIOGRAPHY

[Baa00] T. Baar. Experiences with the UML/OCL-approach in practice and
strategies to overcome deficiencies. In Net.ObjectDays-Forum, editor,
Proc. Net.ObjectDays2000, Erfurt, Germany, pages 192�201, 2000.

[Bab90] E. Babbie. Survey Research Methods. (2nd Ed.) Belmont, CA:
Wadsworth Publishing Company, 1990.

[BAC+99] L. C. Briand, E. Arisholm, S. Counsell, F. Houdek, and P. Thévenod-
Fosse. Empirical Studies of Object-Oriented Artifacts, Methods, and
Processes: State of the Art and Future Directions. Empirical Software
Engineering, 4(4):387�404, 1999.

[Bar02] A. L. Baroni. Formal Definition of Object-Oriented Design Metrics.
Master of Science in Computer Science Thesis, Vrije Universiteit Brus-
sel, Belgium, 2002.

[BBD01] L. C. Briand, C. Bunse, and J. W. Daly. A Controlled Exper-
iment for Evaluating Quality Guidelines on the Maintainability of
Object-Oriented Designs. IEEE Transaction on Software Engineering,
27(6):513�530, 2001.

[BBDV03] J. Bezivin, E. Breton, G. Dupe, and P. Valduriez. The ATL
Transformation-based Model Management Framework. Technical Re-
port 03.08, IRIN Universite de Nantes: Nantes, 2003.

[BBeA02] A. L. Baroni, S. Braz, and F. Brito e Abreu. Using OCL to
Formalize Object-Oriented Design Metrics Definitions. In Proc. of
QUAOOSE’2002, Malaga, Spain, 2002.

[BBK78] B. W. Boehm, J. R. Brown, and J. R. Kaspar. Characteristic of Soft-
ware Quality. TRW Series of Software Technology, Amsterdam, North
Holland, 1978.

[BBM96] V. R. Basili, L. C. Briand, and W. L. Melo. Validation of Object-
Oriented Design Metrics as Quality Indicators. IEEE Transaction on
Software Engineering, 22(10):751�761, 1996.

[BBM98] V. R. Basili, L. C. Briand, and S. Morasca. Defining and Validating
Measures for Object-Based High-Level Design. Technical Report IESE-
Report No. 018.98/E, Fraunhofer Institute for Experimental Software
Engineering, 1998.

[BD02] J. Bansiya and C. G. Davis. A Hierarchical Model for Object-Oriented
Design Quality Assessment. IEEE Transaction on Software Engineer-
ing, 28(1):4�17, 2002.

BIBLIOGRAPHY 287

[BDG04] B. Bernandez, A. Duran, and M. Genero. Empirical Evaluation, Re-
view of a Metric-Based Approach for Use Case Verification. Journal
of Research, Practice in Information Technology, Special Collection on
Requirements Engineering, 36(4):247�258, 2004.

[BDM97] L. C. Briand, P. Devanbu, andW. Melo. An Investigation into Coupling
Measures for C++. In ICSE ’97: Proceedings of the 19th international
conference on Software engineering, pages 412�421, New York, NY,
USA, 1997. ACM Press.

[BDR97] L. C. Briand, C. Differding, and D. Rombach. Practical Guidelines for
Measurement-Based Process Improvement. Software Process Improve-
ment and Practice Journal, 2(4):253�280, 1997.

[BDV04] B. Du Bois, S. Demeyer, and J. Verelst. Refactoring Improving Cou-
pling and Cohesion of Existing Code. In WCRE ’04: Proceedings of the
11th Working Conference on Reverse Engineering (WCRE’04), pages
144�151, Washington, DC, USA, 2004. IEEE Computer Society.

[BDW98a] L. C. Briand, J. W. Daly, and J. Wüst. A Unified Framework for Co-
hesion Measurement in Object-Oriented Systems. Empirical Software
Engineering, 3(1):65�117, 1998.

[BDW98b] J. M. Burkhardt, F. Detienne, and S. Wiedenbeck. The Effect of
Object-Oriented Programming Expertise in Several Dimensions of
Comprehension Strategies. In IWPC ’98: Proceedings of the 6th Inter-
national Workshop on Program Comprehension, pages 82�89, Wash-
ington, DC, USA, 1998. IEEE Computer Society.

[BDW99] L. C. Briand, J. W. Daly, and J. Wüst. A Unified Framework for Cou-
pling Measurement in Object-Oriented Systems. IEEE Transactions
on Software Engineering, 25(1):91�121, 1999.

[BDW02] J. M. Burkhardt, F. Detienne, and S. Wiedenbeck. Object-Oriented
Program Comprehension: Effect of Expertise, Task and Phase. Em-
pirical Software Engineering, 7(2):115�156, 2002.

[BeA02] A. L. Baroni and F. Brito e Abreu. Formalizing Object-Oriented Design
Metrics upon the UML Meta-Model. In Proceedings of the Brazilian
Symposium on Software Engineering, Gramado, Brazil, 2002.

[BeA03a] A. L. Baroni and F. Brito e Abreu. A Formal Library for Aiding
Metrics Extraction. In International Workshop on Object-Oriented Re-
Engineering at ECOOP’2003. Darmstadt, Germany, 2003.

288 BIBLIOGRAPHY

[BeA03b] A. L. Baroni and F. Brito e Abreu. An OCL-Based Formalization
of the MOOSE Metric Suite. In QUAOOSE’ 03: Proceedings of the
7th International ECOOP Workshop on Quantitative Approaches in
Object-Oriented Software Engineering, Darmstadt, Germany, 2003.

[BEDL99] J. Bansiya, L. Etzkorn, C. Davis, and W. Li. A Class Cohesion Metric
For Object-Oriented Designs. The Journal of Object-Oriented Pro-
gramming, 11(8):47�52, 1999.

[BEGR00] S. Benlardi, K. El Eman, N. Goel, and S. Rai. Thresholds for Ob-
ject Oriented Measures. In ISSRE ’00: Proceedings of the 11th Inter-
national Symposium on Software Reliability Engineering (ISSRE’00),
pages 24�39, Washington, DC, USA, 2000. IEEE Computer Society.

[BEM95] L. C. Briand, K. El Emam, and S. Morasca. Theoretical and Empirical
Validation of Software Product Measures. Technical Report ISERN-
95-03, ISERN: International Software Engineering Research Network,
1995.

[BH91] D. Bergantz and J. Hassell. Information Relationships in PROLOG
Programs: How do Programmers Comprehend Functionality? Inter-
national Journal of Man-Machine Studies, 35(3):313�328, 1991.

[BKW04] H. Baumeister, A. Knapp, and M. Wirsing. Property-Driven Devel-
opment. In SEFM ’04: Proceedings of the Second International Con-
ference on Software Engineering and Formal Methods, pages 96�102,
Washington, DC, USA, 2004. IEEE Computer Society.

[BLM03] L. C. Briand, Y. Labiche, and Y. Miao. Towards the Reverse Engi-
neering of UML Sequence Diagrams. In WCRE ’03: Proceedings of
the 10th Working Conference on Reverse Engineering, pages 57�66,
Washington, DC, USA, 2003. IEEE Computer Society.

[BLYP04] L. C. Briand, Y. Labiche, H. D. Yan, and M. Di Penta. A Controlled
Experiment on the Impact of the Object Constraint Language in UML-
based Maintenance. Proceeding of the 20th IEEE Int. Conference on
Software Maintenance, pages 380�389, 2004.

[BMB96] L. C. Briand, S. Morasca, and V. R. Basili. Property-Based Software
Engineering Measurement. IEEE Transaction on Software Engeneer-
ing, 22(1):68�86, 1996.

[BMB97] L. C. Briand, S. Morasca, and V. R. Basili. Response to: Comments
on ”Property-Based Software Engineering Measurement: Refining the
Additivity Properties”. IEEE Transactions on Software Engineering,
23(3):196�197, 1997.

BIBLIOGRAPHY 289

[BMB99] L. C. Briand, S. Morasca, and V. R. Basili. Defining and Validating
Measures for Object-Based High-Level Design. IEEE Transactions on
Software Engineering, 25(5):722�743, 1999.

[BMB02] L. C. Briand, S. Morasca, and V. R. Basili. An Operational Process
for Goal-Driven Definition of Measures. IEEE Transaction on Software
Engineering, 28(12):1106�1125, 2002.

[BP02] G. A. Bunde and A. Pedersen. Defect Reduction by Improving Inspec-
tion of UML Diagrams in the GPRS Project. Master Thesis. Siv.ing.
Degree. Information and Communication Technology, 2002.

[BR98] V. R. Basili and H. D. Rombach. The TAME Project: Towards
Improvement-Oriented Software Environments. IEEE Transaction on
Software Engineering, 14(6):758�773, 1998.

[Bro75] D. E. Broadbent. The Magical Number Seven after Fifteen Years. In
A. Kennedy and A. Wilkes (eds.), Studies in Long-Term Memory, New
York: Wiley, pages 3�18, 1975.

[Bro83] R. Brooks. Towards a Theory of Comprehension of Computer Pro-
grams. International Journal of Man Machine Studies, 18(6):543�554,
1983.

[BS98] A. B. Binkley and S. R. Schach. Validation of the Coupling Depen-
dency Metric as a Predictor of Run-Time Failures and Maintenance
Measures. In ICSE ’98: Proceedings of the 20th International Confer-
ence on Software Engineering, pages 452�455, Washington, DC, USA,
1998. IEEE Computer Society.

[BSH86] V. R. Basili, R. W. Selby, and D. H. Hutchens. Experimentation in
Software Engineering. IEEE Transactions on Software Engineering
(TSE), 12(7):733�743, 1986.

[BSL99] V. R. Basili, F. Shull, and F. Lanubile. Building Knowledge through
Families of Experiments. IEEE Transactions on Software Engineering
(TSE), 25(4):456�473, 1999.

[BVT03] R. K. Bandi, V. K. Vaishnavi, and D. E. Turk. Predicting Maintenance
Performance Using Object-Oriented Design Complexity Metrics. IEEE
Transaction on Software Engineering, 29(1):77�87, 2003.

[BW84] V. R. Basili and D. M. Weiss. A Methodology for Collecting Valid
Software Engineering Data. IEEE Transaction on Software Engineering
(TSE), 10(6):728�738, 1984.

290 BIBLIOGRAPHY

[BW01] L. C. Briand and J. Wüst. Modeling Development Effort in Object-
Oriented Systems Using Design Properties. IEEE Transactions on
Software Engineering, 27(11):963�986, 2001.

[BWDP00] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter. Exploring the Re-
lationships between Design Measures and Software Quality in Object-
Oriented Systems. Journal of Systems and Software, 51(0):245�273,
2000.

[BWIL99] L. C. Briand, J. Wüst, S. Ikonomovski, and H. Lounis. A Comprehen-
sive Investigation of Quality Factors in Object-Oriented Designs. In
Editor, editor, IEEE ICSE ’99: International Conference on Software
Engineering. Publisher, 1999.

[BWL99] L. C. Briand, J. Wüst, and H. Lounis. Using Coupling Measurement for
Impact Analysis in Object-Oriented Systems. In ICSM ’99: Proceedings
of the IEEE International Conference on Software Maintenance, pages
475�482, Washington, DC, USA, 1999. IEEE Computer Society.

[BWL01] L. C. Briand, J. Wüst, and H. Lounis. Replicated Case Studies for
Investigating Quality Factors in Object-Oriented Designs. Empirical
Software Engineering, 6(1):11�58, 2001.

[BWSL99] L. C. Briand, J. Wüst, V. Ikonomovski S, and H. Lounis. Investigating
Quality Factors in Object-Oriented Designs: an Industrial Case Study.
In ICSE ’99: Proceedings of the 21st International Conference on Soft-
ware Engineering, pages 345�354, Los Alamitos, CA, USA, 1999. IEEE
Computer Society Press.

[Car93] D. N. Card. What Makes for Effective Measurement? IEEE Software,
10(6):94�95, 1993.

[Car98] M. Cartwright. An Empirical View of Inheritance. Information and
Software Technology, 40(4):795�799, 1998.

[CBC05] D. Chiorean, M. Bortes, and D. Corutiu. Proposals for a Widespread
Use of OCL. In Thomas Baar, editor, MoDELS ’05: Proceedings of
the Conference Workshop on Tool Support for OCL and Related For-
malisms - Needs and Trends, Montego Bay, Jamaica, October 4, 2005,
Technical Report LGL-REPORT-2005-001, pages 68�82. EPFL, 2005.

[CBCS04] D. Chiorean, M. Bortes, D. Corutiu, and R. Sparleanu. UML/OCL
Tools - Objectives, Requirements, State of the Art - the OCLE Expe-
rience. In NWPER ’04: Proceedings of the 11th Nordic Workshop on
Programming and Software Development Tools and Techniques. Turku,
Finland, August 17-20,, pages 163�180, 2004.

BIBLIOGRAPHY 291

[CC79] T. D. Cook and D. T. Campbell. Quasi-Experimentation: Design and
Analysis Issues for Field Settings. Houghton Mifflin Company, 1979.

[CCBC04] D. Chiorean, D. Corutiu, M. Bortes, and I. Chiorean. Good Prac-
tices for Creating Correct, Clear and Efficient OCL Specifications. In
NWUML ’04: Proceedings of the 2nd Nordic Workshop on the Unified
Modeling Language, pages 127�142. TUCS General Publication, 2004.

[CD99] G. Cantone and P. Donzelli. Goal Oriented Software Measurement
Models. In ESCOM-ENCRESS ’98: European Software Control and
Metrics Conference, Herstmonceux Castle, East Sussex, UK, 1999.

[CD00] G. Cantone and P. Donzelli. Production and Maintenance of Software
Measurement Models. Journal of Software Engineering and Knowledge
Engineering, 5:605�626, 2000.

[CDE+98] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and J. F. Quesada. Maude as a Metalanguage. In WRLA ’98: 2nd
International Workshop on Rewriting Logic and its Applications. Elec-
tronic Notes in Theoretical Computer Science, volume 15. Elsevier,
1998.

[CDE+00] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and J. F. Quesada. Towards Maude 2.0. In Electronic Notes in Theo-
retical Computer Science, volume 36, 2000.

[CDE+02] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and J. F. Quesada. Maude: Specification and Programming in Rewrit-
ing Logic. In Electronic Notes in Theoretical Computer Science, volume
285, pages 187�243, 2002.

[CDK98] S. R. Chidamber, D. P. Darcy, and C. F. Kemerer. Managerial Use of
Metrics for Object-Oriented Software: An Exploratory Analysis. IEEE
Transactions on Software Engineering, 24(8):629�639, 1998.

[CES01] D. N. Card, K. El Emam, and B. Scalzo. Measurement of Object
Oriented Software Development Projects. Software Development Con-
sortium, 2001.

[Chi97] M. T. H. Chi. Quantifying Qualitative Analyses of Verbal Data: a
Practical Guide. Journal of the Learning Sciences, 6(3):271�315, 1997.

[CHSJ94] S. N. Cant, B. Henderson-Sellers, and D. R. Jeffery. Application of
Cognitive Complexity Metrics to Object-Oriented Programs. Journal
of Object-Oriented Programming (JOOP), 7(4):52�63, 1994.

292 BIBLIOGRAPHY

[CJHS92] S. N. Cant, D. R. Jeffery, and B. Henderson-Seller. A Conceptual
Model of Cognitive Complexity of Elements of the Programming Pro-
cess. Information and Software Technology, 37(7):351�362, 1992.

[CK91] S. R. Chidamber and C. F. Kemerer. Towards a Metrics Suite for
Object Oriented Design. In OOPSLA ’91: Conference proceedings
on Object-oriented programming systems, languages, and applications,
pages 197�211, New York, NY, USA, 1991. ACM Press.

[CK94] S. R. Chidamber and C. F. Kemerer. A Metrics Suite for Object Ori-
ented Design. IEEE Transactions on Software Engineering, 20(6):476�
493, 1994.

[CKM+02] S. Cook, A. Kleepe, R. Mitchell, B. Rumpe, J. Warmer, and A. Wills.
The Amsterdam Manifesto on OCL. In Object Modeling with the OCL,
The Rationale behind the Object Constraint Language, pages 115�149,
London, UK, 2002. Springer-Verlag.

[CL07] J. A. Cruz-Lemus. A Measurement-based Approach for Assessing UML
Statechart. PhD thesis, PhD Thesis. Universidad de Castilla La Man-
cha, 2007.

[CLGO+04] J. A. Cruz-Lemus, M. Genero, J. A. Olivas, F. P. Romero, and M. Pi-
attini. Predicting UML Statechart Diagrams Understandability Using
Fuzzy Logic-Based Techniques. Proceedings of the Sixteenth Interna-
tional Conference on Software Engineering & Knowledge Engineering
(SEKE’2004), Banff, Alberta, Canada, June 20-24, 2004, pages 238�
245, 2004.

[CLGO+05] J. A. Cruz-Lemus, M. Genero, J. A. Olivas, F. P. Romero, and M. Piat-
tini. Evaluating the Effect of Composite States on the Understandabil-
ity of UML States on Understandability of UML Statechard Diagrams.
In MODELS ’05: Model Driven Engineering Languages and Systems,
8th International Conference, pages 113�125, 2005.

[CLGP05] J. A. Cruz-Lemus, M. Genero, and M. Piattini. Metrics for UML Stat-
echart Diagrams. In Metrics for Software Conceptual Models. Genero,
Piattini and Calero (eds.). Imperial College Press, UK., 2005.

[CLGPM06] J. A. Cruz-Lemus, M. Genero, M. Piattini, and S. Morasca. Improving
the Experimentation for Evaluating the Effect of Composite States on
the Understandability of UML Statechart Diagrams. In ISESE ’06:
Proceedings of the 2006 ACM/IEEE International Symposium on In-
ternational Symposium on Empirical Software Engineering, pages 9�11,
New York, NY, USA, 2006. ACM Press.

BIBLIOGRAPHY 293

[CLGPT05] J. A. Cruz-Lemus, M. Genero, M. Piattini, and J. A. Toval. An Em-
pirical Study of the Nesting Level of Composite States Within UML
Statechar Diagrams. In BP-UML ’05: 1st International Workshop on
Best Practices of UML, ER (Workshops), pages 12�22. Springer, 2005.

[CMF04] V. M. Chieu, E. Milgrom, and M. Frenay. Constructivist Learning: Op-
erational Criteria for Cognitive Flexibility. In ICALT ’04: Proceedings
of the IEEE International Conference on Advanced Learning Technolo-
gies (ICALT’04), pages 221�225, Washington, DC, USA, 2004. IEEE
Computer Society.

[CMSD04] E. Cariou, R. Marvie, L. Seinturier, and L. Duchien. OCL for the Spec-
ification of Model Transformation Contracts. In Octavian Patrascoiu,
editor, UML ’04: OCL and Model Driven Engineering Workshop of
the Seventh International Conference on UML Modeling Languages and
Applications Conference, Lisbon, Portugal, pages 69�83. University of
Kent, 2004.

[CPG01] C. Calero, M. Piattini, and M. Genero. Method for Obtaining Correct
Metrics. In ICEIS ’01: Proceedings of the 3rd International Confer-
ence on Enterprise and Information Systems, volume 2, pages 779�784,
2001.

[CS63] D. T. Campbell and J. Stanley. Experimental and Quasi-Experimental
Designs for Research on Teaching. In Handbook of research on teaching,
Rand McNally, Chicago, pages 171�246. Houghton Mifflin Co, 1963.

[CS02] M. Carbone and G. Santucci. Fast and Serious: a UML Based Metric
for Effort Estimation. In QAOOSE ’02: Proceedings of the 6th In-
ternational ECOOP Workshop on Quantitative Approaches in Object-
Oriented Software Engineering, Malaga, Spain, pages 35�44, 2002.

[CSB02] M. Ciolkowski, F. Shull, and S. Biffl. A Family of Experiments to Inves-
tigate the Influence of Context on the Effect of Inspection Techniques.
In EASE ’02: Proceedings of the 6th International Conference on Em-
pirical Assesment in Software Engineering, Keele, UK, pages 48�60,
2002.

[CW99a] A. L. Correa and C. M. L. Werner. Applying Refactoring Techniques
to UML/OCL Models. In T. Baar et al., editor, UML’04: The Unified
Modeling Language, volume 3273 of Lecture Notes in Computer Science,
pages 173�187. Springer, 1999.

294 BIBLIOGRAPHY

[CW99b] C. L. Corritore and S. Wiedenbeck. Mental Representations of Ex-
pert Procedural and Object-Oriented Programmers in a Software Main-
tenance Task. International Journal of Human-Computer Studies,
50(1):61�83, 1999.

[CW00] C. L. Corritore and S. Wiedenbeck. Direction and Scope of
Comprehension-Related Activities by Procedural and Object-Oriented
Programmers: An Empirical Study. In IWPC ’00: Proceedings of
the 8th International Workshop on Program Comprehension, page 139,
Washington, DC, USA, 2000. IEEE Computer Society.

[CW04] A. L. Correa and C. M. L. Werner. Precise Specification and Validation
of Transactional Business Software. In RE ’04: Proceedings of the Re-
quirements Engineering Conference, 12th IEEE International (RE’04),
pages 16�25, Washington, DC, USA, 2004. IEEE Computer Society.

[CWD00] M. Casanova, T. Wallet, and M. D’Hondt. Adaptations to OCL for
Ensuring Quality of Geographic Data (Poster Session). OOPSLA ’00:
Addendum to the 2000 proceedings of the conference on Object-oriented
programming, systems, languages, and applications (Addendum), pages
69�70, 2000.

[Dav95] J. S. Davis. A Guessing Measure of Program Comprehension. Inter-
national Journal of Human-Computer Studies, 42(3):245�263, 1995.

[DBM+96] J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood. An Empir-
ical Study Evaluating Depth of Inheritance on the Maintainability of
Object-Oriented Software. Empirical Software Engineering, 1(2):109�
132, 1996.

[Der95] K. Derr. Applying OMT: A Practical Step-by-Step Guide to Using the
Object Modeling Technique. SIGS Publications, Inc., New York, NY,
USA, 1995.

[DJ03] M. Dagpinar and J. H. Jahnke. Predicting Maintainability with Object-
Oriented Metrics - An Empirical Comparison. In WCRE ’03: Pro-
ceedings of the 10th Working Conference on Reverse Engineering, page
155, Washington, DC, USA, 2003. IEEE Computer Society.

[DS05] D. P. Darcy and S. A. Slaughter. The Structural Complexity of Soft-
ware: An Experimental Test. IEEE Transactions on Software Engi-
neering, 31(11):982�995, 2005. Member-Chris F. Kemerer and Member-
James E. Tomayko.

BIBLIOGRAPHY 295

[Dun89] G. Dunteman. Principal Component Analysis. Sage University Paper
07-69, Thousand Oaks, CA, USA, 1989.

[eAC94] F. Brito e Abreu and R. Carapuga. Object-Oriented Software En-
gineering: Measuring and Controlling the Development Process. In
ICSQ ’94: Proceedings of the 4th International Conference on Software
Quality, Mc Lean, VA, USA, pages 3�5, 1994.

[eAEG96] F. Brito e Abreu, R. Esteves, and M. Goulao. The Design of Eiffel Pro-
grams: Quantitative Evaluation Using the MOOD Metrics. In TOOLS
USA ’96: Proceedings of the Technology of Object Oriented Languages
and Systems, Santa Barbara, California, USA, 1996.

[eAGE95] F. Brito e Abreu, M. Goulao, and R. Esteves. Towards the Design
Quality Evaluation of Object-Oriented Software System. In ICSQ ’95:
Proceedings of the 5th International Conference on Software Quality,
Austin, Texas, USA, 1995.

[eAM96] F. Brito e Abreu and W. Melo. Evaluating the Impact of Object-
Oriented Design on Software Quality. InMETRICS ’96: Proceedings of
the 3rd International Symposium on Software Metrics, page 90, Wash-
ington, DC, USA, 1996. IEEE Computer Society.

[EBG+02] K. El Emam, S. Benlarbi, N. Goel, W. Melo, H. Lounis, and S. N.
Rai. The Optimal Class Size for Object-Oriented Software. IEEE
Transaction on Software Engineering, 28(5):494�509, 2002.

[EBGR99] K. El Emam, S. Benlarbi, N. Goel, and S. Rai. A Validation of Object-
Oriented Metrics. Technical Report NRC/ERB-1063, National Re-
search Council of Canada, 1999.

[EBGR01] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai. The Confounding
Effect of Class Size on the Validity of Object-Oriented Metrics. IEEE
Transaction on Software Engineering, 27(7):630�650, 2001.

[Ecl00] Eclipse. Eclipse Fundation Inc. Ottawa, Ontario, Canada.
www.eclipse.org, 2000.

[EK95] K. A. Ericsson and W. Kintsch. Long Term Working Memory. Psy-
chological Review 102, pages 211�245, 1995.

[EKS94] J. Eder, G. Kappel, and M. Schrefl. Coupling and Cohesion in object-
oriented systems. Technical report, Technical Report, University of
Klagenfurt, Austria, 1994.

296 BIBLIOGRAPHY

[Ema01] K. El Emam. Object-Oriented Metrics: A Review of Theory and Prac-
tice. Technical Report NRC 44190, National Research Council Canada.
Institute for Information Technology, 2001.

[Ema02] K. El Emam. Object-Oriented Metrics: A Review of Theory and Prac-
tice. Advances in Software Engineering, pages 23�50, 2002.

[EMM01] K. El Emam, W. Melo, and J. C. Machado. The Prediction of Faulty
Classes using Object-Oriented Design Metrics. Journal of Systems and
Software, 56(1):63�75, 2001.

[ES93] K. A. Ericsson and H. Simon. Protocol Analysis: Verbal Reports as
Data. MIT Press, Cambridge, MA, 1993.

[ES98] K. Erdös and H. M. Sneed. Partial Comprehension of Complex Pro-
grams (Enough to Perform Maintenance). In IWPC ’98: Proceedings
of the 6th International Workshop on Program Comprehension, pages
98�107, Washington, DC, USA, 1998. IEEE Computer Society.

[FCTJ01] A. Friis-Christensen, N. Tryfona, and C. S. Jensen. Requirements and
Research Issues in Geographic Data Modeling. GIS ’01: Proceedings
of the 9th ACM international symposium on Advances in geographic
information systems, pages 2�8, 2001.

[Fel00] P. Feldt. Requirements Metrics Based on Use Cases. Master’s Thesis.
PhD thesis, Department of Communication Systems, Lund Institute of
Technology, Lund University, Box 118, S-221 00 Lund, Sweden, 2000.

[Fla02] S. Flake. Real-time Constraints with the OCL. In ISORC ’02: Proceed-
ings of the Fifth IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, pages 425�426, Washington, DC,
USA, 2002. IEEE Computer Society.

[FM02] S. Flake and W. Mueller. Specification of Real-Time Properties for
UML Models. In HICSS ’02: Proceedings of the 35th Annual Hawaii
International Conference on System Sciences (HICSS’02)-Volume 9,
page 277, Washington, DC, USA, 2002. IEEE Computer Society.

[FP98] N. E. Fenton and S. Pfleeger. Software Metrics: A Rigorous and Prac-
tical Approach. PWS Publishing Co., Boston, MA, USA, 1998.

[FS00] M. Fowler and K. Scott. UML Distilled. Second Edition. Addison-
Wesley, 2000.

BIBLIOGRAPHY 297

[GB01] N. Gold and K. Bennett. A Flexible Method for Segmentation in Con-
cept Assignment. In IWPC ’01: Proceedings of the 9th International
Workshop on Program Comprehension, pages 135�144, Washington,
DC, USA, 2001. IEEE Computer Society.

[GEMM00] D. Glasberg, K. El Emam, W. Melo, and N. Madhavji. Validat-
ing Object-Oriented Design Metrics on a Commercial Java Applica-
tion. Technical Report NRC/ERB-1080, National Research Council of
Canada, 2000.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley Long-
man Publishing Co., Inc., Boston, MA, 1995.

[GJG04] P. Van Gorp, D. Janssens, and T. Gardner. Write Once, Deploy
N: A Performance Oriented MDA Case Study. In EDOC ’04: Pro-
ceedings of the Enterprise Distributed Object Computing Conference,
Eighth IEEE International (EDOC’04), pages 123�134, Washington,
DC, USA, 2004. IEEE Computer Society.

[GL05] M. Giese and D. Larsson. Simplifying Transformation of OCL Con-
straints. In L. Briand and C. Williams, editors, MoDELS ’05: Proceed-
ings of the 8th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, Montego Bay, Jamaica, October
4, 2005, volume 3713 of LNCS, pages 309�323. EPFL, 2005.

[GO05] R. Gronmo and J. Oldevik. An Empirical Study of the UML Model
Transformation Tool (UMT). In The First International Conference on
Interoperability of Enterprise Software and Applications (INTEROP-
ESA), Geneva, Switzerland, 2005.

[Gop91] R. Gopal. Dynamic Program Slicing Based on Dependence Relations.
In ICSM ’91: Proceedings of the Conference on Software Maintenance,
Sorrento, Italy, pages 191�200, 1991.

[GPC00] M. Genero, M. Piattini, and C. Calero. Early Measures for UML
Class Diagrams. L’Objet: Software, Databases, Networks, 6(4):495�
515, 2000.

[GPE05] M. Genero, M. Piattini, and M. Calero (Eds.). Metrics For Software
Conceptual Models. Imperial College Press, UK, 2005.

[Ham99] A. Hamie. Enhancing the Object Constraint Language for More Ex-
pressive Specifications. In APSEC ’99: Proceedings of the Sixth Asia
Pacific Software Engineering Conference, pages 376�383, Washington,
DC, USA, 1999. IEEE Computer Society.

298 BIBLIOGRAPHY

[Ham04] A. Hamie. Translating the Object Constraint Language into the Java
Modelling Language. In SAC ’04: Proceedings of the 2004 ACM sym-
posium on Applied computing, pages 1531�1535, New York, NY, USA,
2004. ACM Press.

[Hay05] A. F. Hayes. Statistical Methods for Communication Science. Lawrence
Erlbaum Assoc Inc, 2005.

[HCN98a] R. Harrison, S. Counsell, and R. Nithi. Coupling Metrics for Object-
Oriented Design. In METRICS ’98: Proceedings of the 5th Interna-
tional Symposium on Software Metrics, pages 150�156, Washington,
DC, USA, 1998. IEEE Computer Society.

[HCN98b] R. Harrison, S. J. Counsell, and R. V. Nithi. An Evaluation of the
MOOD Set of Object-Oriented Software Metrics. IEEE Transaction
on Software Engineering, 24(6):491�496, 1998.

[HCN00] R. Harrison, S. Counsell, and R. Nithi. Experimental Assessment of
the Effect of Inheritance on the Maintainability of Object-Oriented
Systems. Journal of Systems and Software, 52(2-3):173�179, 2000.

[Hen02] J. B. Van Der Henstl. Mental Model Theory Versus the Inference Rule
Approach in Relational Reasoning. Thinking and Reasoning, 8:193�
205, 2002.

[HHC04] B. C. Hungerford, A. R. Hevner, and R. W. Collins. Reviewing Soft-
ware Diagrams: A Cognitive Study. IEEE Transaction on Software
Engineering, 30(2):82�96, 2004.

[HHW04] B. Hofreiter, C. Huemer, and W. Winiwarter. OCL-Constraints for
UMM Business Collaborations. In EC-Web ’04: Proceedings of the 5th
International Conference on Electronic Commerce and Web Technolo-
gies, Zaragoza, Spain, volume 3182 of LNCS, pages 174�185, 2004.

[HK99] J. Hahn and J. Kim. Why are Some Representations (Sometimes)
More Effective? In Proceeding of the 20th international conference
on Information Systems, pages 245�259. Association for Information
Systems, 1999.

[HL81] E. L. Hutchins and J. A. Levin. Point of View in Problem Solving.
Technical Report CHIP TR-105, California University at San Dingo,
1981.

BIBLIOGRAPHY 299

[HM95] M. Hitz and B. Montazeri. Measuring Coupling and Cohesion in
Object-Oriented Systems. In ISACC ’95: Proceedings of the 3rd In-
ternational Symposium on Applied Corporate Computing, Monterrey,
Mexico, 1995.

[HP03] J. Huges and S. Parkes. Trends in the Use of Verbal Protocol Analysis
in Software Engineering Research. Behaviour and Information Tech-
nology, BIT, 22(2):127�140, 2003.

[HS96] B. Henderson-Sellers. Object-Oriented Metrics: Measures of Complex-
ity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[HSZKP02] B. Henderson-Sellers, D. Zowghi, T. Klemola, and S. Parasuram. Sizing
Use Cases: How to Create a Standard Metrical Approach. In OOIS ’02:
Proceedings of the 8th International Conference on Object-Oriented. In-
formation Systems, pages 409�421, London, UK, 2002. Springer-Verlag.

[HWT05] M. Host, C. Wohlin, and T. Thelin. Experimental Context Classifica-
tion: Incentives and Experience of Subjects. In ICSE ’05: Proceedings
of the 27th International Conference on Software Engineering, pages
470�478, New York, NY, USA, 2005. ACM Press.

[HZ04] H. Hussmann and S. Zschaler. The Object Constraint Language for
UML 2.0 Overview and ASsessment. UPGRADE: Digital Journal of
CEPIS (Council of European Professional Informatics Societies, V:25�
28, 2004.

[IKB03] P. In, S. Kim, and M. Barry. UML-Based Object-Oriented Met-
rics for Architecture Complexity Analysis. In GSAW ’03: Proceed-
ings of Ground System Architectures Workshop. El Segundo, CA, The
Aerospace Corporation, 2003.

[ISO01] ISO. IEC 9126-1 Information Technology - Software Product Quality
- Part 1: Quality Model. ISO, 2001.

[JA97] J. P. Jacquet and A. Abran. From Software Metrics to Software Mea-
surement Methods:. In ISESS ’97: Proceedings of the 3rd International
Software Engineering Standards Symposium (ISESS ’97), pages 128�
135, Washington, DC, USA, 1997. IEEE Computer Society.

[JCF03] S. R. Judson, D. L. Carver, and R. B. France. A Metamodeling Ap-
proach to Model Transformation. In OOPSLA ’03: Companion of the
18th annual ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, pages 326�327, New York,
NY, USA, 2003. ACM Press.

300 BIBLIOGRAPHY

[JCJO92] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-
Oriented Software Engineering: A Use Case Driven Approach. Addison
Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1992.

[JM01] N. Juristo and A. Moreno. Basics of Software Engineering Experimen-
tation. Kluwer Academic Publishers, 2001.

[JP05] A. Jedlitschka and D. Pfahl. Reporting Guidelines for Controlled
Experiments in Software Engineering. In ISESE ’05: International
Symposium on Empirical Software Engineering (ISESE 2005), 17-18
November 2005, Noosa Heads, Australia, pages 95�104, 2005.

[KAKB+06] B. Kitchenham, H. Al-Khilidar, M. Ali Babar, M. Berry, K. Cox, J. Ke-
ung, F. Kurniawati, M. Staples, H. Zhang, and L. Zhu. Evaluating
Guidelines for Empirical Software Engineering Studies. In ISESE ’06:
Proceedings of the 2006 ACM/IEEE International Symposium on Inter-
national Symposium on Empirical Software Engineering, pages 38�47,
New York, NY, USA, 2006. ACM Press.

[Kan04] D. Kang. A Complexity Measure for Ontology Based on UML. In
FTDCS ’04: Proceedings of the 10th IEEE International Workshop on
Future Trends of Distributed Computing Systems (FTDCS’04), pages
222�228, Washington, DC, USA, 2004. IEEE Computer Society.

[Kar93] G. Karner. Metrics for objectory. Master Thesis, Linköping University,
Linköping, Sweden, LiTH-IDA-Ex-9344:21, 1993.

[KB02] H. Kim and C. Boldyreff. Developing Software Metrics Applicable to
UML Models. In QAOOSE ’02: 6th International Workshop on Quan-
titative Approaches in Object-Oriented Software Engineering. Málaga,
Spain, pages 67�76, 2002.

[KDST06] D. H. Krantz, D. R. Duncan, P. Suppes, and A. Tversky. Foundations
of Measurement Volume II: Geometrical, Threshold, and Probabilistic
Representations (Foundations of Measurement). Dover Publications,
2006.

[Kim99] H. Kim. Representing and Reasoning about Quality using Enterprise
Models. PhD thesis, Dept. Mechanical and Industrial Engineering, Uni-
versity of Toronto, Canada, 1999.

[KKM88] D. G. Kleinbaum, L. L. Kupper, and K. E. Muller. Applied Regres-
sion Analysis and other Multivariable Methods. PWS Publishing Co.,
Boston, MA, USA, 1988.

BIBLIOGRAPHY 301

[Kle00] T. Klemola. A Cognitive Model for Complexity Metrics. In QAOOSE
’00: Workshop on Quantitative Approaches in Object-Oriented Soft-
ware Engineering (ECOOP ’00). Cannes, France. Springer-Verlag,
2000.

[KLST06] D. H. Krantz, D. R. Luce, P. Suppes, and A. Tversky. Foundations
of Measurement Volume I: Additive and Polynomial Representations
(Foundations of Measurement). Dover Publications, 2006.

[KM02] C. Knight and M. Munro. Program Comprehension Experiences with
GXL; Comprehension for Comprehension. In IWPC ’02: Proceedings
of the 10th International Workshop on Program Comprehension, page
147, Washington, DC, USA, 2002. IEEE Computer Society.

[KPF95] B. Kitchenham, S. L. Pfleeger, and N. Fenton. Towards a Framework
for Software Measurement Validation. IEEE Transaction on Software
Engineering, 21(12):929�944, 1995.

[KR02] T. Klemola and J. Rilling. Modeling Comprehension Processes in Soft-
ware Development. In ICCI ’02: Proceedings of the 1st IEEE Interna-
tional Conference on Cognitive Informatics, pages 329�339, Washing-
ton, DC, USA, 2002. IEEE Computer Society.

[KS97] B. Kitchenham and J. Stell. The Danger of Using Axioms in Software
Metrics. In IEEE Proceedings on Software Engineering, volume 144,
pages 279�285, 1997.

[LC94] A. Lake and C. Cook. Use of Factor Analysis to Develop OOP Soft-
ware Complexity Metrics. Technical report, Oregon State University,
Corvallis, OR, USA, 1994.

[LEH01] O. Laitenberger, K. El Emam, and T. G. Harbich. An Internally Repli-
cated Quasi-Experimental Comparison of Checklist and Perspective-
based Reading of Code Documents. Technical Report IESE-Report,
006.99/E, Fraunhofer IESE, 2001.

[LH93] W. Li and S. Henry. Object-Oriented Metrics that Predict Maintain-
ability. Journal of Systems and Software, 23(2):111�122, 1993.

[Lia04] W. Liang. UML Object Constraint Language in Meta-Modeling. Tech-
nical report, School of Computer Science. McGill University, 2004.

[LK94] M. Lorenz and J. Kidd. Object-Oriented Software Metrics: A Practical
Guide. Prentice-Hall, Inc, Upper Saddle River, NJ, USA, 1994.

302 BIBLIOGRAPHY

[LLWW95] Y. S. Lee, B. S. Liang, S. F. Wu, and F. J. Wang. Measuring the
Coupling and Cohesion of an Object Oriented Program Based on In-
formation Flow. In Proceedings of International Conference Software
Quality, pages 81�90, 1995.

[LPLS87] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway. Mental Models
and Software Maintenance. Journal of Systems and Software, 7(4):341�
355, 1987.

[LR96] C. M. Lott and H. D. Rombach. Repeatable Software Engineering
Experiments for Comparing Defect-Detection Techniques. Empirical
Software Engineering: An International Journal, 1(3):241�277, 1996.

[LS87] J. Larkin and H. Simon. Why a Diagram is (Sometimes) Worth Ten
Thousand Words. Cognitive Science, 11:65�99, 1987.

[Mar98] M. Marchesi. OOA Metrics for the Unified Modeling Language. 2nd
Euromicro Conference on Software Maintenance and Reengineering,
pages 67�73, 1998.

[MB97] S. Morasca and L. C. Briand. Towards a Theoretical Framework for
Measuring Software Attributes. In METRICS ’97: Proceedings of
the 4th International Symposium on Software Metrics, pages 119�126,
Washington, DC, USA, 1997. IEEE Computer Society.

[MB00] M. G. Mendonca and V. R. Basili. Validation of an Approach for
Improving Existing Measurement Frameworks. IEEE Transaction on
Software Engineering, 28(6):484�509, 2000.

[MEJ+03] G. Miller, A. Evans, I. Jacobson, H. Jondell, A. Kennedy, S. Mellor,
and D. Thomas. Model Driven Architecture: How Far Have We Come,
How Far Can We Go? In OOPSLA ’03: Companion of the 18th annual
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 273�274, New York, NY, USA, 2003.
ACM Press.

[MG04] A. Mohan and N. Gold. Programming Style Changes in Evolving
Source Code. In IWPC ’04: Proceedings of the 12th IEEE International
Workshop on Program Comprehension, pages 236�240, Washington,
DC, USA, 2004. IEEE Computer Society.

[MGBB90] A. C. Melton, D. A. Gustafson, J. M. Bieman, and A. L. Baker. A
Mathematical Perspective for Software Measures Research. Software
Engineering Journal, 5(5):246�254, 1990.

BIBLIOGRAPHY 303

[MGP03] D. Miranda, M. Genero, and M. Piattini. Empirical Validation of Met-
rics for UML Statechart Diagrams. In ICEIS ’03: Fifth International
Conference on Enterprise Information Systems, pages 87�95, 2003.

[Mil56] G. A. Miller. The Magical Number Seven, Plus or Minus Two: Some
Limtis on our Capacity for Processing Information. Psycological Re-
view, 63:81�97, 1956.

[Mil00] J. Miller. Applying Meta-analytical Procedures to Software Engineer-
ing Experiments. J. Syst. Softw., 54(1):29�39, 2000.

[MM04] N. MacKinnon and S. Murphy. Designing UML Diagrams for Technical
Documentation: Continuing the Collaborative Approach to Publishing
Class Diagrams. In SIGDOC ’04: Proceedings of the 2nd Annual In-
ternational Conference on Design of Communication, pages 120�127,
New York, NY, USA, 2004. ACM Press.

[MPKS00] S. Muthanna, K. Ponnambalam, K. Kontogiannis, and B. Stacey. A
Maintainability Model for Industrial Software Systems Using Design
Level Metrics. In WCRE ’00: Proceedings of the Seventh Working
Conference on Reverse Engineering, page 248, Washington, DC, USA,
2000. IEEE Computer Society.

[MRRR02] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E. Robbins.
Modeling Software Architectures in the Unified Modeling Language.
Transactions on Software Engineering and Methodology, 11(1):2�57,
2002.

[MRW77] J. A. McCall, P. K. Richards, and G. F. Walters. Factors in Software
Quality, Volume III: Preliminary Handbook on Software Quality for an
Acquisition Manager. Technical Report RADC-TR-77-396, Vol. III.,
Hanscom AFB, MA 01731, 1977.

[MTH04] S. Murphy, S. Tilley, and S. Huang. 4th Workshop on Graphical Doc-
umentation: UML Style Guidelines. In SIGDOC ’04: Proceedings of
the 22nd annual international conference on Design of communication,
pages 118�119, New York, NY, USA, 2004. ACM Press.

[Mut00] D. Muthiayen. Real Time Reactive System Development - A Formal
Approach Based on UML and PVS. PhD thesis, Deparment of Com-
puter Science at Concordia University, Montreal, Canada., 2000.

[MV96] A. V. Mayrhauser and A. M. Vans. Identification of Dynamic Compre-
hension Processes During Large Scale Maintenance. In IEEE Transac-
tion on Software Engineering, volume 22, pages 424�437, Piscataway,
NJ, USA, 1996. IEEE Press.

304 BIBLIOGRAPHY

[MV04] B. A. Malloy and J. M. Voas. Programming with Assertions: a Prospec-
tus. IT Professional, 6(5):53�59, 2004.

[MW01] R. Mosemann and S. Wiedenbeck. Navigation and Comprehension
of Programs by Novice Programmers. In IWPC ’01: Proceedings of
the 9th International Workshop on Program Comprehension, page 79,
Washington, DC, USA, 2001. IEEE Computer Society.

[NF06] C. Nebut and F. Fleurey. Automatic Test Generation: A Use
Case Driven Approach. IEEE Transactions on Software Engineering,
32(3):140�155, 2006.

[Nun03] Isabel Nunes. An OCL Extension for Low-Coupling Preserving Con-
tracts. In Perdita Stevens, Jon Whittle, and Grady Booch, editors,
UML 2003 - The Unified Modeling Language. Model Languages and
Applications. 6th International Conference, San Francisco, CA, USA,
October 2003, Proceedings, volume 2863 of LNCS, pages 310�324.
Springer, 2003.

[Obj00] Klasse Objecten. OCTUPUS: OCL Tool for Precise UML Specification.
http://www.klasse.nl/octopus/index.html, 2000.

[OMG03a] Object Management Group OMG. MDA - The OMG Model Driven
Architecture. OMG, 2003.

[OMG03b] Object Management Group OMG. UML 2.0 OCL Final Adopted Spec-
ification. OMG Document ad/2003-01-07, 2003.

[OMG03c] Object Management Group OMG. UML Specification. OMG Docu-
ment formal/03-03-01, 2003.

[OMG05a] Object Management Group OMG. MOF QVT Final Adopted Specifi-
cation. OMG Document ptc/05-11-01, 2005.

[OMG05b] Object Management Group OMG. UML 2.0 OCL Available Specifica-
tion (FTF Report). OMG Document ptc/2005-06-06, 2005.

[oT01] Software Solutions on Time. A Fresh and Innova-
tive Approach to Systems Development and Software
Project Management. Available in http://www.tassc-
solutions.com/omx/pages/metric˙data.htm#usecase-metrics, 2001.

[Pat04] O. Patrascoiu. YATL: Yet Another Transformation Language. In
MDA-IA: Proceedings of the First European Workshop on Model
Driven Architecture with Emphasis on Industrial Application. Univer-
sity of Twente, Enschede, the Netherlands, pages 83�90, 2004.

BIBLIOGRAPHY 305

[PD97] G. Poels and G. Dedene. Comments on ”Property-Based Software
Engineering Measurement: Refining the Additivity Properties”. IEEE
Transaction on Software Engineering, 23(3):190�195, 1997.

[PD99] G. Poels and G. Dedene. DISTANCE: A Framework for Software
Measure Construction. Technical Report DTEW9937, Dept. Applied
Economics, Katholieke Universiteit Leuven, Belgium, 46 p., 1999.

[PD00] G. Poels and G. Dedene. Distance-based Software Measurement: Nec-
essary and Sufficient Properties for Software Measures. Information
and Software Technology, 42(1):35�46, 2000.

[PD01] G. Poels and G. Dedene. Evaluating the Effect of Inheritance on the
Modifiability of Object-Oriented Business Domain Models. In CSMR
’01: Proceedings of the Fifth European Conference on Software Main-
tenance and Reengineering, pages 20�29, Washington, DC, USA, 2001.
IEEE Computer Society.

[Pen87] N. Pennington. Stimulus Structures and Mental Representations in
Expert Comprehension of Computer Programs. Cognitive Psychology,
19, pages 295�341, 1987.

[PJ97] A. A. Porter and P. M. Johnson. Assessing Software Review Meetings:
Results of a Comparative Analysis of Two Experimental Studies. IEEE
Trans. Softw. Eng., 23(3):129�145, 1997.

[PJCK97] S. L. Pfleeger, R. Jeffery, B. Curtis, and B. Kitchenham. Status Report
on Software Measurement. IEEE Software, 14(2):33�43, 1997.

[Poe99] G. Poels. On the Formal Aspects of the Measurement of Object-
Oriented Software Specifications. PhD thesis, Faculty of Economics
and Business Administration. Katholieke Universiteit Leuven, Belgium,
1999.

[PPV00] D. E. Perry, A. A. Porter, and L. G. Votta. Empirical Studies of
Software Engineering: a Roadmap. In ICSE ’00: Proceedings of the
Conference on The Future of Software Engineering, pages 345�355,
New York, NY, USA, 2000. ACM Press.

[QaMKI04] L. M. Quiroga and M. E. Crosby adn M. K. Iding. Reducing Cog-
nitive Load. In HICSS’04: Proceedings of the 37th Annual Hawaii
International Conference on System Sciences, volume 5, page 50131,
Washington, DC, USA, 2004. IEEE Computer Society.

306 BIBLIOGRAPHY

[QT06] A. Queralt and E. Teniente. Reasoning on UML Class Diagrams with
OCL Constraints. In ER ’06: Proceedings of the 25th International
Conference on Conceptual Modeling. LNCS 4215, pages 497�512, 2006.

[RG98] M. Richters and M. Gogolla. On Formalizing the UML Object Con-
straint Language OCL. In Tok-Wang Ling, Sudha Ram, and Mong Li
Lee, editors, ER ’98: Proc. 17th International Conference on Concep-
tual Modeling, volume 1507 of LNCS, pages 449�464. Springer-Verlag,
1998.

[RGP04a] L. Reynoso, M. Genero, and M. Piattini. Validating Metrics for OCL
Expressions Expressed within UML/OCL Models. In SAM ’2004: Pro-
ceedings of the 1st International Workshop on Software Audits and
Metrics, April 13-14, 2004 - Porto, Portugal, pages 59�68, 2004.

[RGP04b] L. Reynoso, M. Genero, and M. Piattini. Validating Metrics for
OCL Expressions Expressed within UML/OCL Models. In ISESE ’04:
ACM-IEEE International Symposium on Empirical Software Engineer-
ing. 19-20 August 2004 Redondo Beach CA, USA, pages 15�16, 2004.

[RGP04c] L. Reynoso, M. Genero, and M. Piattini. Validating OCL Metrics
through a Family of Experiments. In JISBD ’04: IX Jornadas de
Ingenieria del Software y Base de Datos. 10-12 November 2004, pages
475�482, 2004.

[Ric02] M. Richters. A Precise Approach to Validating UML Models and OCL
Constraints. PhD thesis, Universität Bremen, Logos Verlag, Berlin,
BISS Monographs, No. 14, 2002.

[RK03] J. Rilling and T. Klemola. Identifying Comprehension Bottlenecks
Using Program Slicing and Cognitive Complexity Metrics. In IWPC
’03: Proceedings of the 11th IEEE International Workshop on Program
Comprehension, pages 115�119, Washington, DC, USA, 2003. IEEE
Computer Society.

[RLW04] V. Ramalingam, D. L., and S. Wiedenbeck. Self-efficacy and Mental
Models in Learning to Program. In ITiCSE ’04: Proceedings of the 9th
Annual SIGCSE Conference on Innovation and Technology in Com-
puter Science Education, pages 171�175, New York, NY, USA, 2004.
ACM Press.

[RM00] L. Reynoso and R. Moore. GoF Behavioural Patterns: A Formal Spec-
ification. Technical Report 201, International Institute for Software
Technology, United Nations University, UNU/IIST, P.O.Box 3058,
Macau, 2000.

BIBLIOGRAPHY 307

[Rob79] F. S. Roberts. Measurement Theory with Applications to Decisionmak-
ing. Utility and the Social Sciences. Addison-Wesley, 1979.

[Rob93] C. Robson. Real World Research: A Resource for Social Scientists and
Practioners-Researchers. Blackwell, Oxford, 1993.

[Rou03] B. Roussev. Generating OCL Specifications and Class Diagrams from
Use Cases: A Newtonian Approach. In HICSS ’03: Proceedings of
the 36th Annual Hawaii International Conference on System Sciences
- Track 9, page 321.2, Washington, DC, USA, 2003. IEEE Computer
Society.

[RW02] V. Rajlich and N. Wilde. The Role of Concepts in Program Compre-
hension. In IWPC ’02: Proceedings of the 10th International Workshop
on Program Comprehension, page 271, Washington, DC, USA, 2002.
IEEE Computer Society.

[Sae03] M. Saeki. Embedding Metrics into Information System Development
Methods: An Application of Method Engineering Technique. Lecture
Notes in Computer Science 2681, pages 374�389, 2003.

[SB82] M. Sebrechts and J. Black. Software Psychology: A Rich New Domain
for Applied Psychology. Applied Psycholinguistics, 3:223�232, 1982.

[SB99] R. V. Solingen and E. Berghout. The Goal/Question/Metric Method:
A Practical Guide for Quality Improvement of Software Development.
McGraw-Hill, 1999.

[SB01] R. V. Solingen and E. Berghout. Integrating Goal-Oriented Measure-
ment in Industrial Software Engineering: Industrial Experiences with
and Additions to the Goal/Question/Metric Method (GQM). In MET-
RICS ’01: Proceedings of the 7th International Symposium on Software
Metrics, pages 246�259, Washington, DC, USA, 2001. IEEE Computer
Society.

[SBGE82] E. Soloway, J. Bonar, J. Greenspan, and K. Ehrlich. What Do Novices
Know About Programming? In Directions in Human-Computer In-
teractions. B. Shneiderman and A. Badre, Ablex Publishing Company,
1982.

[SBS94] M. W. V. Someren, Y. F. Barnard, and J. Sandberg. The Think Aloud
Method: a Practical Guide to Modelling Cognitive Processes. Academic
Press, London, 1994.

308 BIBLIOGRAPHY

[SC02] J. L. Sourrouille and G. Caplat. Constraint Checking in UML Mod-
eling. In SEKE ’02: Proceedings of the Sixteenth International Con-
ference on Software Engineering and Knowledge Engineering, pages
217�224, New York, NY, USA, 2002. ACM Press.

[Sch92] N. F. Schneidewind. Methodology for Validating Software Metrics.
IEEE Transactions on Software Engineering, 18(5):410�422, 1992.

[SCT+03] F. Shull, J. Carver, G. H. Travassos, J. C. Maldonado, R. Conradi, and
V. R. Basili. Replicated Studies: Building a Body of Knowledge about
Software Reading Techniques. Lecture Notes on Empirical Software
Engineering, pages 39�84, 2003.

[Sea99] C. B. Seaman. Qualitative Methods in Empirical Studies of Software
Engineering. IEEE Transactions on Software Engineering, 25(4):557�
572, 1999.

[Sel03] B. Selic. The Pragmatics of Model-Driven Development. IEEE Soft-
ware, 20(5):19�25, 2003.

[Sen03] S. Sendall. Supporting Model-to-Model Transformations: The VMT
Approach. Technical Report TR-CTIT-03-27, Workshop on Model
Driven Architecture: Foundations and Applications. University of
Twente, The Netherlands, 2003.

[SFM99] M. A. D. Storey, F. D. Fracchia, and H. A. Müller. Cognitive Design El-
ements to Support the Construction of a Mental Model during Software
Exploration. The Journal of Systems and Software, 44(3):171�185,
1999.

[SHH+05] D. Sjoberg, J. Hannay, O. Hansen, V. Kampenes, A. Karahasanovic,
N. Liborg, and A. Rekdal. A Survey of Controlled Experiments in
Software Engineering. In IEEE Transactions on Software Engineering,
volume 31, pages 733�753, 2005.

[Sia99] K. Siau. Information Modeling and Method Engineering: a Psycholog-
ical Perspective. Journal of Database Management, 10(4):44�50, 1999.

[Sin99] J. Singer. Using the American Psychological Association (APA) Style
Guideline to Report Experimental Results. In WESS ’99: Proceedings
of Workshop on Empirical Studies in Software Maintenance, Oxford.
England, pages 71�75, 1999.

[SK03] R. Subramanyam and M. S. Krishnan. Empirical Analysis of CK Met-
rics for Object-Oriented Design Complexity: Implications for Software

BIBLIOGRAPHY 309

Defects. IEEE Transaction on Software Engineering, 29(4):297�310,
2003.

[SM79] B. Shneiderman and R. Mayer. Syntactic/Semantic Interactions in Pro-
grammer Behavior: A Model and Experimental Results. International
Journal of Computer and Information Services, 7, pages 219�239, 1979.

[SMC99] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured Design.
IBM Systems Journal, 38(2-3):231�256, 1999.

[Smi99] J. Smith. The Estimation of Effort based on Use Cases.
(Rational Software white paper). Rational Software.Available in
http://www.rational.com/media/whitepapers/finalTP171.PDF, 1999.

[SPS02] SPSS. Syntax Reference Guide, SPSS version 13. SPSS Inc. Chicago,
2002.

[SSR04] M. Satpathy, N. T. Siebel, and D. Rodriguez. Assertions in Object
Oriented Software Maintenance: Analysis and Case Study. In ICSM
’04: Proceedings of the 20th IEEE International Conference on Soft-
ware Maintenance, pages 124�135, Washington, DC, USA, 2004. IEEE
Computer Society.

[Sto05] M. A. Storey. Theories, Methods and Tools in Program Comprehen-
sion: Past, Present and Future. In IWPC ’05: Proceedings of the 13th
International Workshop on Program Comprehension, pages 181�191,
Washington, DC, USA, 2005. IEEE Computer Society.

[SV98] T. M. Shaft and I. Vessey. The Relevance of Application Domain
Knowledge: The Case of Computer Program Comprehension. Journal
on Management of Information Systems, 15(1):51�78, 1998.

[SW98] G. Schneider and J. P. Winters. Applying Use Cases: A Practical
Guide. Addison-Wesley Longman Publishing Co., Inc, Boston, MA,
USA, 1998.

[SW01] A. Schleicher and B. Westfechtel. Beyond Stereotyping: Metamodeling
Approaches for the UML. In HICSS ’01: Proceedings of the 34th An-
nual Hawaii International Conference on System Sciences (HICSS-34)-
Volume 3, page 3051, Washington, DC, USA, 2001. IEEE Computer
Society.

[TB84] S.J. Taylor and R. Bogdan. Introduction to Qualitative Research Meth-
ods. New York: John Wiley and Sons, 1984.

310 BIBLIOGRAPHY

[Tch02] A. Tchertchago. Analysis of the Metamodeling Semantics for OCL.
Masther Thesis. Department of Computer Science. Dresden University
of Technology, 2002.

[TFS06] C. Tibermacine, R. Fleurquin, and S. Sadou. Simplifying Transforma-
tion of Software Architecture Constraints. In SAC ’06: Proceedings
of the 2006 ACM symposium on Applied computing, pages 1240�1244,
New York, NY, USA, 2006. ACM Press.

[TH03] S. Tilley and S. Huang. A Qualitative Assessment of the Efficacy of
UML Diagrams as a Form of Graphical Documentation in Aiding Pro-
gram Understanding. In SIGDOC ’03: Proceedings of the 21st annual
international conference on Documentation, pages 184�191, New York,
NY, USA, 2003. ACM Press.

[TKC99] M. Tang, M. Kao, and M. Chen. An Empirical Study on Object-
Oriented Metrics. In METRICS ’99: Proceedings of the 6th Interna-
tional Symposium on Software Metrics, pages 242�249, Washington,
DC, USA, 1999. IEEE press.

[Tor04] M. Torchiano. Empirical Assessment of UML Static Object Diagrams.
In IWPC ’04: Proceedings of the 12th IEEE International Workshop
on Program Comprehension, pages 226�230, Washington, DC, USA,
2004. IEEE Computer Society.

[UPP98] B. Unger, L. Prechelt, and M. Philippsen. The Impact of Inheritance
Depth on Maintenance Tasks: Detailed Description and Evaluation of
Two Experiment Replications. Technical Report, Karlsruhe University:
Karlsruhe, Germany, 1998.

[Ver05] J. Verelst. The Influence of the Level of Abstraction on the Evolvabil-
ity of Conceptual Models of Information Systems. Empirical Software
Engineering, 10(4):467�494, 2005.

[VS02] B. Verheecke and R. Van Der Straeten. Specifying and Implementing
the Operational Use of Constraints in Object-Oriented Applications.
In CRPITS ’02: Proceedings of the Fortieth International Conference
on Tools Pacific, pages 23�32, Darlinghurst, Australia, Australia, 2002.
Australian Computer Society, Inc.

[WCH02] X. Wang, C. W. Chan, and H. J. Hamilton. Design of Knowledge-based
Systems with the Ontology-domain-system Approach. In SEKE ’02:
Proceedings of the 14th international conference on Software engineer-
ing and knowledge engineering, pages 233�236, New York, NY, USA,
2002. ACM Press.

BIBLIOGRAPHY 311

[Wey88] E. J. Weyuker. Evaluating Software Complexity Measures. IEEE
Transaction on Software Engineering, 14(9):1357�1365, 1988.

[Whi97] S. A. Whitmire. Object Oriented Design Measurement. John Wiley
and Sons, Inc., New York, NY, USA, 1997.

[WK99] J. Warmer and A. Kleppe. The Object Constraint Language. Precise
Modeling with UML. Object Technology Series. Addison Wesley, 1999.

[WK03] J. Warmer and A. Kleppe. The Object Constraint Language. Second
Edition. Getting Your Models Ready for MDA. Object Technology
Series. Addison-Wesley, 2003.

[WRH+00] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslen. Experimentation in Software Engineering: an Introduction.
Kluwer Academic Publishers, 2000.

[YTB05] H. Y. Yang, E. Tempero, and R. Berrigan. Detecting Indirect Cou-
pling. In ASWEC ’05: Proceedings of the 2005 Australian conference
on Software Engineering, pages 212�221, Washington, DC, USA, 2005.
IEEE Computer Society.

[YWG04] T. Yi, F. Wu, and C. Gan. A Comparison of Metrics for UML Class
Diagrams. SIGSOFT Software Engineering Notes, 29(5):1�6, 2004.

[Zho03] Y. Zhou. Measuring Structure Complexity of UML Class Diagrams.
Journal of Electronics (China), 20(3):227�231, 2003.

[Zus97] H. Zuse. A Framework of Software Measurement. Walter de Gruyter
& Co. Hawthorne, NJ, USA, 1997.

312 BIBLIOGRAPHY

Appendix A

Acronyms and Definitions

A.1 Acronyms

Acronym Definition
CCM Cognitive Complexity Model
DN Depth of Navigations
GQM Goal-Question-Metric
IEEE Institute of Electrical and Electronics Engineers
ISO International Organisation for Standardisation
LTM Long-Term Memory
LTWM long-Term Working Memory
MMLC Measurement Model Life Cycle
N@P Number of properties postfixed by @ Pre
NAN Number of Attributes referred through Navigations
NAS Number of Attributes belonging to the classifier that

Self represents
NCO Number of Comparison Operators
NEI Number of Explicit Iterator variables
NES Number of Explicit Self
NIE Number of If Expressions
NII Number of Explicit Iterator variables
NIS Number of Implicit Self
NOS Number of Operations belonging to the classifier that

Self represents
NKW Number of OCL KeyWords
NNC Number of Navigated Classes
NNR Number of Navigated Relationships

314 APPENDIX A

NPT Number of Parameters whose Types are classes defined
in a class diagram

NUDTA Number of User-Defined Data Type Attributes
NUDTO Number of User-Defined Data Type Operations
NVL Number of Variables defined by Let expressions
OMG Object Management Group
OCL Object Constraint Language
OO Object Oriented
SE Software Engineering
SPSS Statistical Package for Social Science
STM Short-Term Memory
TQM Total Quality Management
UA Universidad de Alicante
UACh Universidad Austral de Chile
UCLM Universidad de Castilla La Mancha
UCM Universidad Complutense de Madrid
ULM Universidad de La Matanza
UML Unified Modeling Language
UNC University of Comahue
UoD Universe of Discourse
UPV Universidad Politecnica de Valencia
WNN Weighted Number of Navigations
WNCO Weighted Number of Collection Operations
NON Number of referred Operations through

Navigations
XML Extensive Markup Language

A.2 Important Definitions

Cognitive Complexity: The mental burden of the individuals (modelers, developers,
testers, etc.) who have to deal with software artefacts.

Dynamic Multiplicity: When the multiplicity of the association is not fixed, but should
be determined based on another value in the system, this is called dynamic
multiplicity [WK03].

Import-Coupling: The extent to which a software part depends on the rest of the
software system.

Structural Complexity: The organization of the program elements within a program.

Appendix B

Frameworks for the Theoretical
Validation

In this appendix we detail the main concepts of the frameworks used for the theo-
retical validation:

• Ther Briand et al ´s Frameworks [BMB96], [BMB99], [BBM98] representing
the Property-based approaches, explained in section B.1

• The DISTANCE Framework [PD00], [PD99] representing an approach based
on the Measurement Theory, explained in section B.2.

B.1 Briand et al.´s Frameworks

Property-based approaches (also called axiomatic approaches) such as the Briand
et al.´s frameworks, formally define desirable properties of the measures for a given
software attribute. These properties are properties of the numerical relation system
of measures. They aim to formalize the empirical properties that a generic attribute
of software or a system (e.g. the length or size) must satisfy in order for it to be
used in the analysis of any measurement proposed for that attribute. The two best
known approaches were proposed by Weyuker [Wey88] and Briand et al.[BMB96].

B.1.1 The Original Framework of Briand et al. [BMB96]

Briand et al. [BMB96] have provided a set of mathematical properties that charac-
terize and formalize several important measurement concepts such as size, length,
complexity, cohesion and coupling, related to internal software attributes. After

316 APPENDIX B

some criticisms made by Poels and Dedene [PD97], Briand et al. [BMB97] made
some modifications to the definition of the properties they had initially proposed.
Hereafter we refer to the final framework, i.e. the modified version. This framework
is based on a graph-theoretic model of a software artifact, which is seen as a set of
elements linked by relationships. The idea is to characterize the properties for mea-
surement of a given software attribute via a set of mathematical properties, based
on this graph-theoretic model. The properties they provide are generally enough to
be applied not only to code, but also to other artifacts produced during the software
process, for example for OCL expression measures.

Systems, Modules and Modular Systems. In this framework a system is
characterized by its elements and the relationships between them. The authors
want the properties they define to be as independent as possible of any product
abstraction. Thus, the framework does not reduce the number of possible system
representations, as elements and relationships can be defined according to the needs.
A software artifact is modelled by a graph S = < E, R >, called system, where E
is the set of elements of S, and R is a binary relation among the elements of E (R
⊆ E × E). From this point, we say that m is a module of S if and only if Em ⊆ E,
Rm ⊆ Em× Em and Rm ⊆ R.

MS

...

..

..

.....................................

...................................

................................

.............................

............................

............................
............................

.............................
.............................

.................
...............
...

...............
.....

..............
........

.............

..........

.............

............

.............

.............

.

.............

.............

....

.............
.............
.......

..............
..............
........

..............
..............
...........

..............
..............
..............
...

..............
..............
..............

..............
..............
...........

...............
...............
.......

...............
...............
....

...............
...............
.

................
.............

.................
.........

...................
......

.......................
..

...
.....................

....................
..................
...................

.....................

......................

........................

.........................

...........................

..............................

.................................

....................................

.......................................

...

......................................

...................................

................................

..............................

...........................

........................

.....................
...................
...................
...................

................
..
..............
.....

..............
.......

.............

..........

.............

............

.............

.............

..

.............

.............

.....

.............
.............
........

.............
.............
...........

..............
..............
..............
.....

..............
..............
..............
..

..............
..............
.............

..............
..............
...........

...............
...............
......

...............
...............
...

...............
...............

...............
............

................
.........

.................
.....

...................
..

...
.............
...............
.................

...................

.....................

.......................

.........................

............................

...............................

..................................

......................................

...

..

..

..

..

.....................................

...................................

.................................

...............................

.............................

...........................

.........................

.......................

......................
......................
.......................
........................

...................
...

.................
......

................
.........

...............
............

...............
..............

..............
..............
...

..............
..............
.....

.............
.............
.........

.............
.............
...........

.............

.............

.............

.............

.............

.............

...

.............

.............

.............

.....

.............

.............

.......

.............

.............

......

..............
..............
..

..............
..............

...............
............

...............
..........

...............
........

................
......

..................
...

...
..........................

.........................
.......................

......................

........................

..........................

............................

..............................

................................

..................................

...................................

h..........
................
.........

.........

..........

i..........
................
.........

.........

..........

a..........................
..........
..........
................
..

b..........................
..........
..........
................
..

m1

I

I

I

k..........
................
.........

.........

..........

f..........................
..........
..........
................
..

j........
.......
.........
...........
.............

m2

I

I
I

I

I

I

I

d..........................
..........
..........
................
.. e..........................

..........

..........
................
..

c..........................
..........
..........
................
..

g...................
.......
.........
..........

m..........
................
.........

.........

..........

m3

I
I

I

I

Figure B.1: A Modular System

A module is connected to the rest of the system by external relationships, whose
set is defined as

Properties for Size and Length 317

OuterR(m) = { <e1,e2 > | (e1 ∈ Em∧ e2 /∈ Em) ∨ (e1 /∈ Em∧ e2 ∈ Em)}. A
modular system is one where all the elements of the system have been partitioned
into different modules. Therefore the modules of a modular system do not share
elements, but there may be relationships across modules.

Example B.1.1 Fig. B.1 shows a modular system, called MS, with three modules
m1, m2 and m3. Also we can add that m1 contains four elements a, b, h and i.

We will introduce inclusion, union, intersection operations for modules and the
definitions of empty and disjoint modules.

• Inclusion. Module mi = <Emi, Rmi> is said to be included in module mj =
<Emj, Rmj> (notation: mi ⊆ mj) if Emi ⊆ Emj y Rmi ⊆ Rmj.

• Union. The union of modules mi = <Emi, Rmi> and mj = <Emj, Rmj>
(notation: mi ∪ mj) is the module < Emi ∪ Emj, Rmi ∪ Rmj>.

• Intersection. The intersection of modules mi = <Emi, Rmi> and mj = <Emj,
Rmj> (notation: mi ∩ mj) is the module < Emi∩ Emj, Rmi ∩ Rmj>.

• Empty module. Module <∅,∅> (denoted by ∅) is the empty module.

• Disjoint modules. Modules mi and mj are said to be disjoint if mi ∩ mj =
∅.

Since in this framework modules are just subsystems, all systems can theoretically
be decomposed into modules. The definition of a module for a particular measure
in a specific context is just a matter of convenience.

B.1.1.1 Properties for Size and Length

We will describe in this section only the properties for the internal attributes size and
length due to the fact these two properties were applied in the theoretical validation.
Both properties may be defined for entire systems or modules of entire systems.

• Size. The basic idea is that size depends on the elements of the system. The
size of a system S = <E, R> is a function Size(S) that is characterized by the
following properties:

1. Property 1. Nonnegativity. Size(S) ≥ 0

2. Property 2. Null value. The size of a system S is null if E is empty: E
= ∅ ⇒ Size(S) = 0

318 APPENDIX B

3. Property 3. Module additivity. The size of a system S is equal to the
sum of the sizes of two of its modules m1 = <Em1, Rm1> and m2 = <Em2,
Rm2> such that any element of S is an element of either m1 or m2:

(m1 ⊆ S and m2 ⊆ S and E = Em1 ∪ Em2 and Em1 ∩ Em2 = ∅) ⇒
Size(S) = Size(m1) + Size(m2)

• Length. The length of a system S = <E, R> is a function Length(S) charac-
terized by the following properties:

1. Property 1. Nonnegativity. Length(S) ≥ 0

2. Property 2. Null value. The length of a system S is null if E is empty:
E = ∅ ⇒ Length(S) = 0

3. Property 3. Nonincreasing monotonicity for connected components.
Let S be a system and m be a module of S such that m is represented by
a connected component of the graph representing S. Adding relationships
between elements of m does not increase the length of S:
(S=<E, R> and m = <Em, Rm> y m ⊆ S y m ”is a connected component
of S” and S’ = <E, R’> and R’ = R ∪ {<e1,e2>} and <e1,e2> /∈ R and
e1 ∈ Em1, and e2 ∈ Em1) ⇒ Length(S) ≥ Length(S’)

4. Property 4. Nondecreasing monotonicity for non-connected compo-
nents. Let S be a system and m1 and m2 be two modules of S such that
m1 and m2 are represented by two separate connected components of the
graph representing S. Adding relationships from elements of m1 to ele-
ments of m2 does not decrease the length of S.
(S=<E, R> and m1 = < Em1, Rm1> y m2 = < Em2, Rm2>
and m1 ⊆ S and m2 ⊆ S ”are separate connected components of S” and
S’=<E, R’> and R’= R ∪ {<e1,e2>} and <e1,e2> /∈ R
and e1 ∈ Em1, and e2 ∈ Em2) ⇒
Length(S’) ≥ Length(S)

5. Property 5. Disjoint modules. The length of a system S made of two
disjoint modules m1, m2 is equal to the maximum of the lengths of m1

and m2.
(S = m1 ∪ m2 and m1 ∩ m2 = ∅ and E = Em1 ∪ Em2) ⇒
Length(S) = max{Length(m1), Length(m2)}

B.1.2 An Adaptation of Briand et al.´s Framework

In [BMB99], [BBM98] a precise study of how measures for a high level design is
defined and validated. Although the definition of the measures are applied to a

Basic Definitions 319

specific context, a high-level designs written in Ada83, the defined concepts can be
applied to other object-based design methods and formalisms [BMB99]. A careful
explanation of this study is described in this subsection, providing us an overview
of how interaction-based measures are defined, and how the initial framework of
Briand [BMB96] is instantiated for this specific context. A clear comprehension of
this adaptation framework will allows us to take into account all the considerations
to validate in our specific context a set of interaction-based measures.

B.1.2.1 Basic Definitions

Briand et al. define in [BMB99] some basic terminology prior to the definition of
high-level design measures for object-based software systems. They define interac-
tions and data dependency links on which the cohesion and coupling measures are
based. This subsection introduce these concepts.

Modules and High Level Design

The elementary components in the study of [BMB99] are software modules. The au-
thors mentioned that in the literature, there are two commonly accepted definitions
of modules. The first one sees a module as a subroutine and has been used in most of
the design publications. The second definition, which takes an OO perspective, sees
a module as a collection of type, data and subroutine definitions, i.e. a provider of
computational services. In this view, a module is the implementation of an Abstract
Data Type (ADT), for example a class in C++. In [BMB99] the subroutine term
is used for the first category whereas the term module is reserved for the second
category. Modules are composed of two parts: interface and body (which may be
empty). The interface contains the computational resources that the module makes
visible for use to other modules. The body contains the implementation details that
are not to be exported. Modules and subroutines may be related to each other by
IS˙COMPONENT˙OF and USES relationships.

In general modules/subroutines A is related to module/subroutine B by an IS˙COM-

PONENT˙OF relationship if A is defined within B. Modules/subroutines A is related
to module/subroutine B by an USES relationship if A uses computational services
that B makes available.

Modules and subroutines can be seen as the components of higher level aggregations,
as defined below.

Definition B.1.2 Library Module Hierarchy (LMH). A library module hierarchy
is a hierarchy where nodes are modules and subroutines, arcs between nodes are

320 APPENDIX B

IS˙COMPONENT˙OF relationships, and there is exactly one top level node, which
is a module.

The term software part (sp) denotes either a module or a LMH. In the high-level
design phase of their context (Ada) [BMB99], only module and subroutine interfaces
and their relationships are defined. Therefore, the definition of a high-level design
of a software systems for the context is as follow.

Definition B.1.3 The high-level design of a software system is a collection of mod-
ule and subroutine interfaces related to each other by means of USES and IS˙COM-

PONENT˙OF relationships. Precise and formalized information on module or sub-
routine bodies is not yet available at this stage.

Interactions
Special focus is specifically paid in [BMB99] on the dependencies that can propa-
gate inconsistencies from data declarations to data declarations or subroutines when
a new software part is integrated in a system. Those relationships are called inter-
actions and will be used to define measures capturing cohesion and coupling within
and between software parts, respectively.

Definition B.1.4 Data declaration-Data declaration (DD) Interaction. A data dec-
laration A DD-interacts with another data declaration B if a change in A´s decla-
ration or use may cause the need for a change in B´s declaration or use.

The DD-interaction relationship is transitive. If A DD-interacts with B, and B DD-
interacts with C, then a change in A may cause a change in C, i.e., A DD-interacts
with C. Data declarations can DD-interact with each other regardless of their lo-
cation in the designed system. Therefore, the DD-interaction relationship can link
data declarations belonging to the same software part or to different software parts.
The DD-interaction relationships can be defined in terms of the basic relation-
ships between data declarations allowed by the language, which represent direct
DD-interactions (i.e., not obtained by virtue of the transitivity of interaction re-
lationships). Data declaration A directly DD-interacts with data declaration B if
A is used in B´s declaration or in a statement where B is assigned a value. As a
consequence, as bodies are not available at high-level design time, we will only con-
sider interactions detectable from the interfaces. DD-interactions provide a means to
represent the dependency relationships between individual data declarations. Yet,
DD-interactions per se are not able to capture the relationships between individual
data declarations and subroutines, which are useful to understand whether data
declarations and subroutines are related to each other and therefore should be en-
capsulated into the same module.

Basic Definitions 321

(a)

M1

T1
........
.......
..........

.......

........

Object11
.......
.......

.............
....... II

I

I

I

Object12
.......
.......

.............
.......

Par11..........
.......

.....I SR11

Par12..........
.......

.....I

M2

SR21

Par21...........
.......

......

Object21
.......
.......

.............
.......

T2
........
.......
..........

.......

........

I
I

I

II

Object22..............
.......
.......
.................

..

Object13..............
.......
.......
.................

..

I

M1

(b)

T1
........
.......
..........

.......

........

Object11
.......
.......

.............
.......

Object12
.......
.......

.............
.......

Par11..........
.......

.....SR11

Par12..........
.......

.....

M2

SR21

I

I

I

I Par21...........
.......

......

Object21
.......
.......

.............
.......

T2
........
.......
..........

.......

........

Object22..............
.......
.......
.................

..

Object13..............
.......
.......
.................

..

Figure B.2: (a) DD-interaction (b) DS-interaction

Definition B.1.5 Data declaration-Subroutine (DS) Interaction. A data declara-
tion DS-interacts with a subroutine if it DD-interacts with at least one of its data
declarations.

Whenever a data declaration DD-interacts with at least one of the data declara-
tions contained in a subroutine interface, the DS-interaction relationship between
the data declaration and the subroutine can be detected by examining the high-level
design.

Example B.1.6 For instance, from the following Ada-like code fragment:

Package M1 is
· · ·
type T1 is · · · ;
Object11, Object12: T1 := · · ·
procedure SR11(Par11: in T1 := Object11, Par12: in T1);
· · ·
Package M2 is

· · ·
Object21: T1;
type T2 is array (1 · · · 100) of T1;

322 APPENDIX B

Object22: T2;
procedure SR21(Par21: in out T2);
· · ·

end M2; · · ·
Object13: M2.T2;
· · ·
end M1;

it is apparent that both type T1 and object Object11 DS-interact with procedure SR11,
since they both DD-interact with parameter Par11, procedure SR11´s interface data
declaration. Figure B.2 depicts the two kinds of defined interaction for this specific
context (Ada).

B.1.2.2 Interaction-Based Measures for Coupling

In the Briand et al.´s framework adaptation for interaction-based measures [BMB99]
coupling is defined as a relation between an individual software part and its asso-
ciated software system, rather than as a relation between two software parts. The
interactions described in [BMB99] are directly related with the definition of a high
level design.
Coupling can be divided into two parts:

1. import-coupling, i.e., the extent to which a software part depends on the rest
of the software system, and

2. export-coupling, i.e., the extent to which the rest of the software system de-
pends on the software part.

[BMB99] is focused only on import-coupling. The experimental hypothesis of the
work is defined as follow:
Hypothesis H-IC: The more dependent a software part on external data decla-
rations, the more external information needs to be known in order to make the
software part consistent with the rest of the system. In other words, the larger
the amount of external data declarations, the more incomplete the local description
of the software part interface, the more spread the information necessary to inte-
grate a software part in a system. Thus, the software part becomes more fault-prone.

The properties the authors [BMB99] believe should be satisfied by interaction-based
import-coupling measures are defined below. These properties are instantiated for
their specific Ada context, of the properties defined in [BMB96] for coupling:

DISTANCE Framework 323

• Property AdaCoupling1. Nonnegativity. Given a software part sp, the
measure import˙coupling˙measure(sp) ≥ 0. Import˙coupling˙ measure(sp)
= 0 if sp does not have import interactions with other software parts.

• Property AdaCoupling2. Monotonicity. Let m1 be a module and II(m1),
its set of import interactions. If m2 is a modified version of m1 with the same
sets of data and subroutine declarations and one more import interaction so
that II(m2) ⊇ II(m1), then import˙coupling˙measure(m2) ≥ import˙cou-
pling˙measure(m1)

1.

• Property AdaCoupling3. Merging of Modules. The sum of the import-
couplings of two modules is no less than the coupling of the module which is
composed of the data declarations of the two modules.

An interaction-based coupling measure is defined, the import-coupling measure. Its
definition is:
Import-Coupling: Given a software part sp, import-coupling of sp (denoted by
IC(sp) is the number of DD-interactions between data declarations external to sp
and the data declarations within sp

Example B.1.7 Each box in Fig. B.3 represents a module interface. Module in-
terfaces m2 and m3 are located in their parents interface m1. m2 is assumed to be
declared before m3 and therefore visible to m3. Tij and Objectij data declarations
represent, respectively, types and objects in module mi. FP3 represents a subroutine
formal parameter. The IC values for the modules in Fig. B.3 are computed as fol-
lows:
IC(m1) = 0, IC(m2) = 4, IC(m3) = 5, IC(m4) = 2.

B.2 DISTANCE Framework

The DISTANCE framework provides constructive procedures to model software at-
tributes and define the corresponding measures [PD99]. The different procedure
steps are inserted into a process model for software measurement that: (i) details
for each task the required inputs, underlying assumptions and expected results, (ii)
prescribes the order of execution, providing for iterative feedback cycles, and (iii)
embeds the measurement procedures into a typical goal-oriented measurement ap-
proach such as, GQM. In this section we summarise the procedures for attribute
definition and measure construction for ease of reference.

1Adding import interactions to a module cannot decrease its import-coupling.

324 APPENDIX B

m4

T11.........
................
..........

........

......... I

I

m2

m1

I

Object41..............
..........

..............

Object42..............
..........

..............IT12.........
................
..........

........

.........

I

I

I

II
I

T21.........
................
..........

........

.........

I

I
Object21................

................

................
..

T31.........
................
..........

........

......... I

SR3

m3
FP3.........
................
..........

........

.........

Object31................
................
................
..

Figure B.3: Calculation of IC with Nongeneric Modules Only

The framework is called DISTANCE as it builds upon the concepts of distance and
dissimilarity (i.e. a non-physical or conceptual distance). Software attributes are
modelled as conceptual distances between the software entities they characterize
and other software entities that serve as reference points or norms for measurement.
These distances are then measured by functions that are called ”measures” in math-
ematics. These are functions that satisfy the measure axioms, i.e. a set of axioms
that are necessary and sufficient to define measures of distance [PD00].

The measurement theoretic interpretation of the concept of dissimilarity is built into
the framework. This ensures that the theoretical validity of the measures obtained
with DISTANCE can be formally proven within the framework of measurement the-
ory. A key feature of DISTANCE is that the constructive attribute modelling and
measure definition procedures as presented in the process model, hide the complexity
of the underlying measurement theoretic constructs from the user. Poels and Dedene
[PD99] take full advantage of the intuitiveness and flexibility of the distance concept
to arrive at a measure construction framework that is transparent with respect to
measurement theory and that is generic, i.e. not limited to the measurement of a
specific software attribute.

This framework does not require that the empirical relational system is an extensive
structure (leading automatically to ratio scales), nor that a closed binary operation

Proximity Measurement 325

on the set of software products or software product abstractions is defined.
Another relevant aspect is that the underlying measurement theoretic principles of
the DISTANCE framework ensure the construct validity of the resulting measures,
i.e. they measures what it is purported to measure. This fact contributes to the
validity of the empirical studies we carry out using the measures defined following
this framework. We first present a measurement structure from measurement theory
that formalizes the idea of ”distance measurement” and later we describe each of
the steps of the distance-based measure construction process.

B.2.1 Proximity Measurement

In this section we present the measurement theoretic constructs used in the DIS-
TANCE framework.

Proximity Structure

1. Let A be a set. The quaternary relation • ≥ on A (i.e., • ≥ ⊆ A4) is a binary
relation on A × A (i.e., • ≥ ⊆ A2 × A2) such that ∀ a, b, c, d ∈ A: (a, b)
• ≥ (c, d) if and only if the dissimilarity between a and b is at least as great
as that between c and d.

2. The quaternary relation ≈ on A is an equivalence relation on A × A such that
∀ a, b, c, d ∈ A: (a, b) ≈ (c, d) ⇔ (a, b) • ≥ (c, d) and (c, d) • ≥ (a, b).

3. The quaternary relation • > on A is a strict ordering relation on A × A such
that ∀ a, b, c, d ∈ A: (a, b) • > (c, d) ⇔ (a, b) • ≥ (c, d) and not ((c, d) • ≥
(a, b)).

4. (A, • ≥) is a proximity structure if and only if the following axioms hold ∀
a, b ∈ A:

• P1. • ≥ is a weak order;

• P2. (a, b) • > (a, a) whenever a 6= b (positivity);

• P3. (a, a) ≈ (b, b) (minimality);

• P4. (a, b) ≈ (b, a) (symmetry).

Part 1 of the proximity structure definition states that dissimilarity (or distance)
is an attribute of a pair of elements. Prior to measurement, there exists an order
• ≥ on the dissimilarities between the pairs of elements of some set A. Parts (2)
and (3) derive an equivalence relation ≈ and a strict ordering relation • > from the
dissimilarity ordering • ≥. Finally, part (4) describes the empirical conditions that

326 APPENDIX B

must hold for the pair (A, • ≥) to qualify as a proximity structure. Condition P1

requires the empirical dissimilarity ordering • ≥ to be a weak order, i.e., it must be
transitive and strongly complete. Conditions P2, P3 and P4 follow from the measure
axioms non-negativity, symmetry and identity. The fact that any measure δ satisfies
δ(a, b) = δ(b, a) > δ(a, a) = δ (b, b) for all a 6= b requires the empirical conditions
of positivity, minimality and symmetry.

The distance-based approach constructs a special kind of proximity structure, i.e.,
a segmentally additive proximity structure. The representation of such a struc-
ture has more favourable properties than the representation of a proximity structure.

Segmentally Additive Proximity Structure

1. Let A be a set. For a, b, c ∈ A, the ternary relation 〈abc〉 is said to hold if
and only if ∀ a’, b’, c’ ∈ A: (a, b) • ≥ (a’, b’) and (a’, c’) • ≥ (a, c) ⇒ (b’, c’)
• ≥ (b, c)

2. A relational structure (A, • ≥) is a segmentally additive proximity struc-
ture if and only if the following axioms hold for all a, b, c, d ∈ A:

• S1. (A, • ≥) is a proximity structure;

• S2. If (a, b) • ≥ (c, d), then there exists e ∈ A such that (a, e) ≈ (c, d)
and 〈aeb〉;
• S3. If c 6= d, then there exist e0’,· · ·, en’ ∈ A such that e0’ = a, en’ = b

and (c, d) • ≥ (ei−1’, ei’), for all i = 1,· · · , n.

The ternary relation 〈abc〉 is a collinear betweenness relation. Informally, 〈abc〉
holds if b lies on an additive segment from a to c, i.e., along the segment from a to
c distances are additive.
The extra axioms of the segmentally additive proximity structure (i.e., S2 and S3)
are harder to interpret than those of the proximity structure (i.e., S1). Axiom S2
is the segmental solvability condition. It tells us that given two distances (a, b)
and (c, d), the former being not less than the latter, we can always find an additive
segment from a to e on (a, b) that is exactly equal to the distance between c and
d. Axiom S3 then guarantees that (c, d) cannot be infinitely small compared with
(a, b). Informally, S2 and S3 were introduced to create a ’unit of distance’. These
form the additive segments of any distance between elements of A, and thus allow
a quantitative assessment of the relative proportion between distances.

A representation of a segmentally additive proximity structure is called a repre-
sentation by a measure with additive segments. The following representation and

A Constructive Measurement Procedure 327

uniqueness theorem can be found in Suppes et al. [KDST06].

Theorem 1. Representation by a measure with additive segments Let (A,
• ≥) be a segmentally additive proximity structure. Then there exist a real-valued
function δ on A × A such that, for any a, b, c, d ∈ A,

• M1. (A, δ) is a measure space;

• M2. (a, b) • ≥ (c, d) ⇔ δ(a, b) ≤ δ(c, d);

• M3. 〈abc〉 ⇔ δ(a, b) + δ(b, c) = δ(a, c);

• M4. If δ’ is another measure on A satisfying the above conditions, then there
exist β > 0 such that β’ = βδ.

The term measure is generally understood as referring to a ’measure’ of distance.
The theorem states the empirical conditions that the attribute of distance must sat-
isfy in order to define a measure as a measure in the sense of measurement theory
(i.e., as a homomorphism). These empirical conditions are those associated with the
(segmentally additive) proximity structure.

If the measure δ would only satisfy M1 and M2, then (A, • ≥) must only be a
proximity structure (i.e., S1 or P1 to P4 must be satisfied). The representation is
then essentially an ordinal representation [KDST06].

If in addition M3 is satisfied, then (A, • ≥) must be a segmentally additive proxim-
ity structure, implying that distance must also be characterize by S2 and S3. The
measure d is then called a measure with additive segments. The values returned by
d for the additive segments on a distance from a to c must add up to the value that
is returned for (a, c) itself. It should be noted that M3 is similar to, but weaker
than the additivity condition of an extensive representation.

Condition M4 is actually a uniqueness theorem. It tells us that the scale type of
a measure with additive segments is ratio (as the class of admissible transforma-
tions is that of the similarity transformations). The representation by a measure
with additive segments belongs to the class of the unidimensional spatial proximity
representations.

B.2.2 A Constructive Measurement Procedure

Here, we detail the distance-based measurement procedure which was briefly pre-
sented in section 2.3.2.2. We assume in this subsection that the object of measure-

328 APPENDIX B

ment is an object class. Let P be a finite set of object classes. All classes that we
wish to measure are included in P.
Five activities are needed to model a software attribute with a segmentally additive
proximity structure and to define a software measure using a measure with additive
segments:

• Find a measurement abstraction (MT1)

Measurement abstractions are used in software measurement to emphasize the
attribute of interest, while simultaneously de-emphasizing other attributes.
For instance, if we wish to measure the size of a class in terms of the numerous-
ness of its variables, then the state vector of the class is a suitable measurement
abstraction. However, the state vector is not a suitable abstraction to capture
the complexity of the object class methods.
Whatever attribute of a class needs to be measured, the class must be repre-
sented in one way or another. The result of step 1 is therefore a function abs:
P → A that maps object classes into their representations. The range of abs
is the set A of measurement abstractions of the chosen type. The function abs
is total, but neither injective, nor surjective.

• Define Distance between Measurement Abstractions (MT2)

The next step is to model distances between the elements of the set A. To this
end we use the construct of an elementary transformation t: A→ A. For all a
∈ A, t(a) is the abstraction that results when modifying a in some prescribed
way. The modification is assumed to be atomic, i.e. it cannot be subdivided
in more elementary changes.

For a given set A there might exist many elementary transformation functions,
each associated with one particular type of atomic change. The set T of
elementary transformations on A is required to be constructively complete and
inverse constructively complete. This means that:

� (i) There is an initial abstraction ai in A;

� (ii) Each element of A can be built by applying a finite sequence of
elementary transformations of T to ai;

� (iii) For each elementary transformation t included in T, the inverse of t
is also contained in T;

If conditions (i) to (iii) are satisfied, then any element of A can be transformed
into any other element of A. For instance, if object classes are represented by
their state vector then the elementary transformations ’add a variable’ and
’remove a variable’ are sufficient to build a constructively complete and inverse

A Constructive Measurement Procedure 329

constructively complete set of elementary transformations on state vectors.

We can now formally define the concept of a distance in A by means of a
segmentally additive proximity structure. The set of empirical objects in the
relational system is A. We only need to define the dissimilarity relation • ≥
on A.

The empirical dissimilarity or conceptual distance ordering • ≥ is defined as
follows:

Let A be a set and T be a constructively complete and inverse constructively
complete set of elementary transformations on A. Then, for a, b, c, d ∈ A, (a,
b) • ≥ (c, d) denotes the observation that we need at least as many elementary
transformations to transform a into b than to transform c into d.

It can be shown that when the dissimilarity ordering on A is defined as it was
defined before, then the axioms of the segmentally additive proximity struc-
ture are satisfied. For formal proofs we refer to [PD99].
In our example, A is a set that contains sets of variables as its elements. Some
of these sets correspond to state vectors of the classes in P. The initial set
ai is the empty set. The shortest sequence(s) of elementary transformations
between a pair of elements model(s) the distance between those elements.

• Quantify Distances between Measurement Abstractions (MT3)

In this step a measure is proposed for the distances in A. The definition of
a measure function is relatively straightforward: Let A be a set and T be a
constructively complete and inverse constructively complete set of elementary
transformations on A. Then, for all a, b ∈ A:

δ(a, b) = kab . c, where

� kab = the minimal number of elementary transformations needed to trans-
form a into b;

� c = any positive real number.

Hence, the distance between a pair of elements in A is measured by counting
the elementary transformations in the shortest sequence(s). This count may
be multiplied by any positive real number.

330 APPENDIX B

In [PD99] it is formally proven that a function defined by previous definition
is a measure with additive segments if (A, • ≥) is a segmentally additive prox-
imity structure. The function δ satisfies the measure axioms (i.e. M1), as well
as the representation conditions M2 and M3. Multiplying the count of ele-
mentary transformations by a positive constant corresponds to an admissible
transformation of scale as defined by the uniqueness theorem M4.

After executing step 3 all distances in A can be modelled and measured. How-
ever, we do not need to know all these distances. Only a subset of them is
related to the software attribute of interest. In the next steps we determine
the distances that are models of the attribute of interest and show how to
measure them.

• Find a Reference Abstractions (MT4)

This is a crucial step in the distance-based measurement procedure as it re-
flects our understanding of the attribute being measured. We need to carry
out a kind of thought experiment.

Let the object classes in P be characterized by an attribute we wish to measure.
The function abs is used to map an object class p of P into its representation
abs(p) of A. We must now imagine what abs(p) would look like if p is char-
acterized by the theoretically lowest value of the attribute. This imaginary
representation of p is called the reference abstraction of p for the attribute of
interest. It can then be argued that the closer abs(p) is to this reference ab-
straction, the lower the value of the attribute. Analogously, the farther abs(p)
from the reference abstraction, the higher the value of the attribute. Hence,
the conceptual distance or dissimilarity between the measurement abstraction
and the reference abstraction is used as a model of the attribute of interest.
For each class in P it is this particular distance that needs to be measured.
Formally, the reference abstraction is returned by a function ref: P → A. As
ref is a deterministic function there is exactly one reference abstraction asso-
ciated with a class p for the attribute of interest. It is however common (but
not required) that ref maps all elements of P into a same abstraction, which
is often the initial abstraction ai of A.

A (common) reference abstraction for class size in terms of the numerousness
of the variables is the empty state vector. We can imagine an (artificial) class
having no variables. Such a class has the lowest value for the size aspect con-
sidered here. Let a class p have the state vector abs(p) = a, b, where a and b
are variables. The distance between a, b and ∅ determines the size of this class.
Obviously, there are two shortest sequences of elementary transformations to

A Constructive Measurement Procedure 331

transform a, b into ∅.

• Define a Measure for the Property (MT5)

The fifth and final step is trivial. The desired measurement value is the value
returned by the measure d for the pair of abstractions in A consisting of the
measurement abstraction of the class and the reference abstraction for that
class.

Then a software measure is defined as follows:
Let P be a finite set of object classes and let abs: P → A and ref: P → A
be functions that return for the classes in P, respectively, the measurement
abstraction and the reference abstraction for the attribute of interest. Then,
the measure for that attribute is a function µ: P → < defined such that for
all p ∈ P, µ(p) = δ(abs(p), ref(p)).

If µ is a measure of class size (in terms of the numerousness of variables),
then m returns for the class p with state vector a, b the count of elementary
transformations in the shortest sequence(s) from a, b to ∅, multiplied by a
positive constant. For the constant c =1 we get m(p) = δ(abs(p), ref(p)) =
δ(a, b, ∅) = 2 . 1 = 2.

Table B.1 summarizes the required inputs and expected results of the five steps
explained above.

Step Inputs Outputs

Find a measurement ab-
straction

The attribute of interest attr. A set of software entities M (to
be used as measurement abstrac-
tions).

A set of software entities P A function abs: P → M
Model distances between
measurement abstractions

M A set of elementary transforma-
tion types Te

Quantify distances be-
tween measurement
abstractions

M, Te A measure δ: M × M → <

Find a reference abstrac-
tion

Attr, P, M A function ref: P→M (to return
a reference abstraction for attr)

Define the software mea-
sure

P, abs, δ, ref A function µ: P → <

Table B.1: Required Inputs and Expected Results

From a measurement theory point of view, the distance-based software measure
construction process results in the definition of an attribute as a segmentally
additive proximity structure and in the definition of a measure as a measure

332 APPENDIX B

with additive segments [KDST06]. According to the uniqueness theorem as-
sociated with the representation theorem for segmentally additive proximity
structures the resulting measures are characterized by the ratio scale type.

B.2.3 Template for Measure Definition

For the definition of measures Poels and Dedene [PD99] proposed a template shown
in Table B.2. In the top row the original description of the measure is entered. In
the second row the name of the attribute of interest attr is entered.

Measure name (description of the measure)
Software attribute (attr) (attribute of

interest)
Software
entity (p ∈
P)

(entity characterized by
attr)

Output of distance-based process Underlying measurement
theoretic constructs
and formal definitions

M (set of measurement abstractions)
(abstraction function)

Te (set of elementary transformation types) • ≥ (empirical dissimilarity
ordering))

SAPS (segmentally additive
proximity structure)

δ (measure function) MSAS (measure space with addi-
tive segments)

ref (reference function) STabs(p),ref(p) (shortest sequences of ele-
mentary transformations)

Attribute
definition

(formal distance-based
measure definition)

µ (Measure function) Measure def-
inition

(formal measure-based
measure definition)

Remarks:

Table B.2: Template for Distance-based Definition of Measures

This name describes the conceptual idea that reflects to some extent the empirical
understanding of the attribute. However, it is only used as an identifier. The precise
meaning of the attribute is contained within its distance-based definition. Finally in
the second row, the software entity that is characterized by the attribute of interest
is entered.

Next, the output of the distance-based measure construction process is described in
the left column of the template. The right column shows the measurement theoretic
constructs that underlie the different steps in the distance-based process. In fact,
the right column presents the formal, distance-based, definition of the attribute and
the formal, measure-based, definition of the corresponding measure. A last row in

Template for Measure Definition 333

the template allows entering additional remarks regarding the choices made when
applying the distance-based measure construction process.

334 APPENDIX B

Appendix C

Experimental Process

Experimentation is a labor-intensive task. So, in order to properly set up and con-
duct an experiment, we need a process supporting us in our objectives in doing
experiments correctly [WRH+00]. This appendix has three sections: section C.1
explains how the experimental process (briefly described in section 2.3.4) can be
depicted as a V model whereas section C.2 describes each of the steps of the ex-
perimental process. Section C.3 provides a short introduction to the replication of
Experiments.

C.1 A V Model of the Experimental Process

The experimental process is iterative, that means that the activities of Figure 2.13
can not be applied in a secuential order. However there is only one exception, once
the operation phase has started it is not possible to go back to previous phases. This
phase is in the middle of the experimental process and constitutes a suitable vertex
in showing the experimental process using a V model. Meanwhile the prior activities
of the Operation phase are mainly concerned with the experiment foundation and
its design (cause and effect construct relationship), in the posterior activities of the
Operation phase the effort is concerned with the analysis of the effect construct.

The V model is shown in Figure C.1 and uses two different dimension. The hori-
zontal dimension (or edge) shows the experimental process time. At the beginning
the researchers have an experiment construct and all their ideas are hypothetical,
quite subjective. After the experiment has run, their ideas become more objective.
The vertical edge shows the relationship between theory and observation, between
the abstract world and the concrete one, between analysis and design phases of the
experiments. It is clear that some steps of the experimental process are related to
’what is conducted by the experiment?, such as experiment definition and expriment

336 APPENDIX C

I

I

Experiment
Idea

Experiment
Execution

Experiment
Conclusions

◦©

◦©

◦©
abstract
(theory)

concrete
(observation)

what is
conducted?

how is
conducted?

hypothesis formulation hypothesis testing

I
I

T
he

experim
ent

idea
is

disaggregated
into

an

experim
ental design

I
I

T
he

ex
pe
ri
m
en
t
de
si
gn
’

el
em
en
ts
ar
e
ag
gr
eg
at
ed

in
to
an

ex
pe
ri
m
en
t

co
nc
lu
si
on

(o
nc
e
th
ei
r

re
la
ti
on
sh
ip
s
ar
e

an
al
yz
ed
)

subjective
more

objective

Figure C.1: A Representation of the Experimental Process in a V model

conclusion, also hypothesis formulation and hypothesis testing; meanwhile others,
are related to ’how the experiment is conducted?’, such as the experimental design
and its statistical analysis.

From the experimental idea to the experiment execution ended points of the V model,
the definition, planning and half of the operation phases took place. Similarly, from
the experiment execution to the experiment conclusions the remaining steps of the
operations phases, the analysis and presentation phases are carried out.

During the prior activities of the Experiment Execution an Experimental Idea is
disaggregated (or decomposed) into a experiment design elements, and its instru-
mentations (that is the configuration of the experiment elements which will be used
during the experiment execution such as objects, subjects, treatments, environment,

C.2. Steps of the Experimental Process 337

etc.) should be clearly defined. The experimental design should successfully measure
the theoretical constructs defined in the hypothesis.

After the execution of the experiment there is a tendency to aggregate all the
experimental components in terms of a valid conclusion. Figure C.1, graphically
show how these two process of desegregation and aggregation are done before and
after the experiment execution respectively.

Besides, within any experimental process there are pairs of activities that seem to
be symetrically tested (not all are shown in Figure C.1), such as:

• The idea construct and the effect constructs in order to obtain valid conclu-
sions.

• The experiment definition and the experiment conclusion.

• The selection of a set of hypothesis and the hypothesis testing.

• The experimental design and the statistical analysis are closely related [WRH+00].

C.2 Steps of the Experimental Process

As we explain in section 2.3.4 the experimental process can be divided into five main
steps, which are shown in Figure C.2 according to Wohlin et al. [WRH+00]. In
this section each of the steps conforming the experimental process are explained in
details.

C.2.1 Definition

In this phase the foundation of the experiment is specified, determining why the
experiment is conducted. The purpose of the definition phase is to define the goals
of an experiment. In order to capture the goals of the experiment a GQM template
for goal definition has been suggested [BDR97], [LR96]. The goal template is shown
in table C.1 where each of the elements of the template are described. The template
can be filled out with different instances (object of study, purposes, etc.). These
instances are shown in angular brackets.

C.2.2 Planning

After the definition of the experiment, the planning takes place. The definition
determines why the experiment is conducted, whilst the planning prepares for how

338 APPENDIX C

E
xp
erim

ent
Idea

E
xp
erim

ent
D
efi
nition

E
xp
erim

ent
P
lanning

E
xp
erim

ent
O
p
eration

A
nalysis

and
InterpretationP

resentation
and

P
ackage

C
onclusions

I

I

I

I

I

I

F
igu

re
C
.2:

O
verv

iew
of

th
e
E
x
p
erim

en
tal

P
ro
cess

Planning 339

Analyse <Object(s) of study>
The Object of the study is the entity that is studied in the experi-
ment, which can be products, processes, resources, models, measures or
theories.

for the pur- <Purpose>
pose of The Purpose defines what the intention of the experiment is.
with respect <Quality focus>
to their The Quality focus is the primary effect under study in the experiment.
from the <Perspective>
point of view of
the

The Perspective tells the viewpoint from which the experiment results
are interpreted normally defined in terms of a role, for example, project
manager, developer, etc.

in the context <Context>
of The Context is the environment in which the experiment is run. The

context briefly defines which subjects are involved in the experiment and
which software artifacts (objects) are used in the experiment.

Table C.1: Template for Experiment Definition

the experiment is conducted. The planning phase can be divided into six steps,
context selection, hypothesis formulation, variables selection, selection of subjects,
experiment design and instrumentation.

1. Context Selection: The context of the experiment select the environment
in which the experiment will be executed [WRH+00], it can be characterised
according to four dimensions:

• Off-line vs. On-line: An experiment can be carried out in an off-line
situation, for example in a laboratory under controlled conditions, where
the events are organized to simulate their appearance in the real world.
Experiments may alternatively be carried out on-line, which means that
the investigation is executed in the field under normal conditions [Bab90].
The level of control is more difficult in an on-line situation, because it
may be possible to control some factors while others may be impossible.

• Student vs. Professional: Experiments should be executed with pro-
fessional staff or students.

• Toy vs. Real problems: The experiment can address a real problem
or a toy situation.

• Specific vs. General: The results of the experiment can be valid in a
specific context or valid in the general software engineering domain.

2. Hypothesis formulation: The goal for your research can be expressed as
a hypothesis you want to test [FP98], in this way the experiment definition

340 APPENDIX C

is formalised into hypothesis [WRH+00]. The hypothesis is the tentative the-
ory or supposition that you think explains the behaviour you want to explore
[FP98]. Usually the hypothesis that the experimenter wants to reject are spec-
ified in a null hypothesis (often denoted as H0) and an alternative hypothesis
(H1) stated in favor the null hypothesis is rejected. If many alternative hy-
pothesis are specified the rejection of H0 implies that more experimentation
is needed to determine which alternative hypothesis is the best explanation of
the observed behaviour [FP98]. Testing the hypothesis involves different types
of risks. Accepting a null hypothesis when actually is false is called a Type II
error. Conversely, incorrectly rejecting the null hypothesis is a Type I error
[FP98].

The size of the errors depends on different factors. One example is the ability
of the statistical test to reveal a true pattern in the collected data. This is
referred to as a power of a test [WRH+00]. The power of a statistical test
is the probability that the test will reveal a true pattern if H0 is false. An
experimenter should choose a test with as high a power as possible. The power
can be expressed as: Power = P(reject H0 | H0 false) = 1 - P(type-II-error).
All these factors have to be considered when planning an experiment.

3. Variables selection: Before any design can start we have to choose the
dependent and the independent variables.

• Dependent Variable: The outcome of an experiment is referred to as a
dependent variable, also called response variable [JM01]. Each dependent
variable gathered in an experiment is termed observation, and the analysis
of all the observations will decide wheter or not the hypothesis to be
tested can be validated [JM01].

• Independent Variable: Those variables that we can control and change
in the experiment are independent variables [WRH+00]. They are also
called factors or predictor variables. Juristo et al. [JM01] defines in-
dependent variables as each characteristic to be studied that affects the
response variable. A particular values of an independent variable is called
an alternative or treatment. Experimentation aims to examine the influ-
ence of these alternatives on the value of the response variable [JM01]

The choice of independent and dependent variables also means that measures
scales and range for the variables are determined.

4. Selection of subjects: The person who applies the methods or techniques
to the experimental units is called experimental subject [JM01]. The selection
of experimental subjects has very important effect on the results of the exper-
iments in SE and its selection should be carefully considered. The selection of
subjects is also called a sample from population [WRH+00].

Planning 341

objects
one more than one

subjects per
objects

one single object study multi-object varia-
tion study

more than
one

multi-test within
object study

blocked subject-
object study

Table C.2: Experiment Context Characterization [WRH+00]

The sample will be closely connected to the generalisation of the results from
the experiment. In order to generalise the results to the desired population,
the selection must be representative.

Two important factors that have implicances in the generalization are:

• The way subjects are obtained from the population: The sampling
of the population can be either a probability or non-probability sample.
In the former the probability of selection a subject is known, and in the
latter is unknown. The most convincing way of obtained subjects is by
random sampling [KAKB+06]. If a random sample has been obtained,
the method of selection should be specified.

• The size of the sample also impacts the results when generalising.
The larger the sample is, the lower the error becomes when generalising
the results. The sample size is also closely related to the power of the
statistical test.

5. Experiment design: The design is a crucial step, a poor design may ruin
any well-intended study [WRH+00]. To get the most out of the experiment,
we must carefully plan and design the experiment. An experiment consists of
a series of tests, where each test is a combination of treatment, subject and
object. The design of an experiment describes how the tests are organised and
run. More formally, we can define an experiment as a set of tests.

The design and the statistical analysis are closely related. To design the ex-
periment, we have to look at the hypothesis to see which statistical analysis
we have to perform to reject the null hypothesis. Based on statistical assump-
tions, e.g. the measurement scales, and on which objects and subjects we are
able to use, we make the experiment design. During the design we determine
how many tests the experiment shall have to make sure that the effect of the
treatment is visible. A proper design also forms the basis from which to allow
for replication [WRH+00].

The experiment context can be characterized in terms of the number of sub-
jects and objects involved in the study, see table C.2. When a studies are

342 APPENDIX C

conducted on a single subject and a single object, we have single object stud-
ies. Multi-object variation studies are conducted on a single subject across a
set of object. Multi-test within object studies examines a single object a set of
subjects. Blocked subject-object studies examine a set of subjects and a set of
objects.

There are different experimental designs depending on the aim of the experi-
ment, the number of factors, the alternatives of the factors, and the number
of undesired variations, etc. Table C.3 (from [JM01]) gives a summary of the
most commonly used experimental design. The description of each kind of
design is out of the scope of this research work, but is possible to find their
complete description in [JM01] and [WRH+00]

Experimental
DesignConditions of the Experiment

I

I

I

I

I
Fractional
Factorial
Design

�
�
�
�less than nk ex-

periments

-Factorial De-
sign -Nested
Design

�� ��nk experiments
�
�
�

there are de-
sired variations
(of factors)
only

Blocked Fac-
torial Design

�� ��there are undesired variations

�

�
	k factors of in-

terest (2 or n al-
ternatives)

Block Design�� ��there are undesired variations

-One factor
experiment
-Paired
comparison

�� ��all other project parameter can be
fixed�� ��One factor of interest

(2 or n alternatives)

�

�
	Categorical Factor and

Quantitative Experimen-
tal Response

Figure C.3: Different Experimental Designs

6. Instrumentation: The instruments for an experiment are of three types,
namely objects, guidelines and measurement instruments. In the planning of
an experiment, these instruments are chosen and are developed for the specific
experiment before its execution.

• Experiment objects may be, for example, specification or code doc-
uments. When planning for an experiment, it is important to choose
objects that are appropriate.

• Guidelines are needed to guide the participants in the experiment.
Guidelines include, for example, process descriptions and checklists.

Validity evaluation: 343

• Measurements in an experiment are conducted via data collection. In
human intensive experiments, data is generally collected via manual forms
or by interviews.

The overall goal of the instrumentation is to provide means for performing the
experiment and to monitor it, without affecting the control of the experiment.
The results of the experiment shall be the same independently of how the
experiment is instrumented. If the instrumentation affects the outcome of the
experiment, the results are invalid.

C.2.2.1 Validity evaluation:

A fundamental question concerning results from an experiment is how valid the
results are. It is important to consider the question of validity early on in the
planning phase in order to plan for adequate validity of the experiment results
[WRH+00]. In an experiment we want to draw conclusions about the theory defined
in the hypothesis, based in our observations. In drawing conclusions we have four
steps, in each of which there is one type of threat to the validity of the results, see
Figure C.4.

Campbell and Stanley [CS63] have defined two types of threats:

• Internal validity: To the degree that we are successful in eliminating con-
founding variables within the study itself is referred to as internal validity
[Hay05]. We must make sure that exists a causal relationship between treat-
ment and outcome, and that it is not a result of a factor of which we have
no control or have not measured [WRH+00]. See item 2 of Figure C.4. For
example, factors that have an impact on the internal validity are: how the
subjects are selected and divided into different classes, how the subjects are
treated and compensated during the experiment, if special events occur during
the experiment, the material used in the experiment, etc.

• External validity: The result of the experiment has to be valid not only for
the population it is drawn for, but also a bigger population [BP02] -see item
4 of Figure C.4. External validity is the degree to which the results of the
research can be generalised to the population under study and other research
settings. The greater the external validity, the more the results of an empiri-
cal study can be generalised to actual software engineering practice. Threats
to the external validity concern the ability to generalise experiments results
outside the experiment setting. External validity is not only affected by the
experiment design chosen, but also by the objects in the experiments and the
subject chosen. There are three main risks: not having the right participants

344 APPENDIX C

Theory Cause Construct Effect Construct

Observation
Treatment Outcome

I

I

I

I

©

© ©

© ©

cause-effect
construct

treatment-
outcome
construct

4

3 3

1 2

Experiment Operation

Validity

Evaluation

©1 Conclusion Validity

©2 Internal Validity

©3 Construct Validity

©4 External Validity

Figure C.4: Experimental Principles

as subjects, conducting the experiment in the wrong environment and per-
forming it with a timing that affects the results.

External and internal validity are not all-or-none, black-and-white, present-
or-absent dimensions of an experimental design. Validity varies along a con-
tinuum from low to high [Hay05].

Cook and Campbell [CC79] extend the list to four types of threats to the
validity of experimental results.

• Construct validity: This validity is concerned with the relationship between
theory and observation. It defines the extent to which the variables success-
fully measure the theoretical constructs in the hypothesis. Threats to the
construct validity is the lack of theoretical proof whether the measures for the
independent and the dependent variables are really measuring the concepts
they purport to measure. We must ensure two things: first, that the treatment
reflects the construct of the cause well, and second, that the outcome reflects
the construct of the effect well [WRH+00], see the two items labeled as 3 in

Operation 345

Figure C.4

• Conclusion validity: This validity is concerned with the relationship be-
tween the treatment and the outcome -see item 1 of Figure C.4 -. We want to
make sure that there is a statistical relationship, ie. that our conclusions are
statistically valid.

Sometimes an increase in focus on one threat could decrease focus on one of the other
threats. Wohlin suggests to prioritize between threats according to the following
order of importance: Internal, external, construct and conclusion validity.

C.2.3 Operation

When an experiment has been designed and planned it must be carried out in order
to collect the data that should be analysed. This is what we mean by operation
of an experiment. In the operational phase of an experiment, the treatments are
applied to the subjects. [WRH+00] This means that this part of the experiment is
the part where the experimenter actually meets the subjects. The operational phase
consists of three steps: preparation, execution and data validation.

1. Preparation: Before an experiment can be started, people who are willing
to act as subjects have to be found. It is essential that people are motivated
and willing to participate throughout the whole experiment. A well-motivated
subject may perform better in an experiment than a poorly motivated subject,
as discussed in [HWT05], [BSL99]. The following aspects could be considered
when people are participating as subjects:

• Obtain consent: The participants have to agree to the research objec-
tives. It is important to describe how the result of the experiment will
be used and published.

• Sensitive results: If the results obtained in the experiment are sensitive
1 for the participants, it is important to assure the participants that
the results of their personal performance in the experiment will kept
confidential.

• Inducements: One way to attract people to an experiment is to offer
some kind of inducement. The APA [APA84] provides severeral recom-
mendations regarding student participants [APA84].

1it is quite subjective to judge if a result is sensitive or not, we can generally said that if the
result would have a meaning for the participants outside the experiment it is in some way sensitive

346 APPENDIX C

• Deception: Sometimes the only alternative of conducting the experi-
ment is to deceive or betray the participants (that is called deception).
This is generally not favoured. If alternative ways of conducting the ex-
periment are available these methods should be used instead. Otherwise,
if deception is the only alternative, it should only be applied if it concerns
aspects that are insignificant to the participants and do not affect their
willingness to participate in the experiment.

Before the experiment can be executed, all experiment instruments must be
ready. This may include the experiment objects, guidelines for the experiment
and measurement forms and tools. The required instruments are determined
by the design of the experiment and the method that will be used for data
collection.

If the subjects themselves should collect the data, this means in most cases
that some kind of forms must be handed out to the participants. One thing
to determine when forms are constructed is whether they should be personal
or the participants should fill them in anonymously.

2. Execution: The experiment can be executed in a number of different ways.
Some experiments can be carried out at one occasion when all participants are
gathered together at, for example, a meeting. The advantage of this is that
the results of the data collection can be obtained directly at the meeting and
there is no need to contact the participants and ask for their respective results
later on. Another advantage is that the experimenter is present during the
meeting and if some questions arise they can be resolved directly.

Some experiments are, however, executed during a much longer time span,
and it is impossible for the experimenter to participate in every detail of the
experiment and the data collection. Data can be collected either manually
by the participants that fill out forms or automatically by tools. The first
alternative is probably the most common and the last is probably the least.

3. Data validation: When data has been collected, the experimenter must check
that the data is reasonable and that it has been collected correctly. This deals
with aspects such as whether the participants have understood the forms and
therefore filled them out correctly. It is also important to review that the
experiment has actually been conducted in the way that was intended.

C.2.4 Analysis and Interpretation

After we have collected the relevant data, we must analyse it in an appropriate
way. There are three major items to consider when choosing the analysis techniques:

Presentation and Package 347

the nature of the data we have collected, why we performed the experiments, and
the type of experimental design. Depending on the purpose of the experiment,
different analysis techniques can be used to test the hypothesis. The objective of
the hypothesis testing is to see if it is possible to reject a certain null hypothesis,
H0, based on a sample from some statistical distribution.

Pfleeger carried out a detailed study on the different statistical tests applied accord-
ing to objective sought. In [FP98], Pfleeger presents a decision tree, which can be
used to choose the best technique. Figure C.5 shows the decision tree only regarding
the purpose ’Explore a relationship or Validating software measures’, because this
is the objective we pursue in all of the experiments we carry out in this PhD Thesis.
The decision tree must to be read from top to bottom. Beginning with the objective
of our experiment, we move down, along the branch that fits our situation until we
reach a leaf node with the appropriate analysis technique.

In this research work we use the Statistical Package For Social Science (SPSS) to
automatically apply different statistical tests for analysing the data collected in the
empirical studies.

C.2.5 Presentation and Package

When an experiment has been carried out, the intention is often to present the
findings. This could for example be done in a paper for a conference, a report for
decision-making, a lab package for replication of the experiment or as educational
material. It is essential not to forget important aspects or necessary information
needed in order to enable others to replicate or take advantage of the experiment
and the knowledge gained through the experiment.

C.3 Replication of Experiments

A fundamental strategy for enabling the replication of experiments is to create labo-
ratory packages which contain all the information of an experiment [SCT+03], such
as the experimental design, the artifacts, and the processes used. These labora-
tory packages simplify the experiment replica [BSL99]. There are various types of
replicas:

• Replicas which do not vary the hypothesis: They do not vary the dependent
variables of the original experiment nor the independent ones. The strict ones
duplicate the original experiment and are necessary for increasing the relia-
bility of the conclusions about the validity of the experiment. They are used
to demonstrate if the results of the original experiment are repeatable. The

348 APPENDIX C

b
ox
p
lot

S
catter

D
iagram

s

B
aselin

e

P
earson

N
orm

al

S
p
earm

an
K
en
d
all

N
on

-n
orm

al

M
easu

re
of

A
sso

ciation

L
in
ear

R
egression

2
variab

les

M
u
ltivariate

R
egression

+
2
variab

les

N
orm

al

L
ogaritm

ic
T
ran

sform
a-

tion

N
on

-n
orm

al

E
q
u
ation

S
tad

istical
con

fi
rm

ation
w
ith

correlation
an

aly
sis

E
x
p
lorin

g
a

relation
sh
ip
s
or

V
alid

atin
g
softw

are
m
easu

res

F
igu

re
C
.5:

D
ecision

T
ree

for
A
n
aly

sis
T
ech

n
iq
u
es

C.3. Replication of Experiments 349

replicas that modify the way in which the experiment is made try to increase
our confidence in the experimental results by studying the same hypothesis
but changing some details of the experiment.

• Replicas which vary the hypothesis: Although these replicas vary some varia-
bles they remain at the same level of specificity as the original experiment.
They can be:

� Replicas that vary the independent variables: These kinds of replicas
are used for investigating which aspects of the process are important
by varying systematically some independent variables and examining the
results.

� Replicas that vary the variables that are intrinsic to the object study:
These replicas vary the way in which the effectivity is measured in order
to try to understand what dimensions of which tasks are more important
and

� Replicas that vary the context variables in the environment in which the
solution is evaluated: These kinds of replica is used for establishing which
aspects of this environment are important because they affect the research
process results and they allow us to understand the external validity.

• Replicas that extend the theory. These kinds of replica helps us to determine
the limits of a process effectivity by making changes in the processes, products
and/or models of the context in order to see if the basic principles remain.

350 APPENDIX C

Appendix D

Experimental Material

In this appendix we will present the experimental material used in each experiment.
Moreover, we will show a debriefing questionnaire we used in each experiment in
order to gather personal details of the subjects.

D.1 Material of the 1st Experiment

1st Object, 1st Experiment.

Por favor, indique el horario en el cual inicia el ejercicio:

hora········· minutos ········· segundos ········· .

Empleado
nombre : String
salario : Real
fechaNacimiento : Date
gender : Gender

Departamento
nombre : String
ubicacion : String
presupuesto: Integer

Proyectos
nombre : String
presupuesto : Integer

<<Datatype>>
Date
now: Date

<<Enumeration>>
Genero
masculino
femenino

tiene

* empleado˙en

0..*

*
perteneceparticipa

controla * trabaja˙en*

.

....................
....................

....................
...

.....................
.....................

.....................

.......................
.......................

................

.........................
.........................

............

............................
............................

.....

...............................
.............................

.

..

..

Figure D.1: 1st Object, 1st Experiment

Considere la siguiente expresión OCL válida para el diagrama UML de la Figura D.1:

context Proyectos inv:
self.presupuesto <= self.pertenece.presupuesto and
self.presupuesto > 0 and

352 APPENDIX D

self.participa->size() < 50

1. A cuantas clases (distintas) se ha navegado a partir de la expresión? Indique el número y
el nombre de esas clases.

2. Alguna parte de la expresión OCL enunciada anteriormente significa alguna de las siguientes
expresiones escritas en Lenguaje Natural?. Cuál de las siguientes opciones es verdadera?

� El presupuesto de un proyecto es mayor que cero y no debe ser mayor que el pre-
supuesto del departamento al cual pertenece el proyecto.

� El presupuesto de un proyecto es menor que cero y debe pertenecer al presupuesto del
departamento al cual pertenece el proyecto.

� El presupuesto es positivo y debe ser un presupuesto del departamento.

3. Alguna parte de la expresión OCL enunciada anteriormente significa alguna de las siguientes
expresiones escritas en Lenguaje Natural?. Cuál de las siguientes opciones es verdadera?

� La cantidad de empleados de los departamentos no es superior a 50

� La cantidad de empleados que participan en un proyecto no debe ser superior a 50.

� Los empleados pueden participar en a lo sumo 50 proyectos.

4. Considere la cantidad de veces que aparece escrita la palabra presupuesto. Cuál de las
siguientes opciones es verdadera?

� presupuesto es siempre una propiedad (atributo) del tipo representado por la instancia
contextual self.

� presupuesto aparece dos veces como una propiedad (atributo) del tipo representado
por la instancia contextual self, y una vez como una propiedad de la instancia de
Departamentos.

� presupuesto aparece una vez como una propiedad (atributo) del tipo representado
por la instancia contextual self, y dos veces como una propiedad de la instancia de
Departamentos.

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

D.1. Material of the 1st Experiment 353

2nd Object, 1st Experiment

Por favor, indique el horario en el cual inicia el ejercicio:
hora········· minutos ········· segundos ········· .

Banco
nombre˙banco: String

Persona
estaCasado : Boolean
esEmpleado : Boolean
diaNacimiento : Date
edad : Integer
genero : Genero

Compania
nombre : String
numberOfEmployees : Integer

Job
title : String
startDate : Date
salary : Integer

Matrimonio
lugar : String
dia : Date

0..1 banco

0..* cliente

esposo 0..1

gerente

1 gerencia

0..*

0..*

empleados

0..*

empleadores

1

esposa

Figure D.2: 2nd Object, 1st Experiment

Considere la siguiente expresión OCL válida para el diagrama UML de la Figura D.2:

context Persona inv:
self.Trabajo.salario->sum() >= 10000 implies self.banco->notEmpty() and
self.empleadores-> size() <= 3 and
self.esposa->notEmpty() implies self.esposa.edad >= 18

1. A cuantas clases (distintas) se ha navegado a partir de la expresión? Indique el número y
el nombre de esas clases.

2. Alguna parte de la expresión OCL enunciada anteriormente significa alguna de las siguientes
expresiones escritas en Lenguaje Natural?. Cuál de las siguientes opciones es verdadera?

� Un cliente de un banco no tiene un salario menor a 10000.

� Si la cantidad de salarios de una persona es superior a 10000 la persona es cliente de
un banco.

� Si la suma de salarios de una persona es superior a 10000 la persona es cliente de un
banco.

3. Alguna parte de la expresión OCL enunciada anteriormente significa alguna de las siguientes
expresiones escritas en Lenguaje Natural?. Cuál de las siguientes opciones es verdadera?

� Si una persona tiene una esposa, su edad es mayor a 18 a�nos.

� Toda persona tiene una esposa mayor a 18 a�nos.

354 APPENDIX D

� Todas las personas tienen una esposa de 18 a�nos.

4. Considere la navegación expresada como self.wife. Cuál de las siguientes opciones es ver-
dadera?

� Es una navegación de una relación reflexiva, y su resultado siempre es un objeto
Persona (la esposa).

� Es una navegación a la clase de asociación y el resultado obtenido son los ma-trimonios
de una persona.

� Es una navegación de una relación reflexiva y su resultado posiblemente es un objeto
Persona (la esposa).

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

D.1. Material of the 1st Experiment 355

3rd Object, 1st Experiment

Por favor, indique el horario en el cual inicia el ejercicio:
hora········· minutos ········· segundos ········· .

Persona
estaCasado : Boolean
esEmpleado : Boolean
diaNacimiento : Date
nombre: String
apellido: String
sexo : Genero
es˙gerente : Boolean

Company
name : String
numberOfEmployees : Integer

Trabajo
titulo : String
diaComienzo : Date
salario : Integer

Genero
masculino
femeninoMatrimonio

lugar : String
dia : Date

marido 0..1

gerente

1 gerencia

0..*

0..*

empleados

0..*

empleador

1

esposa

Figure D.3: 3rd Object, 1st Experiment

Considere la siguiente expresión OCL válida para el diagrama UML de la Figura D.3:

context Persona inv:
(self.esposa->notEmpty() implies
self.esposa.empleador->forAll(p | p.gerente <> self))
and (self.marido->notEmpty() implies self.marido.esta˙casado = true)

1. A cuantas clases (distintas) se ha navegado a partir de la expresión? Indique el número y
el nombre de esas clases.

2. Alguna parte de la expresión OCL enunciada anteriormente significa alguna de las siguientes
expresiones escritas en Lenguaje Natural?. Cuál de las siguientes opciones es verdadera?

� Si dos personas forman un matrimonio (es decir son conyuges) no pueden trabajar en
la misma empresa.

� Una persona (que tiene una esposa) no puede ser gerente de algunas de las empresas
empleadoras de su esposa.

� Una persona (que tiene una esposa) no puede ser gerente de ninguna de las empresas
empleadoras de su esposa.

3. Alguna parte de la expresión OCL enunciada anteriormente significa alguna de las siguientes
expresiones escritas en Lenguaje Natural?. Cuál de las siguientes opciones es verdadera?

� Si una persona tiene un marido, entonces su marido está casado.

� Si dos personas forman un matrimonio (es decir son cónyuges) no pueden ser solteros.

� Una persona tiene un único marido, y este es casado.

4. Considere la navegación expresada como self.esposa.empleador. Cuál de las siguientes
opciones es verdadera?

356 APPENDIX D

� El resultado de la navegación completa es una colección de tipo conjunto debido a que
toda navegación resulta en un objeto o un conjunto de objetos.

� El resultado de la navegación completa es una colección de tipo bag debido a que
hemos navegado más de una asociación.

� El resultado de la navegación completa es una colección de tipo secuencia, en el cual
todos los elementos están ordenados.

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

D.1. Material of the 1st Experiment 357

4th Object, 1st Experiment

Por favor, indique el horario en el cual inicia el ejercicio:
hora········· minutos ········· segundos ········· .

Universidad
nombre : String
limMaximodeDocentes : Integer
direccion : String
categoria : String

RedesUniversitarias
nombre : String

Facultades
nombre : String

Docentes
DNI : Integer
nombre: String
apellido: String
titulo: String

Departamentos
nombre : String

facultades 1..*

miembro˙de

0..*

.

.................
.................

.........

....................
....................

...

.....................
.....................

.......................
...................

............................
.............

...............................
.........

.

...

...

departamentos

0..*

1..*

trabajan

Figure D.4: 4th Object, 1st Experiment

Considere la siguiente expresión OCL válida para el diagrama UML de la Figura D.4:

context Universidad inv:
(self.miembro˙de->size() > 3 implies self.categoria =’alta’) and
(self.limite˙max˙de˙docentes >
self.facultades.departamentos.trabajan -> asSet()->size())

1. A cuantas clases (distintas) se ha navegado a partir de la expresión? Indique el número y
el nombre de esas clases.

2. Alguna parte de la expresión OCL enunciada anteriormente significa alguna de las siguientes
expresiones escritas en Lenguaje Natural?. Cuál de las siguientes opciones es verdadera?

� La universidad tiene categoŕıa alta y debe ser miembro de tres redes universitarias.

� Si una universidad tiene categoŕıa alta es miembro de más de tres redes universitarias.

� Si una universidad es miembro de más tres redes universitarias, su categoŕıa es alta.

3. Alguna parte de la expresión OCL enunciada anteriormente significa alguna de las siguientes
expresiones escritas en Lenguaje Natural?. Cuál de las siguientes opciones es verdadera?

� La cantidad de docentes que trabajan en facultades es inferior al ĺımite máximo de
docentes.

� La cantidad de docentes que trabajan en los departamentos de las facultades de la
universidad es inferior al ĺımite máximo de docentes que tiene la universidad.

� La cantidad de docentes que trabajan en los departamentos de las facultades de la
universidad es mayor igual al ĺımite máximo de docentes que tiene la universidad.

358 APPENDIX D

4. Considere la siguiente subexpresión perteneciente a la expresión OCL enunciada anterior-
mente
self.facultades.departamentos.trabajan -> asSet()->size() Cuál de las siguientes op-
ciones es verdadera?

� Si un docente de la colección self.facultades.departamentos.trabajan figura dos veces,
este se cuenta dos veces en la subexpresión.

� En la subexpresión, se cuentan los docentes de la colección
self.facultades.departamentos.trabajan sin repetir.

� La utilización de la operación de colección asSet() es innecesaria en la subexpresión.

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

D.2. Material of the 1st Family of Experiments 359

D.2 Material of the 1st Family of Experiments

1st Object, 1st Family of Experiments

Part I.
Por favor, indique el horario en el cual inicia el ejercicio:

hour········· minute ········· second ········· .

Vuelo
id˙vuelo : Integer
tipo˙vuelo : String
clase: Integer
edad˙permitida˙pilotos: Integer

Avion
tipo˙avion : String
capacidad˙pasajeros: Integer

Compania
nombre : String

Tripulante
nombre: String
edad: Integer
es˙medico: Boolean

CoorporacionLineas
nombre˙Corporacion : String
cantidad˙lineas˙aereas: Integer

pertenece˙a 1..*

avion

1

.

.......................
.......................

.......................
.......................

.......................
..........

.......................
.......................

.......................
.......................

.......................
..........

.

............................
............................

............................
............................

............................
............................

............................
............................

......................

............................
............................

............................
............................

............................
............................

............................
............................

......................

.

............................
............................

............................
............................

............................
............................

............................
............................

............................
..........................

............................
............................

............................
............................

............................
............................

............................
............................

............................
..........................

corporacion

1

1..*

asistentes˙del˙vuelo

1..*

pilotos

Figure D.5: 1st Object, 1st Family of Experiments

Considere la siguiente expresión OCL válida para el diagrama UML de la Figura D.5:

context Vuelo
inv: self.tipo˙vuelo = ’trasatlantico’ implies
(self.pilotos-> size() = 3 and self.avion.tipo˙avion = ’boing’)
and self.avion.capacidad˙pasajeros >= 70
and self.pilotos ->forAll (h | h.edad >= self.edad˙permitida˙pilotos)

1. A cuantas clases (distintas) se ha navegado a partir de la expresión? Indique el número y
el nombre de esas clases.

2. Alguna parte de la expresión OCL enunciada anteriormente significa alguna de las siguientes
expresiones escritas en Lenguaje Natural?. Cuál de las siguientes opciones es verdadera?

� Si el tipo de avión es boing y la cantidad de pilotos del vuelo es igual a 3, el tipo de
vuelo es trasatlántico.

� Los aviones de tipo boing tienen 3 pilotos y hacen vuelos trasatlánticos.

� Si el tipo de vuelo es trasatlántico, el tipo de avión es boing y los pilotos del vuelo
deben ser 3.

3. Alguna parte de la expresión OCL enunciada anteriormente significa alguna de las siguientes
expresiones escritas en Lenguaje Natural?. Cuál de las siguientes opciones es verdadera?

360 APPENDIX D

� La capacidad de pasajeros del vuelo debe ser siempre superior (o igual) a 70 pasajeros.

� La capacidad de pasajeros del avión de todo vuelo trasatlántico, es igual (o superior)
a 70 pasajeros.

� La capacidad de pasajeros del avión de un vuelo es igual (o superior) a 70 pasajeros.

4. Alguna parte de la expresión OCL enunciada anteriormente significa alguna de las siguientes
expresiones escritas en Lenguaje Natural?. Cuál de las siguientes opciones es verdadera?

� Los pilotos de un vuelo deben ser mayores de edad.

� La edad de los pilotos de un vuelo no debe ser inferior a la edad permitida para pilotos
de ese vuelo.

� Los pilotos de un vuelo deben tener una edad mayor que la antigedad mı́nima del
vuelo.

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

D.2. Material of the 1st Family of Experiments 361

Part II

Por favor, indique el horario en el cual inicia el ejercicio:

hora········· minutos ········· segundos ········· .

5. Se requiere rescribir la expresión OCL de tal forma que sean válidos los siguientes requeri-
mientos:

• La capacidad de pasajeros del avión de todo vuelo debe ser inferior a 450 pasajeros.

• Si el tipo de vuelo es ’cabotaje’ entonces la cantidad de ’asistentes del vuelo’ debe ser
menor a 5 y el tipo de avión no debe ser ’boing’.

• Una de las personas del conjunto de ’asistentes del vuelo’ es médico.

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

362 APPENDIX D

2nd Object, 1st Family of Experiments

Part I.
Por favor, indique el horario en el cual inicia el ejercicio:

hour········· minute ········· second ········· .

Banco
nombre˙banco: String

TarjetaTitular
id˙tarjeta: Integer
ĺımite˙max˙permitido: Real
ĺımite˙min˙permitido: Real
tiene˙extensions: Boolean

TarjetaExtension
ĺımite˙permitido: Real
nombre˙impreso: String

Persona
nombre : String
tipo˙seguro˙de˙vida : Integer

ResumenMensual
id˙resumen : Integer
total˙mensual: Real
importe˙minimo˙a˙pagar: Real

.

............................
............................

............................
............................

............................
............................

............................
....................

............................
............................

............................
............................

............................
............................

............................
....................

.

...................
...................

...................
.............

....................
....................

....................
........

.......................
.......................

.....................

............................
............................

..........

...............................
...............................

...

.......................................
........................

1 banco

0..* clientes

1..* resumenes

1 titular

extensiones

0..*

poseedor1 titular

1

garante

Figure D.6: 2nd Object, 1st Family of Experiments

Considere la siguiente expresión OCL válida para el diagrama UML de la Figura D.6:

context TarjetaTitular inv:
((self.banco.nombre˙banco = ’Galicia’ and self.tiene˙extensiones = true)
implies (self.extensiones->size() < 6))
and self.titular.tipo˙seguro˙de˙vida >= 3
and self.resumenes ->forAll(a | a.total˙mensual <=
self.limite˙max˙permitido)

1. A cuantas clases (distintas) se ha navegado a partir de la expresión? Indique el número y
el nombre de esas clases.

2. Alguna parte de la expresión OCL enunciada anteriormente significa alguna de las siguientes
expresiones escritas en Lenguaje Natural?. Cuál de las siguientes opciones es verdadera?

� Si la tarjeta de crédito del titular tiene menos de 6 extensiones, la tarjeta pertenece
al banco Galicia.

� Si la tarjeta de crédito del titular tiene extensiones y pertenece al banco Galicia,
entonces la cantidad de extensiones no es superior a 5.

� El banco Galicia permite hasta 6 extensiones de una tarjeta de crédito del titular.

3. Alguna parte de la expresión OCL enunciada anteriormente significa alguna de las siguientes
expresiones escritas en Lenguaje Natural?. Cuál de las siguientes opciones es verdadera?

D.2. Material of the 1st Family of Experiments 363

� El tipo de seguro de vida es igual o superior a 3.

� El titular de toda tarjeta de crédito titular tiene un tipo de seguro de vida igual o
inferior a 3.

� El titular de una tarjeta de crédito titular tiene un tipo de seguro de vida superior a
2.

4. Alguna parte de la expresión OCL enunciada anteriormente significa alguna de las siguientes
expresiones escritas en Lenguaje Natural?. Cuál de las siguientes opciones es verdadera?

� Todos los resúmenes de todas las tarjetas de crédito titulares tienen un importe total
que no supera el ĺımite máximo.

� Todos los resúmenes de una tarjeta de crédito titular tienen un importe total que no
supera el ĺımite máximo permitido para esa tarjeta.

� Todos los resúmenes de una tarjeta de crédito titular tienen un importe total que es
inferior estrictamente al ĺımite máximo permitido para la tarjeta.

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ·········

364 APPENDIX D

Part II

Por favor, indique el horario en el cual inicia el ejercicio:

hora········· minutos ········· segundos ········· .

5. Se requiere rescribir la expresión OCL de tal forma que sean válidos los siguientes requeri-
mientos:

• Si la tarjeta pertenece al banco Galicia y no tiene extensiones, entonces la cantidad
de extensiones es cero.

• El tipo de seguro de vida de la persona que actuó como garant́ıa de una tarjeta titular,
es superior a 3.

• Todos los resúmenes de una tarjeta de crédito tienen un ’importe mı́nimo a pagar’
que es igual a la mitad de su importe total.

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

D.2. Material of the 1st Family of Experiments 365

3rd Object, 1st Family of Experiments

Por favor, indique el horario en el cual inicia el ejercicio:
hora········· minutos ········· segundos ········· .

Medico
nombre: String
es˙cirujano: Boolean
especialidad: String
clase: Integer

Company
name : String
numberOfEmployees : Integer

Estudios
id˙estudio: Integer
tipo˙estudio: String

Paciente
dni : Integer
diaComienzo: Date
diagnostico: StringUniversidad

nombre : String

estudio˙en1

medico˙asociado 1

1 operaciones

1..*

1..*

operaciones˙complejas

0..1

es˙asoc˙de

Figure D.7: 3rd Object, 1st Family of Experiments

Considere la siguiente expresión OCL válida para el diagrama UML de la Figura D.7:

context Operacion inv:
self.tipo˙Operacion > 3 and
(self.medico˙principal.es˙cirujano = true implies
(self.medico˙principal.medico˙asociado->size() = 1
and self.medico˙principal.medico˙asociado.especialidad = ’anestesista’))
and self.medico˙principal.medico˙asociado.operaciones
->exists(p | p.id˙operacion = self.id˙operacion)

1. A cuantas clases (distintas) se ha navegado a partir de la expresión? Indique el número y
el nombre de esas clases.

2. Alguna parte de la expresión OCL enunciada anteriormente significa alguna de las siguientes
expresiones escritas en Lenguaje Natural?. Cuál de las siguientes opciones es verdadera?

� Si el médico principal de la operación es cirujano, entonces ese médico principal tiene
médicos asociados anestesistas.

� Si el médico principal de la operación es cirujano, entonces ese médico principal tiene
un médico asociado que es anestesista.

� Todos los anestesistas son los médicos asociados de todo médico cirujano responsable
de una operación.

3. Alguna parte de la expresión OCL enunciada anteriormente significa alguna de las siguientes
expresiones escritas en Lenguaje Natural?. Cuál de las siguientes opciones es verdadera?

� Toda operación no existe en la colección de operaciones que realizó el médico asociado
del médico principal de la operación.

366 APPENDIX D

� Toda operación existe en la colección de operaciones que realizó el médico asociado
del médico principal de la operación.

� Toda operación existe en la colección de operaciones que realizó un médico asociado.

4. Alguna parte de la expresión OCL enunciada anteriormente significa alguna de las siguientes
expresiones escritas en Lenguaje Natural?. Cuál de las siguientes opciones es verdadera?

� El tipo de toda operación es inferior a 3.

� 3 es inferior al tipo de toda operación.

� El tipo de una operación es superior a 1.

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

D.2. Material of the 1st Family of Experiments 367

Part II

Por favor, indique el horario en el cual inicia el ejercicio:

hora········· minutos ········· segundos ········· .

5. Se requiere rescribir la expresión OCL de tal forma que sean válidos los siguientes requeri-
mientos:

• Todos los elementos de la colección de operaciones complejas que realizó el médico
asociado del médico principal de una operación, tienen una identificación superior o
igual al tipo de esa operación.

• El tipo de una operación debe ser igual a la clase del médico principal de la asociación.

• Si el médico principal de una operación no es cirujano entonces ese médico no tiene
un médico asociado.

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

368 APPENDIX D

4th Object, 1st Family of Experiment.

Por favor, indique el horario en el cual inicia el ejercicio:
hora········· minutos ········· segundos ········· .

Cliente
nombre : String
tiene˙tipo˙de˙Consumidor : Boolean
precio˙max˙por˙prod : Real
categoria : String

TipoConsumidor
forma˙de˙pago : String
clase: Integer

Orden
id˙orden : Integer
tipo˙pago : String
precio˙total : Real

LineaOrden
id˙orden : Integer
cant˙producto: Integer

Producto
nombre: String
precio: Real
precio˙promedio˙anual: Real

ordenes 1..*

tipo˙consumidor

1

1

tipo˙minimo˙consumidor

.

...............................
...............................

...............................
...........................

...............................
...............................

...............................
...........................

.

...

...

lineasorden

1..*

1..*

producto

Figure D.8: 4th Object, 1st Family of Experiments

Considere la siguiente expresión OCL válida para el diagrama UML de la Figura D.8:

context Cliente inv:
(self.tiene˙tipo˙de˙consumidor = true implies
(self.tipo˙consumidor.forma˙de˙pago= ’debito’ or
self.tipo˙consumidor.clase<= 1))
and self.ordenes->size() > 50)
and self.ordenes.lineasorden.producto ->
forAll (p | p.precio <= self.precio˙max˙permitido˙de˙prod)

1. A cuantas clases (distintas) se ha navegado a partir de la expresión? Indique el número y
el nombre de esas clases.

2. Alguna parte de la expresión OCL enunciada anteriormente significa alguna de las siguientes
expresiones escritas en Lenguaje Natural?. Cuál de las siguientes opciones es verdadera?

� Si el cliente tiene un tipo de consumidor entonces la forma de pago de su tipo de
consumidor es debito o la clase del tipo de consumidor es inferior a 1.

� Si el cliente tiene un tipo de consumidor entonces la forma de pago de su tipo de
consumidor es debito o la clase del tipo de consumidor es inferior a 2.

� Si el tipo de consumidor es de clase 1 o su forma de pago es debito entonces el cliente
tiene un tipo de consumidor.

3. Alguna parte de la expresión OCL enunciada anteriormente significa alguna de las siguientes
expresiones escritas en Lenguaje Natural?. Cuál de las siguientes opciones es verdadera?

� La cantidad de ordenes solicitas por un cliente no supera las 50 ordenes.

� La cantidad de ordenes solicitadas por un cliente no es inferior a 51 ordenes.

D.2. Material of the 1st Family of Experiments 369

� Todos los clientes han solicitado menos de 51 ordenes.

4. Alguna parte de la expresión OCL enunciada anteriormente significa alguna de las siguientes
expresiones escritas en Lenguaje Natural?. Cuál de las siguientes opciones es verdadera?

� Todos los productos de las ordenes solicitadas por un cliente tiene un precio, inferior
o igual, al precio máximo permitido para el producto.

� Todos los productos de las ĺıneas de orden de las ordenes solicitadas por un cliente
tiene un precio, inferior o igual, al precio máximo permitido por producto para ese
cliente.

� Todos los productos de las ĺıneas de orden de las ordenes solicitadas por un cliente
tiene un precio inferior al precio máximo permitido por producto.

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

370 APPENDIX D

Part II

Por favor, indique el horario en el cual inicia el ejercicio:

hora········· minutos ········· segundos ········· .

5. Se requiere rescribir la expresión OCL de tal forma que sean válidos los siguientes requeri-
mientos:

• Todos los productos de las ĺıneas de orden de las ordenes solicitadas por un cliente
tiene un ’precio promedio anual’, inferior a la mitad del precio máximo permitido por
producto para ese cliente.

• La cantidad de ordenes solicitadas por un cliente no es superior a 1000.

• Si el cliente no tiene un tipo de consumidor entonces ’el tipo mı́nimo de consumidor’
tiene una forma de pago que es ’efectivo’ y la clase del ’tipo de mı́nimo de consumidor’
es superior a 2.

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

D.3. Material of the 2nd Family of Experiments 371

D.3 Material of the 2nd Family of Experiments

1st Object, 2nd Family of Experiment.

Por favor, indique el horario en el cual inicia el ejercicio:
hora········· minutos ········· segundos ········· .

Propietario
nombre : String
apellido: String
dni: String

Inmobiliaria
nombre : String
direccion: String

Apartamento
id˙apartamento : Integer
calle: String
piso: String
puerta: String
cant˙habitaciones: Integer

Inquilino
nombre: String
apellido: String
es˙empresa: Boolean

.
..

..

...

..

...

...

1..*

alquila inquilinos

1..* 1..*

es˙duenio˙de 1..*

socios

1..*1..*

1

1..*

1..*

Figure D.9: 1st Object, 2nd Family of Experiments

Considere la siguiente expresión OCL válida para el diagrama UML de la Figura D.9:

context Apartamento inv:
self.inquilinos ->forAll (i | self.propietario->collect(dni)
->select(d:String | d = i.dni)->isEmpty())

1. Cuantas relaciones distintas ha navegado a partir de la expresión? Indique el número y el
nombre de los roles que han utilizado dichas navegaciones.

2. Marque con una cruz, indicando cual de las siguientes expresiones escritas en Lenguaje
Natural se corresponde con el significado de la expresión OCL.

� Un inquilino de un apartamento no pueden ser propietario de ningún apartamento.

� Un propietario de un apartamento no puede ser inquilino de su propio apartamento.

� Todos los inquilinos tienen distintos número de DNI.

3. Cuantas operaciones de colección se han utilizado en la expresión OCL? Mencione la canti-
dad y el nombre de cada operación.

4. Marque con una cruz, indicando cual de las siguientes expresiones escritas en Lenguaje
Natural es verdadera.

� El tipo del iterador i es Inquilino.

� El tipo del iterador i es Apartamento.

� El tipo del iterador i es Propietario.

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

372 APPENDIX D

Part II

Por favor, indique el horario en el cual inicia el ejercicio:

hora········· minutos ········· segundos ········· .

5. Se requiere rescribir la expresión OCL de tal forma que sea válido el siguiente requerimiento:

• Cada uno de los inquilinos de un apartamento debe tener un DNI distinto.

Rescriba la expresión OCL a continuación:

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

D.3. Material of the 2nd Family of Experiments 373

2nd Object, 2nd Family of Experiment.

Por favor, indique el horario en el cual inicia el ejercicio:
hora········· minutos ········· segundos ········· .

Museo
nombre : String
direccion: String

VisitasGuiadas
id˙visita: Integer
cant˙de˙participantes: Integer

Sala˙de˙Exposicion
nombre: String
dimension: Real
capacidad˙maxima: Integer

Obra
id˙obra: Integer
autor: String
nombre: String

corresponden˙a compuesta˙por

1 1..*

salas
1..*

1..*

pertenece˙a

1..*1

visitas

visitado˙por

obras˙visitadas

1..*

1..*

Figure D.10: 2nd Object, 2nd Family of Experiments

Considere la siguiente expresión OCL válida para el diagrama UML de la Figura D.10:

context Museo inv:
self.visitas -> forAll (v | v.obras˙visitadas.corresponden˙a
->collect(capacidad˙maxima)->forAll(c | c > v.cant˙de˙participantes))

1. Cuantas relaciones distintas ha navegado a partir de la expresión? Indique el número y el
nombre de los roles que han utilizado dichas navegaciones.

2. Marque con una cruz, indicando cual de las siguientes expresiones escritas en Lenguaje
Natural se corresponde con el significado de la expresión OCL.

� Todas las salas de exposición que contienen a las obras que son visitadas por alguna
visita guiada de un museo, tienen una capacidad máxima que no supera la cantidad
de participantes de esa visita guiada.

� Todas las capacidades máximas de las salas de exposición son superiores a la capacidad
máxima de toda visita guiada.

� Todas las salas de exposición que contienen a las obras que son visitadas por alguna
visita guiada de un museo, tienen una capacidad máxima que no supera la cantidad
participantes de toda visita guiada.

3. Cuantas operaciones de colección se han utilizado en la expresión OCL? Mencione la canti-
dad y el nombre de cada operación.

4. Marque con una cruz, indicando cual de las siguientes expresiones escritas en Lenguaje
Natural es verdadera.

� El tipo del iterador c es Visita˙Guiada.

� El tipo del iterador c es Integer.

� El tipo del iterador c es Sala˙de˙Exposición.

374 APPENDIX D

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

D.3. Material of the 2nd Family of Experiments 375

Part II

Por favor, indique el horario en el cual inicia el ejercicio:

hora········· minutos ········· segundos ········· .

5. Se requiere rescribir la expresión OCL de tal forma que sea válido el siguiente requerimiento:

• Todas las obras visitadas en una visita guiada de un museo, son obras que están
inclúıdas en alguna de las salas de exposición del museo cuya dimensión es mayor a
230 m2.

Rescriba la expresión OCL a continuación:

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

376 APPENDIX D

3rd Object, 2nd Family of Experiments

Por favor, indique el horario en el cual inicia el ejercicio:
hora········· minutos ········· segundos ········· .

Teatro
nombre : String
cant˙max˙espectadores: Integer

FuncionTeatral
dia: Integer
mes: Integer
anio: Integer
horario: String

Actor
nombre˙actor: String
dni: String

ObraTeatral
nombre: String
director: String
es˙unipersonal: Boolean

.
..

..

...

..

...

...

1..*

actuan integran

1..* 1..*

participan

pertenece 1..*

presenta1

*

*

obras1..*

Figure D.11: 3rd Object, 2nd Family of Experiments

Considere la siguiente expresión OCL válida para el diagrama UML de la Figura D.11:

context Teatro inv:
self.presenta->forAll(f | f.obras->select(o | o.es˙unipersonal)->
forAll(i | i.actuan->size() = 1))

1. Cuantas relaciones distintas ha navegado a partir de la expresión? Indique el número y el
nombre de los roles que han utilizado dichas navegaciones.

2. Marque con una cruz, indicando cual de las siguientes expresiones escritas en Lenguaje
Natural se corresponde con el significado de la expresión OCL.

� Todas las obras teatrales unipersonales son obras en las cuales actúa un único actor.

� En todas las funciones teatrales de un teatro, si la obra teatral es unipersonal entonces
solo un actor actúa en la obra.

� Todas las obras teatrales que se realizan en cualquier función teatral de un teatro son
obras unipersonales realizadas por un solo actor.

3. Cuantas operaciones de colección se han utilizado en la expresión OCL? Mencione la canti-
dad y el nombre de cada operación.

4. Marque con una cruz, indicando cual de las siguientes expresiones escritas en Lenguaje
Natural es verdadera.

� El tipo del iterador i es Obra˙Teatral.

� El tipo del iterador i es Boolean.

� El tipo del iterador i es Funcion˙Teatral.

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

D.3. Material of the 2nd Family of Experiments 377

Part II

Por favor, indique el horario en el cual inicia el ejercicio:

hora········· minutos ········· segundos ········· .

5. Se requiere rescribir la expresión OCL de tal forma que sea válido el siguiente requerimiento:

• Para toda función teatral de un teatro, si la obra teatral no es unipersonal entonces
la cantidad de actores que actúan en la obra no superan los 30 actores.

Rescriba la expresión OCL a continuación:

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

378 APPENDIX D

4th Object, 2nd Family of Experiments

Por favor, indique el horario en el cual inicia el ejercicio:
hora········· minutos ········· segundos ········· .

Linea˙Metro
letra : String

Metro
id˙metro: Integer
id˙motor: Integer
anio˙de˙adquisicion: Integer

Conductor
id˙conductor: Integer
edad: Integer
anios˙de˙experiencia: Integer

Viaje˙Metro
id˙viaje: Integer
nro˙de˙vagones: Integer

conduce

1..*

tiene 1..*

1..*1..*

metros

1..*

1..*

lo˙realiza

realiza

Figure D.12: 4th Object, 2nd Family of Experiments

Considere la siguiente expresión OCL válida para el diagrama UML de la Figura D.12:

context Linea˙Metro inv:
self.tiene-> select(c | c.edad >50)->isEmpty()

1. Cuantas relaciones distintas ha navegado a partir de la expresión? Indique el número y el
nombre de los roles que han utilizado dichas navegaciones.

2. Marque con una cruz, indicando cual de las siguientes expresiones escritas en Lenguaje
Natural se corresponde con el significado de la expresión OCL.

� Todos los conductores de las ĺıneas de metro tienen una edad mayor a 50 a�nos.

� No hay conductores en ninguna ĺınea de metro cuya edad sea superior a 50 a�nos.

� La colección de los conductores cuyas edades son inferiores a 50 a�nos, es vaćıa.

3. Cuantas operaciones de colección se han utilizado en la expresión OCL? Mencione la canti-
dad y el nombre de cada operación.

4. Marque con una cruz, indicando cual de las siguientes expresiones escritas en Lenguaje
Natural es verdadera.

� El tipo del iterador c es LineaMetro.

� El tipo del iterador c es Integer.

� El tipo del iterador c es Conductor.

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

D.3. Material of the 2nd Family of Experiments 379

Part II

Por favor, indique el horario en el cual inicia el ejercicio:

hora········· minutos ········· segundos ········· .

5. Se requiere rescribir la expresión OCL de tal forma que sea válido el siguiente requerimiento:

• Toda ĺınea de metro tiene al menos un conductor con 10 a�nos de experiencia.

Rescriba la expresión OCL a continuación:

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

380 APPENDIX D

5th Object, 2nd Family of Experiments

Por favor, indique el horario en el cual inicia el ejercicio:
hora········· minutos ········· segundos ········· .

Periodico
nombre: String
es˙matutino: Boolean

Articulo
titulo: String
cant˙palabras: Integer
id˙periodista: Integer

Edicion
id˙edicion : Integer
cant˙de˙paginas: Integer

Ubicacion˙en˙la˙Edicion
nro˙de˙pagina: Integer
es˙titular: Boolean

.

..

...

...

..

...

..

1..*

publicado

1..*

ediciones 1..*

pertenecen˙a

articulos

1..*

1

1..*

Figure D.13: 5th Object, 2nd Family of Experiments

Considere la siguiente expresión OCL válida para el diagrama UML de la Figura D.13:

context Edicion
inv: self.Ubicacion˙en˙la˙Edicion -> collect(u | u.es˙titular)->notEmpty()

1. Cuantas relaciones distintas ha navegado a partir de la expresión? Indique el número y el
nombre de los roles que han utilizado dichas navegaciones.

2. Marque con una cruz, indicando cual de las siguientes expresiones escritas en Lenguaje
Natural se corresponde con el significado de la expresión OCL.

� La colección de titulares de una edición esta vaćıa.

� Una edición siempre contiene art́ıculos que son titulares.

� Las ediciones solo tienen art́ıculos que son titulares.

3. Cuantas operaciones de colección se han utilizado en la expresión OCL? Mencione la canti-
dad y el nombre de cada operación.

4. Marque con una cruz, indicando cual de las siguientes expresiones escritas en Lenguaje
Natural es verdadera.

� El tipo del iterador u es Boolean.

� El tipo del iterador u es Ubicación˙en˙la˙edición.

� El tipo del iterador u es Art́ıculo.

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

D.3. Material of the 2nd Family of Experiments 381

Part II

Por favor, indique el horario en el cual inicia el ejercicio:

hora········· minutos ········· segundos ········· .

5. Se requiere rescribir la expresión OCL de tal forma que sea válido el siguiente requerimiento:

• Existen art́ıculos ubicados en la edición que son titulares y ellos se ubican en la página
1.

Rescriba la expresión OCL a continuación:

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

382 APPENDIX D

6th Object, 2nd Family of Experiments

Por favor, indique el horario en el cual inicia el ejercicio:
hora········· minutos ········· segundos ········· .

Fecha
dia: Integer
mes: Integer
ano: Integer

Doctor
dni: String
especialidad: String

Paciente
id˙paciente: Integer
nombre: String
apellido: String
fecha˙internacion: Fecha

Enfermero
dni: String
turno: String

.
..

...

...

...

...

..

enfermero˙a˙cargo

1..*

1..*

doctor˙a˙cargo

1..*

Figure D.14: 6th Object, 2nd Family of Experiments

Considere la siguiente expresión OCL válida para el diagrama UML de la Figura D.14:

context Apartamento inv:
self.inquilinos ->forAll (i | self.propietario->collect(dni)
->select(d:String | d = i.dni)->isEmpty())

1. Cuantas relaciones distintas ha navegado a partir de la expresión? Indique el número y el
nombre de los roles que han utilizado dichas navegaciones.

2. Marque con una cruz, indicando cual de las siguientes expresiones escritas en Lenguaje
Natural se corresponde con el significado de la expresión OCL.

� Un paciente puede estar a cargo de un doctor y de un enfermero.

� Si un paciente esta a cargo de un doctor, entonces puede estar a cargo de un enfermero.

� Un paciente puede estar a cargo de un doctor ó de un enfermero, pero no de ambos,
ni de ninguno a la vez.

3. Cuantas operaciones de colección se han utilizado en la expresión OCL? Mencione la canti-
dad y el nombre de cada operación.

4. Marque con una cruz, indicando cual de las siguientes expresiones escritas en Lenguaje
Natural es verdadera.

� El tipo de la subexpresión self.doctor˙a˙cargo es Integer.

� El tipo de la subexpresión self.doctor˙a˙cargo es Paciente.

� El tipo de la subexpresión self.doctor˙a˙cargo es Doctor.

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

D.3. Material of the 2nd Family of Experiments 383

Part II

Por favor, indique el horario en el cual inicia el ejercicio:

hora········· minutos ········· segundos ········· .

5. Se requiere rescribir la expresión OCL de tal forma que sea válido el siguiente requerimiento:

• Un paciente puede estar a cargo de un doctor o de un enfermero, o de ambos a la vez.

Rescriba la expresión OCL a continuación:

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

384 APPENDIX D

7th Object, 2nd Family of Experiment.

Por favor, indique el horario en el cual inicia el ejercicio:
hora········· minutos ········· segundos ········· .

Orquesta
nombre : String
cant˙de˙musicos: Integer

Musico
nombre : String
apellidos: String
dni: String

Conciertos
nombre: String
lugar: String
fecha: Fecha

Fecha
dia: Integer
mes: Integer
anio: Integer

1..*

realiza 1..*

participo

dirigio

*

*

1..*

1..*
directores

integrantes

es˙dirigido

orquestas 1..*

1..* 1..*

1

1

.

..................................

..................................

...................................

...................................

....................................

....................................
....................................

.....................................
..................................

.............

...............................
..................

............................
.......................

.......................
.......................

.......

.....................
.....................

.............

. ...
.....................................

..................................
..............................

...........................
................
...................
......................

.........................

............................

...............................

..................................

.....................................

..

.

..

...

...

..

.

............
............
............
............
............
............
............
....

............
............
............
............
............
............
............
....

Figure D.15: 7th Object, 2nd Family of Experiments

Considere la siguiente expresión OCL válida para el diagrama UML de la Figura D.15:

context Orquesta inv:
self.participa -> forAll (c | self.directores -> includes (c.es˙dirigido))

1. Cuantas relaciones distintas ha navegado a partir de la expresión? Indique el número y el
nombre de los roles que han utilizado dichas navegaciones.

2. Marque con una cruz, indicando cual de las siguientes expresiones escritas en Lenguaje
Natural se corresponde con el significado de la expresión OCL.

� Todos los directores de una orquesta dirigen todos los conciertos en los cuales participa
la orquesta.

� Los conciertos en los cuales participa una orquesta son dirigidos por algunos de los
directores de la orquesta.

� Los directores de una orquesta incluyen a los directores de los conciertos.

3. Cuantas operaciones de colección se han utilizado en la expresión OCL? Mencione la canti-
dad y el nombre de cada operación.

4. Marque con una cruz, indicando cual de las siguientes expresiones escritas en Lenguaje
Natural es verdadera.

� El tipo del iterador c es Orquesta.

� El tipo del iterador c es Músico.

� El tipo del iterador c es Conciertos.

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

D.3. Material of the 2nd Family of Experiments 385

Part II

Por favor, indique el horario en el cual inicia el ejercicio:

hora········· minutos ········· segundos ········· .

5. Se requiere rescribir la expresión OCL de tal forma que sea válido el siguiente requerimiento:

• El director de todo concierto en el cual participa una orquesta, es uno de los músicos
que integran la orquesta.

Rescriba la expresión OCL a continuación:

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

386 APPENDIX D

8th Object, 2nd Family of Experiment.

Por favor, indique el horario en el cual inicia el ejercicio:
hora········· minutos ········· segundos ········· .

Canal˙de˙Television
nombre : String

Programa
nombre : String
es˙serie: Boolean
duracion: Integer

Generos
tipo: Integer

Emision
rating: Integer
horario: Integer

.

...

...

..

...

...

..

.

...........
...........
...........
......

...........
...........
...........
....

...........
...........
...........
..

...........
...........
...........
.

...........
...........
..........

...........
...........
........

1..*

generos˙admitidos 1..* *
corresponde

programas

tiene

1..*

1..* 1..*

canales

1

Figure D.16: 8th Object, 2nd Family of Experiments

Considere la siguiente expresión OCL válida para el diagrama UML de la Figura D.16:

context Canal˙de˙Television
inv: self.programas->forAll(p | self.generos˙admitidos->includes(p.corresponde))

1. Cuantas relaciones distintas ha navegado a partir de la expresión? Indique el número y el
nombre de los roles que han utilizado dichas navegaciones.

2. Marque con una cruz, indicando cual de las siguientes expresiones escritas en Lenguaje
Natural se corresponde con el significado de la expresión OCL.

� Los géneros de los programas de un canal de televisión no incluyen a los géneros
admitidos por dicho canal.

� Todos los programas emitidos por un canal de televisión tiene un genero que pertenece
al conjunto de géneros admitidos por el canal de televisión.

� Todos los géneros de todos los programas de todos los canales de televisión coinciden
con los géneros admitidos por todos los programas.

3. Cuantas operaciones de colección se han utilizado en la expresión OCL? Mencione la canti-
dad y el nombre de cada operación.

4. Marque con una cruz, indicando cual de las siguientes expresiones escritas en Lenguaje
Natural es verdadera.

� El tipo del iterador p es Programa.

� El tipo del iterador p es Integer.

� El tipo del iterador p es Genero.

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

D.3. Material of the 2nd Family of Experiments 387

Part II

Por favor, indique el horario en el cual inicia el ejercicio:

hora········· minutos ········· segundos ········· .

5. Se requiere rescribir la expresión OCL de tal forma que sea válido el siguiente requerimiento:

• Para todo género admitido de un canal de televisión, se verifica que dicho género
pertenece a la colección de géneros de los programas del canal de televisión.

Rescriba la expresión OCL a continuación:

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

388 APPENDIX D

9th Object, 2nd Family of Experiment.

Por favor, indique el horario en el cual inicia el ejercicio:
hora········· minutos ········· segundos ········· .

Compa�ńıa˙Musical
nombre : String

Artista
nombre: String
nombre˙artistico: String

Compania˙Reproductora
nombre: String
pais: String

CD
nombre˙CD: String
cantidad˙temas: Integer
es˙recopilacion: Boolean

es˙reproducido˙por reproduce

1..* 1..*

.

............................
............................

............................
............................

............................
............................

............................
............................

..................

............................
............................

............................
............................

............................
............................

............................
............................

..................

edita
*reproductoras *

1pertenece

trabaja˙con

1..*

editora

1

1..*

artistas

artistas

tienen

1..*

1..*

Figure D.17: 9th Object, 2nd Family of Experiments

Considere la siguiente expresión OCL válida para el diagrama UML de la Figura D.17:

context CD inv:
self.es˙reproducido˙por->forAll(r| r.pertenece = self.editora)

1. Cuantas relaciones distintas ha navegado a partir de la expresión? Indique el número y el
nombre de los roles que han utilizado dichas navegaciones.

2. Marque con una cruz, indicando cual de las siguientes expresiones escritas en Lenguaje
Natural se corresponde con el significado de la expresión OCL.

� La compa�ńıa musical de un CD pertenece a la Compa�ńıa reproductora que edita el
CD.

� Las compa�ńıas reproductoras, como las compa�ńıas reproductoras editan todo CD.

� Las compa�ńıas reproductoras de un CD pertenecen a la Compa�ńıa musical que edita
el CD.

3. Cuantas operaciones de colección se han utilizado en la expresión OCL? Mencione la canti-
dad y el nombre de cada operación.

4. Marque con una cruz, indicando cual de las siguientes expresiones escritas en Lenguaje
Natural es verdadera.

� El tipo del iterador r es Compa�ńıa˙Reproductora.

� El tipo del iterador r es Compa�ńıa˙Musical.

� El tipo del iterador r es CD.

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

D.3. Material of the 2nd Family of Experiments 389

Part II

Por favor, indique el horario en el cual inicia el ejercicio:

hora········· minutos ········· segundos ········· .

5. Se requiere rescribir la expresión OCL de tal forma que sea válido el siguiente requerimiento:

• La compa�ńıas reproductoras que reproducen un CD están inclúıdas en la colección de
las compa�ńıas reproductoras que pertenecen a la compa�ńıa musical que editó el CD.

Rescriba la expresión OCL a continuación:

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

390 APPENDIX D

D.4 Material of the 3rd Family of Experiments

1st Object, 3rd Family of Experiment.

Part II Por favor, indique el horario en el cual inicia el ejercicio:

hora········· minutos ········· segundos ········· .

Propietario
nombre : String
apellido: String
dni: String

Inmobiliaria
nombre : String
direccion: String

Apartamento
id˙apartamento : Integer
calle: String
piso: String
puerta: String
cant˙habitaciones: Integer

Inquilino
nombre: String
apellido: String
es˙empresa: Boolean

.
..

..

...

..

...

...

1..*

alquila inquilinos

1..* 1..*

es˙duenio˙de 1..*

socios

1..*1..*

1

1..*

1..*

Figure D.18: 1st Object, 3rd Family of Experiments

Considere la siguiente expresión OCL válida para el diagrama UML de la Figura D.18:

context Apartamento inv:
self.inquilinos ->forAll (i | self.propietario->collect(dni)
->select(d:String | d = i.dni)->isEmpty())

Marque con una cruz la única opción que considera que satisface cada requerimento de modificación
de la expresión anterior:

Requerimiento: Ningún inquilino de un Apartamento puede tener un nombre que coincida con el
nombre de alguna Inmobiliaria que gestiona el alquiler del apartamento.

context Apartamento inv:

� self.inquilinos-> forAll (i | self.gestiona->collect(nombre)->select(o : String | o = i.nombre)-
>isEmpty())

� self.inquilinos-> forAll (i | self.propietario.socios->collect(nombre)->select(o : String | o =
i.nombre))

� self.alquila-> forAll (i | self.gestiona->collect(nombre)->select(o : String | o = i.nombre)-
>isEmpty())

Requerimiento: El apellido de un propietario de un apartamento no puede coincidir con el apellido
de algún inquilino del apartamento.

context Apartamento inv:

� self.propietarios ->forAll (p | self.inquilinos->collect(nombre)->select(a:String | a = apellido)-
>isEmpty())

� self.propietarios ->forAll (p | self.inquilinos->collect(apellido <> p.apellido)->isEmpty())

D.4. Material of the 3rd Family of Experiments 391

� self.propietarios ->forAll (p | self.inquilinos->collect(apellido)->select(a:String | a = p.apellido)-
>isEmpty())

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

392 APPENDIX D

2nd Object, 3rd Family of Experiment.

Part II Por favor, indique el horario en el cual inicia el ejercicio:

hora········· minutos ········· segundos ········· .

Teatro
nombre : String
cant˙max˙espectadores: Integer

FuncionTeatral
dia: Integer
mes: Integer
anio: Integer
horario: String

Actor
nombre˙actor: String
dni: String

ObraTeatral
nombre: String
director: String
es˙unipersonal: Boolean

.
..

..

...

..

...

...

1..*

actuan integran

1..* 1..*

participan

pertenece 1..*

presenta1

*

*

obras1..*

Figure D.19: 2nd Object, 3rd Family of Experiments

Dada la siguiente expresión OCL válida para el diagrama UML de la Figura D.19:

context Teatro inv:
self.presenta->forAll(f | f.obras->select(o | o.es˙unipersonal)->
forAll(i | i.actuan->size() = 1))

Marque con una cruz la única opción que considera que satisface cada requerimento de modificación
de la expresión anterior:

Requerimiento 1: En todas las funciones teatrales de un teatro, si la obra teatral no es unipersonal
entonces en ella actua más de un actor.

context Teatro inv:

� self.presenta->forAll(f | f.obras->select(o | o.es˙unipersonal = true)->forAll(i | i.actuan-
>size() > 1))

� self.presenta->forAll(f | f.obras->reject(o | o.es˙unipersonal = true)->forAll(i | i.actuan-
>size() > 1))

� self.presenta->forAll(f | f.obras->reject(o | o.es˙unipersonal = true)->exists(i | i.actuan-
>size() > 1))

Requerimiento 2: En todas las funciones teatrales de un teatro, los actores primarios que participan
en la función pueden integrar el elenco de a lo sumo 3 obras.

context Teatro inv:

� self.presenta->forAll(f | f.participan->reject(a | a.es˙actor˙primario = true)->forAll(a |
a.integran->size() < 3)

� self.presenta->forAll(f | f.participan->select(a | a.es˙actor˙primario = true)->forAll(a |
a.integran->size() <= 3)

D.4. Material of the 3rd Family of Experiments 393

� self.presenta->forAll(f | f.participan->select(a | a.es˙actor˙primario = true)->forAll(a |
a.integran->size() > 3)

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

394 APPENDIX D

3rd Object, 3rd Family of Experiment.

Part II Por favor, indique el horario en el cual inicia el ejercicio:

hora········· minutos ········· segundos ········· .

Linea˙Metro
letra : String

Metro
id˙metro: Integer
id˙motor: Integer
anio˙de˙adquisicion: Integer

Conductor
id˙conductor: Integer
edad: Integer
anios˙de˙experiencia: Integer

Viaje˙Metro
id˙viaje: Integer
nro˙de˙vagones: Integer

conduce

1..*

tiene 1..*

1..*1..*

metros

1..*

1..*

lo˙realiza

realiza

Figure D.20: 3rd Object, 3rd Family of Experiments

Considere la siguiente expresión OCL válida para el diagrama UML de la Figura D.20:

context Linea˙Metro inv:
self.tiene-> select(c | c.edad >50)->isEmpty()

Marque con una cruz la única opción que considera que satisface cada requerimento de modificación
de la expresión anterior:

Requerimiento 1: En todas las Lineas de Metros deben existir conductores con más de 10 a�nos de
experiencia.

context Linea˙metro inv:

� self.tiene->select(c | c.a�nos˙de˙experiencia < 10)->NotEmpty()

� self.tiene->reject(c | c.a�nos˙de˙experiencia > 10)->isEmpty()

� self.tiene->select(c | c.a�nos˙de˙experiencia > 10)->NotEmpty()

Requerimiento 2: En todas las Lineas de Metros no deben existir metros cuyos a�nos de adquisición
sea menor a 1980.

context Linea˙metro inv:

� self.metros->select(m | m.a�no˙de˙adquisición > 1980)->isEmpty()

� self.metros->reject(m | m.a�no˙de˙adquisición >= 1980)->isEmpty()

� self.metros->reject(m | m.a�no˙de˙adquisición < 1980)->isEmpty()

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

D.4. Material of the 3rd Family of Experiments 395

4th Object, 3rd Family of Experiment.

Part II

Por favor, indique el horario en el cual inicia el ejercicio:

hora········· minutos ········· segundos ········· .

Fecha
dia: Integer
mes: Integer
ano: Integer

Doctor
dni: String
especialidad: String

Paciente
id˙paciente: Integer
nombre: String
apellido: String
fecha˙internacion: Fecha

Enfermero
dni: String
turno: String

.
..

...

...

...

...

..

enfermero˙a˙cargo

1..*

1..*

doctor˙a˙cargo

1..*

Figure D.21: 4th Object, 3rd Family of Experiments

Considere la siguiente expresión OCL válida para el diagrama UML de la Figura D.21:

context Apartamento inv:
self.inquilinos ->forAll (i | self.propietario->collect(dni)
->select(d:String | d = i.dni)->isEmpty())

Marque con una cruz la única opción que considera que satisface cada requerimento de modificación
de la expresión anterior:

Requerimiento 1: Un paciente esta a cargo de un doctor o de un enfermero, o de ninguno a la vez.

context Paciente inv:

� (self. doctor˙a˙cargo->size() + self.enfermero˙a˙cargo->size()) < 1

� (self. doctor˙a˙cargo->size() + self.enfermero˙a˙cargo->size()) <= 1

� (self. doctor˙a˙cargo->size() + self.enfermero˙a˙cargo->size()) > 1

Requerimiento 2: Un paciente esta a cargo de un doctor y de un enfermero.

context Paciente inv:

� self. doctor˙a˙cargo->notEmpty() and self.enfermero˙a˙cargo->isEmpty()

� self. doctor˙a˙cargo->notEmpty() and self.enfermero˙a˙cargo->notEmpty()

� self. doctor˙a˙cargo->isEmpty() and self.enfermero˙a˙cargo->isEmpty()

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

396 APPENDIX D

5th Object, 3rd Family of Experiment.

Part II

Por favor, indique el horario en el cual inicia el ejercicio:

hora········· minutos ········· segundos ········· .

Orquesta
nombre : String
cant˙de˙musicos: Integer

Musico
nombre : String
apellidos: String
dni: String

Conciertos
nombre: String
lugar: String
fecha: Fecha

Fecha
dia: Integer
mes: Integer
anio: Integer

.

..................................

..................................

...................................

...................................

....................................

....................................
....................................

.....................................
..................................

.............

...............................
..................

............................
.......................

.......................
.......................

.......

.....................
.....................

.............

. ...
.....................................

..................................
..............................

...........................
................
...................
......................

.........................

............................

...............................

..................................

.....................................

..

.

..

...

...

..

.

............
............
............
............
............
............
............
....

............
............
............
............
............
............
............
....

1..*

realiza 1..*

participo

dirigio

*

*

1..*

1..*
directores

integrantes

es˙dirigido

orquestas 1..*

1..* 1..*

1

1

Figure D.22: 5th Object, 3rd Family of Experiments

Considere la siguiente expresión OCL válida para el diagrama UML de la Figura D.22:

context Orquesta inv:
self.participa -> forAll (c | self.directores -> includes (c.es˙dirigido))

Marque con una cruz la única opción que considera que satisface cada requerimento de modificación
de la expresión anterior:

Requerimiento 1: El director de todo concierto realizado por una orquesta, es uno de los músicos
que integran la orquesta.

context Orquesta inv:

� inv: self.realiza -> forAll (c | self.directores -> includes (c.es˙dirigido))

� inv: self.realiza -> forAll (c | self.integrantes -> includes (c.es˙dirigido))

� inv: self.realiza -> forAll (c | self.integrantes -> excludes (c.es˙dirigido))

Requerimiento 2: Los conciertos en los cuales participaron los integrantes de una orquesta son
conciertos que realizó dicha orquesta.

context Orquesta inv:

� inv: self.integrantes -> forAll (i | i.participo-> includes (self.realiza))

� inv: self.integrantes -> forAll (i | self.realiza-> includesAll (i.participo))

� inv: self.integrantes -> forAll (i | self.realiza-> includes (i.participo))

D.4. Material of the 3rd Family of Experiments 397

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

398 APPENDIX D

6th Object, 3rd Family of Experiment.

Part II

Por favor, indique el horario en el cual inicia el ejercicio:

hora········· minutos ········· segundos ········· .

Canal˙de˙Television
nombre : String

Programa
nombre : String
es˙serie: Boolean
duracion: Integer

Generos
tipo: Integer

Emision
rating: Integer
horario: Integer

.

...

...

..

...

...

..

.

...........
...........
...........
......

...........
...........
...........
....

...........
...........
...........
..

...........
...........
...........
.

...........
...........
..........

...........
...........
........

1..*

generos˙admitidos 1..* *
corresponde

programas

tiene

1..*

1..* 1..*

canales

1

Figure D.23: 6th Object, 3rd Family of Experiments

Considere la siguiente expresión OCL válida para el diagrama UML de la Figura D.23:

context Canal˙de˙Television
inv: self.programas->forAll(p | self.generos˙admitidos->includes(p.corresponde))

Marque con una cruz la única opción que considera que satisface cada requerimento de modificación
de la expresión anterior:

Requerimiento 1: Todos los programas correspondientes a los generos admitidos de un canal de
televisión, son programas de ese canal.

context Canal˙de˙Television inv:

� self.generos˙admitidos->forAll(p | self.programas->excludes(p.tiene))

� self.generos˙admitidos->forAll(p | self.programas->includesAll(p.tiene))

� self.generos˙admitidos->forAll(p | p.tiene->includesAll(self.programas))

Requerimiento 2: Para todo genero admitido de un canal de televisión existe algun programa del
canal con dicho genero.

context Canal˙de˙Television inv:

� self.generos˙admitidos->exists (g | self.programas.corresponde->includes (g))

� self.generos˙admitidos->exists (g | self.programas.corresponde->excludes (g))

� self.generos˙admitidos->exists (g | self.programas.corresponde->includes (self))

Por favor, indique el horario en el cual finaliza el ejercicio:

hora········· minutos ········· segundos ········· .

D.5. A Sample of the Debriefing Questionnaire 399

D.5 A Sample of the Debriefing Questionnaire

This questionnaire was answered for the subjects of the first conducted experiment.

The information you provide in this questionnaire may be very valuable for us. Please answer each
question as honestly as you can. Anything you write down will be treated confidentially. Thank
you.

Personal details and experience

(1) First Name: · · · · · · · · · · · · · · ·
(2) Last Name: · · · · · · · · · · · · · · ·
(3) Age: · · · · · · · · · · · · · · · (4) Gender: · · · · · · · · · · · · · · ·
(5) Years at the university: · · · · · · · · · · · · · · ·
(6) Are you studying in another university or institute?: · · · · · · · · · · · · · · ·
(7) Please tick the signatures you have approved?:

System Analysis · · · · · ·
Software Development · · · · · ·
Software Engineering · · · · · ·
System Project Administration · · · · · ·
Programming Languages · · · · · ·

(8) How many years have you experienced in programing? · · · · · · · · · · · · · · ·
(9) Which programming languages have you used? · · · · · · · · · · · · · · ·
(10) How many years have you experienced in modelling object-oriented software?
· · · · · · · · · · · · · · ·
(11) How many years have you experienced in modelling class diagrams?
· · · · · · · · · · · · · · ·
(12) How many years have you experienced with OCL? · · · · · · · · · · · · · · ·
(13) Have you ever used a formal language?: · · · · · · · · · · · · · · ·
(14) If you answer ’yes’ to the previous question, please indicate which formal
language you used. · · · · · · · · · · · · · · ·
Any additional comments?
· ·
· ·
Thanks once again!

